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ON BLOCK RECURSIONS,

ASKEY’S SIEVED JACOBI POLYNOMIALS

AND TWO RELATED SYSTEMS

BY

BERNARDA H. ALDANA , JAIRO A. CHARRI S AND

ORIOL MORA-VALBUENA

WALEED AL-SALAM, TEACHER AND FRIEND, IN MEMORIAM

Two systems of sieved Jacobi polynomials introduced by R. Askey are
considered. Their orthogonality measures are determined via the theory of
blocks of recurrence relations, circumventing any resort to properties of the
Askey–Wilson polynomials. The connection with polynomial mappings is
examined. Some naturally related systems are also dealt with and a simple
procedure to compute their orthogonality measures is devised which seems
to be applicable in many other instances.

1. Introduction. Since the works of L. J. Rogers ([32]–[36]), the or-
thogonal systems of q-polynomials, or “basic” orthogonal polynomials, play
important roles in diverse branches of mathematics. Just as the Rogers poly-
nomials (also known as the q-Rogers or q-ultraspherical polynomials) have
provided the key for the proof of the celebrated Rogers–Ramanujan identi-
ties (see [3], [22]), a new system, the q-Wilson polynomials, also known as
the Askey–Wilson polynomials ([3], [8], [22]), has been crucial in establishing
some surprising identities of R. Baxter, used by this author in his solution
of the “Hard Hexagon” and other models in statistical mechanics (see [3]).

Nowadays, q-versions (frequently several of them) of almost all classical
systems of polynomials are known (the latter can be recovered from the
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q-versions by appropriately letting q → 1). The relevant literature is ex-
tensive, the recent book by G. Gasper and M. Rahman [22] being a basic
reference on the subject.

In a remarkable work [2], W. Al-Salam, W. Allaway and R. Askey de-
scribe a manner through which the q-Rogers polynomials ([5], [6], [32]–[36])
generate new orthogonal systems: to let q conveniently approach a k-root of
unity, where k ≥ 2 is an integer. According to this process, the recurrence
relation of the q-system breaks up for each n ≥ 0 into blocks of k equa-
tions each. Al-Salam, Allaway and Askey call this a process of sieving . The
outcoming polynomials are the sieved polynomials; in their case, the sieved

ultraspherical polynomials.

According to how q → exp(2πi/k), a given system of q-polynomials
may give rise to several kinds of sieved polynomials. Those known as of
the first and second kinds have received much attention ([1], [2], [12]–[15],
[24], [25]). Other classes have been barely touched ([1], [14]). In [2], the
basic properties of the sieved polynomials, including their orthogonality,
are formally deduced from properties of the q-polynomials they originate
from. This demands good knowledge of q-polynomials and frequently the
extrapolation of established results. To give the whole procedure a sound
basis is a delicate matter.

The sieved ultraspherical polynomials are systems of sieved random walk
polynomials (see Section 2.10 below). In [11], a theory of systems of sieved
polynomials directly built from the recurrence relations was attempted. In
order to keep close to the model in [2], the authors only deal with symmetric
random walk polynomials. However, J. A. Charris and M. E. H. Ismail [12]
extended [2] to the case of the sieved Pollaczek polynomials. The Pollaczek
polynomials are not random walk ones. In order to parallel the approach
in [2], the authors of [12] resorted to the so-called q-Pollaczek polynomials.
But, unlike the Rogers polynomials, known properties of the q-Pollaczek
polynomials were scarce at the time, and hard to establish ([12], [10]). Thus,
it was natural they intended a direct treatment more deeply rooted in the
blocks of recurrence relations. This approach evolved to the form exhibited
in [13] and [14], which, far from being limited to sieved polynomials, covers
systems such as those outcoming from the theory of polynomial mappings
in [23] and even more general.

In a panoramic paper [4] on old and new orthogonal systems, R. Askey
introduced some new systems of sieved polynomials. He follows the approach
in [2] but now starting from the q-Wilson polynomials. He calls these sieved
Jacobi polynomials. The main purpose of the present paper is to deal with

Askey’s sieved Jacobi polynomials and some related systems from the point

of view of the theory of block recursions, avoiding any reference to properties

of the Askey–Wilson polynomials. We hope this will make clear some of the
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advantages of the k-block approach. However, we briefly review the manner
through which Askey’s sieved Jacobi polynomials originate from the Askey–
Wilson polynomials.

The symmetric q-Wilson (or Askey–Wilson) polynomials Wm(x) =
Wm(x; a, b|q), m ≥ 0, are given by

(1.1) xWm(x) = Wm+1(x) + CmWm−1(x), m ≥ 0,

and W−1(x) = 0, W0(x) = 1, where

(1.2) Cm =
(1− qm)(1 + a2qm−1)(1 + b2qm−1)(1 − a2b2qm−2)

4(1− a2b2q2m−3)(1 − a2b2q2m−1)
, m ≥ 0.

If a, b are either real or conjugate complex, q is real and |q|, |a|, |b| < 1, then
the orthogonality measure of {Wn(x)} is (see [3], [4], [8] and [22], pp. 143
and 172–179)

(1.3) dµ(x) =
h(x, 1)h(x,−1)h(x, q1/2)h(x,−q1/2)

h(x, a)h(x, b)h(x,−a)h(x,−b)
(1− x2)−1/2χ(x)dx,

where χ(x) is the characteristic function of [−1, 1] and

h(x, α) =

∞∏

m=0

(1− 2x(αqm) + (αqm)2).

Verification of (1.3) relies on non-trivial properties of the so-called q-beta
integral of Askey and Wilson, an important q-extension of the beta function
(see (2.31) below and [22], Chap. VI).

The Askey–Wilson polynomials contain as special cases many classical
systems of q-polynomials. For example, if we let γ = a2 = b2/q in (1.2) we
get

(1.4) Cm =
(1− qm)(1− γ2qm−1)

4(1− γqm−1)(1 − γqm)
, m ≥ 0,

and Wm(x) is denoted by Cm(x; γ|q). These are the q-Rogers or q-ultra-
spherical polynomials mentioned above. The name q-ultraspherical given to
these polynomials comes from the fact that letting γ = qλ and q → 1 in
(1.4) yields

(1.5) lim
q→1

Cm(x; qλ|q) = Cλ
m(x)

where Cλ
m(x) is the monic mth ultraspherical polynomial ([31], Chap. 17;

[40], Chap. IV, Section 4.7).
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Now taking q=s exp(πi/k), a=s(α+1/2)k, b=s(β+1/2)k+1/2 exp(πi/(2k))
in (1.2) and letting s → 1 we obtain

(1.6) lim
s→1

Cm =





n

2(2n + α+ β + 1)
, m = 2nk,

n+ α+ β + 1

2(2n + α+ β + 1)
, m = 2nk + 1,

n+ β + 1

2(2n + α+ β + 2)
, m = (2n + 1)k,

n+ α+ 1

2(2n + α+ β + 2)
, m = (2n + 1)k + 1,

1/4, m 6= nk, nk + 1.

Also, if we set

q=s exp(πi/k), a=s(α+1/2)k+1 exp(πi/k), b=s(β+1/2)k+1/2 exp(πi/(2k))

and let again s → 1 in (1.2), the result is

(1.7) lim
s→1

Cm =





n+ α+ β + 1

2(2n + α+ β + 1)
, m = 2nk − 1,

n

2(2n + α+ β + 1)
, m = 2nk,

n+ α+ 1

2(2n + α+ β + 2)
, m = (2n+ 1)k − 1,

n+ β + 1

2(2n + α+ β + 2)
, m = (2n+ 1)k,

1/4, m 6= nk, nk − 1, k > 2.

Relation (1.7) gives rise to the blocks

(1.8) xp2nk+j(x) = p2nk+j+1(x) + a(j)n p2nk+j−1(x), n ≥ 0,

where 0 ≤ j ≤ 2k − 1, p−1(x) = 0, p0(x) = 1,

(1.9)

a(0)n =
n

2(2n + α+ β + 1)
, a(1)n =

n+ α+ β + 1

2(2n + α+ β + 1)
,

a(k)n =
n+ β + 1

2(2n + α+ β + 2)
, a(k+1)

n =
n+ α+ 1

2(2n + α+ β + 2)
,

and, if k > 2,

(1.10) a(j)n = 1/4, 2 ≤ j ≤ 2k − 1, j 6= k, k + 1.

This is the system Askey calls sieved Jacobi polynomials of the first kind .
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Also, (1.7) leads to the system (1.8) with

(1.11)

a(0)n =
n

2(2n + α+ β + 1)
, a(k−1)

n =
n+ α+ 1

2(2n + α+ β + 2)
,

a(k)n =
n+ β + 1

2(2n + α+ β + 2)
, a(2k−1)

n =
n+ α+ β + 2

2(2n + α+ β + 3)
,

and, when k > 2, with

(1.12) a(j)n = 1/4, 0 < j < 2k − 1, j 6= k − 1, k.

This is the system of Askey’s sieved Jacobi polynomials of the second kind .
The recurrence relations above do not completely fit the scheme of sieved

polynomials of a given system in [13], [14] or in Section 2.10 below. In
this sense they are not sieved Jacobi polynomials. However, they looked
amenable to the general theory of blocks in these papers. Furthermore,
though not sieved polynomials of the Jacobi system, they are sieved polyno-
mials of a system first examined by T. S. Chihara in [20], which actually is,
in the sense of [13], [14], or of Section 2.10 below, a system of sieved Jacobi
polynomials of the first kind (see Section 2.11 below). Thus, this yields an
interesting double-sieved system of polynomials.

Remark 1.1. The case β = −1/2, α + 1/2 = λ of (1.9) is that of
the sieved ultraspherical polynomials of the first kind in [2]. Relation (1.8)
becomes

(1.13) xpnk+j(x) = pnk+j+1(x) + a(j)n pnk+j−1(x), n ≥ 0,

j = 0, 1, 2, . . . , k − 1, with

(1.14)
a(0)n =

n

4(n + λ)
; a(1)n =

n+ 2λ

4(n + λ)
;

a(j)n = 1/4, j = 2, . . . , k − 1.

Also, (1.13) with

(1.15)
a(0)n =

n

4(n + λ)
; a(k−1)

n =
n+ 2λ+ 1

4(n+ λ+ 1)
;

a(j)n = 1/4, j = 1, . . . , k − 2,

which is (1.11) with β = −1/2, α+ 1/2 = λ, is the system of sieved ultras-
phericals of the second kind.

The paper is organized as follows. In Section 2 we give definitions and
results which are basic for the rest of the work. This allows for handy refer-
ence in the appropriate form. A brief survey of the theory of block recursions
and of sieved polynomials is included. In Section 2.2 we describe a procedure
to determine the orthogonality measures in Sections 5 and 6 which seems
suitable in many other circumstances. Askey’s sieved Jacobi polynomials are



62 B. H. ALDANA ET AL.

dealt with in Sections 3 and 4: in Section 3, those of the first kind, identified
as double-sieved polynomials; in Section 4, those of the second kind, from
the point of view of the general theory of block recursions. Some closely
related systems, typically given by block recurrence relations, are examined
in Sections 5 and 6.

This paper is dedicated to the memory of Professor Waleed Al-Salam.
Many ideas on which it is based originated in his deep and important work.

2. Preliminary notions and results

2.1. Moment functionals and orthogonal polynomials. A moment func-

tional L is a complex linear map from the space C[x] of complex polynomials
into the field C of complex numbers. The moment functional L is regular

([19], Chap. I) if there exists a system {Pn(x) | n ≥ 0} of complex polyno-
mials which satisfies the recurrence relation

(2.1)
xPn(x) = Pn+1(x) +BnPn(x) + CnPn−1(x), n ≥ 0;

P−1(x) = 0, P0(x) = 1,

where Bn, Cn are complex numbers with

(2.2) Cn+1 6= 0, n ≥ 0,

and is such that

(2.3) L(Pn(x)Pm(x)) = λnδmn, m, n ≥ 0, λn 6= 0, λ0 = 1.

Since {Pn(x)} is a basis of C[x], it follows that L is uniquely determined by

(2.4) L(P0(x)) = 1; L(Pn(x)) = 0, n ≥ 1.

Moreover,

(2.5) L(P 2
n(x)) = λn = C1 . . . Cn, n ≥ 1.

The system {Pn(x)} is also uniquely determined by L and is called its monic

orthogonal system. Monic refers to the leading coefficient of Pn(x) being 1;
and orthogonal to relation (2.3). Also, L is called the moment functional

of {Pn(x)}. If {Pn(x)} is given through a recurrence relation (2.1), L is
defined by (2.4) and linear extension, and (2.2) holds, then L is regular and
its monic orthogonal system is {Pn(x)}.

The moment functional L is bounded if Bn, Cn in (2.1) satisfy

(2.6) |Bn| ≤
M

3
, |Cn+1| ≤

M

3
, n ≥ 0, M ≥ 3.

If L is regular and bounded (by M), the continued fraction

(2.7)
1|

|z −B0
− C1|

|z −B1
− C2|

|z −B2
− . . .
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([19], Chap. III; see also [41] for a more detailed study of continued fractions)
is uniformly convergent on |z| > M ′, for all M ′ > M , to a limit X(z), which
is an analytic function on |z| > M . Then

(2.8) L(P (x)) =
1

2πi

\
C

P (z)X(z) dz,

where C is any positively oriented contour of |z| > M with z = 0 in its
interior. Proofs of this and related results can be found in [7], [15], [16]
and [27].

If L is positive, which means that Bn, Cn in (2.1) are real numbers and

(2.9) Cn+1 > 0, n ≥ 0,

then L has representations of the form ([19], Chap. II, Theorem 3.1)

(2.10) L(P (x)) =

∞\
−∞

P (x) dµ(x),

where µ is a positive measure supported by the real line. This is known
as Favard’s theorem. Clearly, (2.8) and (2.10) hold if and only if they hold
for any polynomial P (x) with real coefficients. In general, µ is not unique.
When µ is unique, we say that the moment problem for L is determined and
µ is called the orthogonality measure of {Pn(x)}. This is so, for example,
when (2.6) holds, in which case suppµ ⊆ [−M,M ]. When L is positive and
bounded by M , (2.7) converges to X(z) uniformly on compact subsets of
C− [−M,M ] and X(z) = X(z) for z 6∈ [−M,M ]. In particular, X(x) is real
for x ∈ R− [−M,M ]. Furthermore,

(2.11) L(P (x)) = lim
ε→0+

1

π

∞\
−∞

ImX(t− iε)P (t) dt.

This is Stieltjes’ inversion formula ([19], Chap. II). It frequently allows one
to determine µ. In some instances the limit and the integral in (2.11) can
be interchanged, i.e.,

(2.12) L(P (x)) =

∞\
−∞

P (t)w(t) dt

with

(2.13) w(t) = lim
ε→0+

1

π
ImX(t− iε)

wherever the limit exists. Observe that w(t) = 0 for t ∈ R− [−M,M ]. This
is obviously the case if the limit in (2.13) holds almost everywhere and there
is an integrable function g on R such that |ImX(t−iε)| ≤ g(t) for almost all
t ∈ [−M,M ] and all sufficiently small ε (Lebesgue’s dominated convergence
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theorem, [28], p. 141). It is also the case if

(2.14) F (z) =





1

π
ImX(z), Im(z) < 0,

w(z), Im(z) = 0,

is continuous, as a uniform continuity argument on [−M−1,M+1]× [−1, 0]
readily shows.

Remark 2.1. More frequently limζ→x X(ζ) exists for all x ∈ R except at
most finitely many points −M = ζ0 < ζ1 < . . . < ζk = M ; also, the function
X̂(z) given by

(2.15) X̂(z) =

{
X(z), Im(z) < 0,

limζ→z X(ζ), Im(ζ) < 0, z ∈ R,

is continuous except perhaps at the points z = ζ0, . . . , ζk, at which we

nevertheless see that limz→ζj (z − ζj)X̂(z) exists and is finite. We observe

that F (z) = 1
π
Im X̂(z) wherever X̂(z) is defined. In particular, w(x) =

1
π
Im X̂(x) for x ∈ R, x 6= ζj , j = 0, 1, . . . , k.
Now let C be a positively oriented contour enclosing [−M,M ] and let

r, ε > 0 be such that 0 < r < 1
2 |ζi+1 − ζi|, i = 0, 1, . . . , k − 1, 0 < ε < r. Let

Γr,ε be the positively oriented boundary of the set of points which are either
inside one of the circles of center ζi, i = 1, . . . , k, and radius r or lie between
the line segments parallel to [−M,M ] and respectively joining the points
(−M,ε) and (M,ε) or (−M,−ε) and (M,−ε). Assume r is small enough
for Γr,ε to be in the interior of C. Then, for P (x) a real polynomial,\

C

X(z)P (z) dz = lim
r→0

lim
ε→0

\
Γr,ε

X(z)P (z) dz,

and taking into account that X(z) = X(z), Im(z) 6= 0, it follows that\
Γr,ε

X(z)P (z) dz =

k∑

j=0

2i

0\
−π

Re(reiθX̂(ζj + reiθ)P (ζj + reiθ)) dθ

+
k−1∑

j=0

2i

ζj+1−r\
ζj+r

Im(X̂(t− iε)P (t− iε)) dt.

Thus, since

Re((z − ζj)X̂(z)P (z)) = Re((z − ζj)X̂(z))Re(P (z))

− Im((z − ζj)X̂(z)) Im(P (z)),

Im(X̂(z)P (z)) = Im(X̂(z))Re(P (z))

+ Re(X̂(z)) Im(P (z)),
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Re(X̂(z)) and Im(X̂(z)) are both continuous on [ζj + r, ζj+1 − r]× [−1, 0],
j = 0, 1, . . . , k − 1, and Re(P (t− iε)) → P (t), Im(P (t− iε)) → 0 as ε → 0,
it follows that

(2.16) L(P (x)) =

k∑

j=0

AjP (ζj) + P.V.

∞\
−∞

P (t)w(t) dt

where

(2.17) Aj = lim
z→ζj

Re((z − ζj)X̂(z))

and

P.V.

∞\
−∞

P (t)w(t) dt := lim
r→0

k−1∑

j=0

ζj+1−r\
ζj+r

P (t)w(t) dt

is the Cauchy Principal Value.
A new application of Lebesgue’s dominated convergence theorem then

yields, under the circumstances of Remark 2.1, the following:

Theorem 2.1. If w, given by (2.13), is integrable on R, then

(2.18) L(P (x)) =
k∑

j=0

AjP (ζj) +

∞\
−∞

P (t)w(t) dt,

where Aj is given by (2.17). Furthermore, if Aj 6= 0, then ζj is a mass point

of L in [−M,M ]. Thus, the orthogonality measure of {Pn(x)} is

(2.19) dµ(x) =

k∑

j=0

Ajδj + w(x)dx

where δj is the Dirac measure at ζj.

The above procedure has been devised for use in Sections 5 and 6.

2.2. Numerator polynomials. If {Pn(x)} satisfies (2.1), and (2.2) and
(2.6) hold, then X(z) in (2.8) is given by

(2.20) X(z) = lim
n→∞

P
(1)
n−1(z)

Pn(z)
, |z| > M,

where {P (i)
n (x)} is determined, for i = 0, 1, . . . , by

(2.21) xP (i)
n (x) = P

(i)
n+1(x) +Bn+iP

(i)
n (x) +Cn+iP

(i)
n−1(x), n ≥ 0,

with P
(i)
−1(x) = 0, P

(i)
0 (x) = 1 ([19], Chap. III, p. 87). Convergence in

(2.20) is uniform on |z| ≥ M ′ for M ′ > M . In view of (2.20), {P (1)
n (x)}

is known as the system of numerator polynomials of {Pn(x)}. Darboux’s
asymptotic method ([21]; [30], Chap. 8) is frequently helpful in establishing
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(2.20). See [7] for examples of how a combination of Darboux’s method and
Stieltjes’ inversion formula allows one to determine X(z) and µ from the re-

currence relation (2.1). The system {P (i)
n (x)} is called the set of i-associated

polynomials of {Pn(x)}. Clearly, {P (i+1)
n (x)} is the set of numerator poly-

nomials of {P (i)
n (x)}. If {P̃n(x)} satisfies (2.1) for n ≥ 1 and P̃0(x) = 1,

P̃1(x) = P1(x) +Q(x), where Q(x) is a polynomial, then (2.21) for i = 0, 1

ensures that P̃n(x) = Pn(x) + Q(x)P
(1)
n−1(x) for all n ≥ 0. We say that

{Pn(x)} and {P̃n(x)} are co-recursive. See [18], [29], [37] for details about
co-recursive polynomials and their applications.

2.3. The Chebyshev polynomials. The Chebyshev polynomials of the first

and second kinds {Tn(x)} and {Un(x)} are both defined ([31], Chap. 18, pp.
301–302) by the recurrence relation

2xyn(x) = yn+1(x) + yn−1(x), n ≥ 1.

The respective initial conditions are T0(x) = 1, T1(x) = x and U0(x) = 1,
U1(x) = 2x. We assume T−1(x) = U−1(x) = 0. For x = cos θ, 0 < θ < π,

(2.22) Tn(x) = cosnθ, Un(x) =
sin(n+ 1)θ

sin θ
, n ≥ 0.

The relations

(2.23)
2Tn(x) = Un(x)− Un−2(x),

U2
n−1(x)− Un(x)Un−2(x) = 1, n ≥ 1,

and

(2.24)
1− T 2

n(x) = (1− x2)U2
n−1(x), 1− T2n(x) = 2(1 − x2)U2

n−1(x)

U2n−1(x) = 2Un−1(x)Tn(x), 1 + T2n(x) = 2T 2
n(x), n ≥ 0,

will be needed. They follow at once from (2.22) for −1<x<1 and hold for
all x by analytic continuation. The corresponding monic Chebyshev poly-
nomials are

(2.25) T̃n(x) = 2−n+1Tn(x), Ũn(x) = 2−nUn(x), n ≥ 1.

We also let T̃−1(x) = Ũ−1(x) = 0, T̃0(x) = Ũ0(x) = 1.

2.4. The gamma function. The gamma function ([31], Chap. 2) is

(2.26) Γ (z) := lim
n→∞

(n− 1)!nz

(z)n
, z 6= 0,−1,−2, . . . ,

where (z)n is the Pochhammer symbol :

(z)0 = 1; (z)1 = z; (z)n = z(z + 1) . . . (z + n− 1), n ≥ 2.
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From (2.26) it follows that

(2.27) Γ (z) =
Γ (z + n)

(z)n
, n ≥ 0, z 6= 0,−1,−2, . . .

If Re(z) > 0, then ([31], Chap. 2)

(2.28) Γ (z) =

∞\
0

tz−1e−t dt,

so that Γ (z) is analytic for Re(z) > 0. This and (2.27) ensure that Γ is
analytic on C− {0,−1, . . .} with simple poles at 0,−1,−2, . . .

2.5. The hypergeometric function. The analytic continuation to C −
[1,∞) of the hypergeometric series

(2.29)
∞∑

n=0

(a)n(b)n
(c)n

zn

n!
, |z| < 1, c 6= 0,−1,−2, . . . ,

is denoted by F (a, b; c; z) and called the hypergeometric function. The ana-
lytic continuation can be carried out by means of contour integral represen-
tations of the Barnes type ([31], Chap. 5). If a ∈ C and ta = ea log(t), t 6= 0,
and (1− t)a = ea log(1−t), t 6= 1, where log(z) is the branch of the logarithm
in C − {0} with imaginary part in (−π, π] (the so-called principal branch),
then it can be shown ([31], Chap. 4) that, provided Re(c) > Re(b) > 0,

(2.30) F (a, b; c; z) =
Γ (c)

Γ (b)Γ (c− b)

1\
0

tb−1(1− t)c−b−1(1− tz)−a dt

holds for z 6∈ [1,∞). Formula (2.30), due to Euler, is extremely useful and
usually all that is needed in applications. It provides an integral represen-
tation of F (a, b; c; z) which is simpler than Barnes’.

The beta function or beta integral ([31], Chap. 2) is

(2.31) B(x, y) =

1\
0

tx−1(1− t)y−1 dt, Re(x) > 0, Re(y) > 0.

Since F (0, x;x + y; 0) = 1, (2.30) yields

(2.32) B(x, y) :=
Γ (x)Γ (y)

Γ (x+ y)
, Re(x) > 0, Re(y) > 0.

Also,

(2.33) (1− z)−a = F (a, 1; 1; z), z 6∈ [1,∞),

as can be easily checked for |z| < 1 (from the Taylor development of the
left hand side around 0) and follows therefrom by analytic continuation.
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Relation (2.33) is known as Newton’s binomial formula. We will also denote
F (a, b; c; z) by

F

(
a, b

c

∣∣∣∣ z
)
.

2.6. Two contiguous function relations. Let F = F (a, b; c; z). The func-
tions F (a+) = F (a+1, b; c; z), F (a−) = F (a−1, b; c; z) and similarly F (b+),
F (b−), F (c+) and F (c−) are called the contiguous functions of F . The
contiguous function relations

(2.34) (1− z)F = F (a−)− c− b

c
zF (c+)

and

(2.35) (c− a− b)F = (c− a)F (a−)− b(1− z)F (b+),

two among fifteen ([31], Chap. 4), will be needed in what follows.

2.7. The Jacobi polynomials. Themonic Jacobi polynomials {P (α,β)
n (x)}

are given ([19], Chap. V; [31], Chap. 16; [40], Chap. IV) by

(2.36)

(
x− β2 − α2

(2n + α+ β)(2n + α+ β + 2)

)
P (α,β)
n (x)

= P
(α,β)
n+1 (x) +

4n(n+ α)(n + β)(n + α+ β)

(2n+ α+ β)2(2n + α+ β − 1)(2n + α+ β + 1)
P

(α,β)
n−1 (x)

for n ≥ 0 and P
(α,β)
−1 (x) = 0, P

(α,β)
0 (x) = 1. When α = −β, the coefficient of

P
(α,β)
0 (x) in (2.36) reduces to x−β. The regularity condition (2.2) becomes

α, β and α + β are not integers < 0, and the positivity condition (2.9) is
α, β are real numbers and α > −1, β > −1. In the latter case, the moment
functional Lα,β is represented ([19], Chap. V, p. 148; [31], Chap. 16, p. 258;
[40], Chap. IV, p. 68) by the positive measure

(2.37) dµα,β(x) =
Γ (α+ β + 2)

2α+β+1Γ (α+ 1)Γ (β + 1)
(1− x)α(1 + x)βχ(x) dx,

χ(x) being the characteristic function of (−1, 1), which relates to the beta
integral (2.31) in a manner analogous to that through which (1.3) relates
to the Askey–Wilson q-beta integral. The support of µα,β is [−1, 1]. Under

the regularity assumption, the continued fraction of {P (α,β)
n (x)} converges

uniformly to ([27]; [40], p. 75)

(2.38) Xα,β(z) =
1

z − 1
F

(
1, α+ 1
α+ β + 2

∣∣∣∣
2

1− z

)

in |z − 1| > 2 + ε for all ε > 0. Actually, (2.38) holds for z 6∈ [−1, 1] and for
α > −1, β > −1, convergence is uniform on compact subsets of C− [−1, 1].
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From (2.34) and (2.35) it follows that

(2.39) Xα+1,β+1(z)

=
(α+ β + 2)(α + β + 3)

4(α+ 1)(β + 1)
(1− z)[(1 + z)Xα,β(z)− 1] +

(α+ β + 3)

2(α+ 1)
.

2.8. Blocks of recurrence relations. If k ≥ 2 is an integer, then recurrence
relations given for each n ≥ 0 in the form of blocks of k equations each,

(2.40) (x− b(j)n )pnk+j(x) = pnk+j+1(x) + a(j)n pnk+j−1(x),

where 0 ≤ j ≤ k− 1, arise in many instances. System (2.40) can be written
as

(2.41) An




pnk+1(x)
pnk+2(x)
pnk+3(x)

...
pnk+k−1(x)
pnk−1(x)



=




(x− b
(0)
n )pnk(x)

a
(1)
n pnk(x)

0
...
0

pnk+k(x)




where An = [an,i,j ] is the k × k matrix given by an,1,j = δ1j + a
(0)
n δ1j−k+1

and an,k,j = −a
(k−1)
n δij+2 + (x − b

(k−1)
n )δkj+1, 1 ≤ j ≤ k, and by an,i,j =

−a
(i−1)
n δij+2 +(x− b

(i−1)
n )δij+1 − δi,j , 1 ≤ j ≤ k, for i = 2, . . . , k− 1, which

allows solving for pnk+j(x), j = −1, 1, 2, . . . , k − 1, in terms of pnk(x) and
pnk+k(x) (by Cramer’s rule, for example). Since pnk−1(x) = p(n−1)k+k−1(x),
two representations of pnk−1(x) arise. Eliminating pnk−1(x) from them we
obtain the following theorem, with

(2.42) ∆n(i, j) =

{
0, j < i− 2,
1, j = i− 2,

and for j ≥ i− 1,

(2.43) ∆n(i, j)

=

∣∣∣∣∣∣∣∣∣∣∣

x− b
(i−1)
n −1 0 0 . . . 0 0

−a
(i)
n x− b

(i)
n −1 0 . . . 0 0

0 −a
(i+1)
n x− b

(i+1)
n −1 . . . 0 0

...
...

...
... . . .

...
...

0 0 0 0 . . . −a
(j)
n x− b

(j)
n

∣∣∣∣∣∣∣∣∣∣∣

.

Theorem 2.2. The polynomials Pn(x) = pnk(x), n ≥ 0, P−1(x) = 0,
satisfy the recurrence relation
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(2.44) {(x− b(0)n )∆n(2, k − 1)∆n−1(2, k − 1)

− a(1)n ∆n(3, k − 1)∆n−1(2, k − 1)

− a(0)n ∆n(2, k − 1)∆n−1(2, k − 2)}Pn(x)

= ∆n−1(2, k − 1)Pn+1(x)

+ a(0)n a
(1)
n−1 . . . a

(k−1)
n−1 ∆n(2, k − 1)Pn−1(x)

for n ≥ 0, where by convention ∆−1(2, k − 1) = 1, ∆−1(2, k − 2) = 0.

Corollary 2.1. If ∆n(2, k − 1) is independent of n, i.e., if

(2.45) ∆n(2, k − 1) = ∆0(2, k − 1), n ≥ 0,

then (2.44) becomes

(2.46) [(x− b(0)n )∆n(2, k − 1)

− a(1)n ∆n(3, k − 1)− a(0)n ∆n−1(2, k − 2)]Pn(x)

= Pn+1(x) + a(0)n a
(1)
n−1 . . . a

(k−1)
n−1 Pn−1(x), n ≥ 0.

Relation (2.46) is easier to handle than (2.45) and still covers the most
important cases. In fact, sieved polynomials and polynomials arising from
polynomial mappings (see [23]) can be dealt with through (2.46). The poly-
nomials Pn(x) = pnk(x), n ≥ 0, are called the link polynomials of the blocks
(2.40) defining {pn(x)}. That (2.45) holds does not imply that ∆n(3, k− 1)
or ∆n(2, k−2) are independent of n. We observe (see [13], [14]) that pj(x) =
∆0(1, j − 1), j = 0, 1, . . . , k.

For an integer l ≥ 0, the l-associated polynomials {P (l)
n (x)} of {Pn(x)}

are defined through

(2.47) [(x− b
(0)
n+l)∆n+l(2, k − 1)

− a
(1)
n+l∆n+l(3, k − 1)− a

(0)
n+l∆n−1+l(2, k − 2)]P (l)

n (x)

= P
(l)
n+1(x) + a

(0)
n+la

(1)
n−1+l . . . a

(k−1)
n−1+lP

(l)
n−1(x), n ≥ 0,

and P
(l)
−1(x) = 0, P

(l)
0 (x) = 1. Then (see [13], [14]) we have

Theorem 2.3. If {p(1)n (x)} and {p(2)n (x)} are respectively the systems of

first and second order associated polynomials of {pn(x)} then

(2.48)
p
(1)
(n+1)k−1(x) = ∆0(2, k − 1)P (1)

n (x),

p
(2)
(n+1)k−2(x) = ∆0(3, k − 1)P (1)

n (x) + a
(0)
1 a

(2)
0 . . . a

(k−1)
0 P

(2)
n−1(x)
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for n ≥ 0 (with a
(2)
0 . . . a

(k−1)
0 = 1 if k = 2). If , furthermore,

(2.49) |b(j)n | ≤ M

3
, |a(j)n | ≤ M

3
, n ≥ 0, j = 0, 1, . . . , k − 1, M ≥ 3,

then the limit of the continued fraction of {pn(x)} is given for |z| > M by

(2.50) lim
n→∞

p
(1)
n−1(z)

pn(z)
= lim

n→∞

p
(1)
nk−1(z)

pnk(z)
= ∆0(2, k − 1)Y (z),

where

(2.51) Y (z) = lim
n→∞

P
(1)
n−1(z)

Pn(z)
, |z| > M,

and that of {p(1)n (x)} is given by

(2.52) lim
n→∞

p
(2)
n−1(z)

p
(1)
n (z)

=
1

∆0(2, k − 1)
[∆0(3, k − 1) + a

(0)
1 a

(2)
0 . . . a

(k−1)
0 Y (1)(z)]

(provided M is large enough for all the roots of ∆0(2, k−1) to be in |z| < M),
where

(2.53) Y (1)(z) = lim
n→∞

P
(2)
n−1(z)

P
(1)
n (z)

, |z| > M.

Remark 2.2. In general, {P (1)
n (x)} is not the system of link polynomials

of {p(1)n (x)}. If ∆n(2, k− 1) for {pn(x)} is independent of n, it may be false

that this also holds for ∆n(2, k − 1) of {p(1)n (x)}.

2.9. Sieved polynomials. If in (2.40), we take k = 2 and b
(1)
n = 0, n ≥ 0,

or k ≥ 3 and a
(j)
n = 1/4, j = 2, . . . , k − 1, b

(j)
n = 0, j = 1, . . . , k − 1, then

{pn(x)} is called a system of sieved polynomials of the first kind ([13], [14]).

In this case it follows from (2.43) that ∆n(2, k−1) = Ũk−1(x), n ≥ 0, where

{Ũn(x)} is the system of monic Chebyshev polynomials of the second kind
as in (2.25). More generally,

(2.54) ∆n(i, j) =

{
0, j < i− 2,
Ũj−i+2(x), j ≥ i− 2, i ≥ 2.

Provided (2.49) holds, (2.50) yields

(2.55) lim
n→∞

p
(1)
n−1(z)

pn(z)
= Ũk−1(z)Y (z), |z| > M,

with Y (z) as in (2.51).
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If {pn(x)} is a system of sieved polynomials of the first kind, {p(1)n (x)}
is called a system of sieved polynomials of the second kind . If {qn(x)} is a
system of sieved polynomials of the second kind and

(2.56) (x− d(j)n )qnk+j(x) = qnk+j+1(x) + c(j)n qnk+j−1(x),

j = 0, 1, . . . , k − 1, n ≥ 0,

then k = 2 and d
(0)
n = 0, or k > 2, d

(j)
n = 0, j = 0, 1, . . . , k − 2, and

c
(j)
n = 1/4, j = 1, . . . , k − 2. Let qn(x) = p

(1)
n (x), n ≥ 0, be a system

of sieved polynomials of the second kind. If {Pn(x)} is the system of link
polynomials of {pn(x)} then (2.48) becomes

(2.57)
q(n+1)k−1(x) = Ũk−1(x)P

(1)
n (x),

q
(1)
(n+1)k−2(x) = Ũk−2(x)P

(1)
n (x) +

1

4(k−2)
c
(k−1)
0 P

(2)
n−1(x),

for n ≥ 0. When (2.49) holds, then (2.52) is

(2.58) lim
n→∞

q
(1)
n−1(z)

qn(z)

=
1

Ũk−1(x)

[
Ũk−2(x) +

1

4(k−2)
c
(k−1)
0 Y (1)(z)

]
, |z| > M,

with Y (1)(z) as in (2.53).

Remark 2.3. If {pn(x)} is a sieved system of the first kind, then {p(i)n (x)},
i ≥ 0, is called a sieved system of the (i+1)th kind . Not much attention has

been paid to {p(i)n (x)} for i > 1 (see [1], [14]).

2.10. Sieved polynomials of an orthogonal system. Let {Pn(x)} be given
by (2.1) and assume that (2.2) holds. If {pn(x)} as in (2.40) is a system of
sieved polynomials of the first kind and

(2.59) 4a(0)n a
(1)
n−1 = Cn, n ≥ 1,

then {pn(x)} is called a system of sieved polynomials of the first kind of

{Pn(x)}, or a system of sieved {Pn(x)} polynomials of the first kind.

Also, if {qn(x)} is a system of sieved polynomials of the second kind as

in (2.56), and the coefficients c
(j)
n are related to those of {Pn(x)} by

(2.60) 4c(0)n c(k−1)
n = Cn, n ≥ 1,

then {qn(x)} is called a system of sieved polynomials of the second kind of

{Pn(x)}, or a system of sieved {Pn(x)} polynomials of the second kind.

The system {Pn(x)} itself is usually considered to be a special case of
{pn(x)} (or of {qn(x)}) corresponding to k = 1.
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Remark 2.4. Assume (Cn) in (2.1) satisfies Cn+1 = gn+1(1−gn), n ≥ 0,
where 0 ≤ g0 < 1 and 0 < gn < 1 for n ≥ 1. Then (Cn) is called a chain

sequence and (gn) is said to be a sequence of parameters for (Cn) ([19],
Chap. VI). If this is the case then {Pn(x)} given by (2.1) is called a system
of random walk polynomials. If {pn(x)} is a system of sieved polynomials of

the first kind such that a
(0)
n = 1

2gn and a
(1)
n = 1

2 (1−gn), n ≥ 0, then {pn(x)}
is a system of sieved {Pn(x)} polynomials of the first kind. Because of this,
systems of sieved polynomials of the first kind (resp. of the second kind)

such that a
(0)
n + a

(1)
n = 1/2, n ≥ 0, (resp. a

(0)
n + a

(k−1)
n−1 = 1/2, n ≥ 1) are

sometimes called random walk systems of sieved polynomials of the first kind

(resp. of the second kind). For a random walk system of sieved polynomials

of the first kind, the system {Pn(x)} given by (2.1) with Cn = 4a
(0)
n a

(1)
n−1

and, say, Bn = 0 for n ≥ 0, is a system of random walk polynomials; in fact,

(2a
(0)
n ) is a sequence of parameters for (Cn). For random walk sieved systems

of the second kind, (2a
(k−1)
n ) is a sequence of parameters for (Cn), where

Cn = 4a
(0)
n a

(k−1)
n , n ≥ 1. Thus, random walk systems of sieved polynomials

actually are systems of sieved random walk polynomials.

Remark 2.5. We warn the reader about the fact that a system of random
walk polynomials presented by means of blocks of recurrence relations may
fail to be a system of sieved random walk polynomials. This is the case of
the little Jacobi polynomials in the next section.

Remark 2.6. It can be shown (see [23]) that if {Pn(x)} is a system
of symmetric, monic orthogonal polynomials (i.e., Bn = 0 in (2.1)) whose
orthogonality measure is supported by [−1, 1] (which is the case of symmetric
random walk polynomials) and k ≥ 2 is an integer, then the system {pn(x)}
given by p0(x) = 1 and

pnk+j(x) =
2−n(k−1)−j+1

Uk−1(x)
[Uj−1(x)Pn+1(Tk(x)) + 2a(1)n Uk−j−1(x)Pn(Tk(x))]

for n ≥ 0, j = 1, . . . , k, is a system of symmetric sieved polynomials of the
first kind with link polynomials 2−n(k−1)Pn(Tk(x)), n ≥ 0. Systems of the
second kind can be analogously defined (see [23]). We say that {pn(x)} is
obtained from {Pn(x)} by means of the polynomial mapping x → Tk(x).

For non-symmetric systems, matters are rather more delicate. As we
show in Sections 3 and 4, Askey’s sieved Jacobi polynomials can be ob-
tained through polynomial mappings of the form x → Tk(x). The theory of
block recursions frequently allows one to identify a system as given through
a polynomial mapping (see [12], [13]). We observe that not every system of
sieved polynomials (even if symmetric) can be obtained by means of a poly-
nomial mapping: this is the case of the polynomials in Section 5 (see [12]).
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The above notion of sieved polynomials of a given system originates in
[2], [3], [11], [12], [24], [25]. Proofs of all the results in Sections 2.8, 2.9 and
2.10 can be found in [13], [14].

2.11. The little Jacobi polynomials. The system {p(α,β)n (x)} given by

(2.40) with k = 2, b
(0)
n = b

(1)
n = 0 and

(2.61)

a(0)n =
n(n+ α)

(2n + α+ β)(2n + α+ β + 1)
,

a(1)n =
(n+ β + 1)(n + α+ β + 1)

(2n + α+ β + 1)(2n + α+ β + 2)
,

n ≥ 0, is a system of sieved polynomials of the first kind of the Jacobi

polynomials. {p(α,β)n (x)} was studied in detail in Chihara [20]. The case
α = β = 0 had been previously examined in Szegő [39] and in Stroud and
Secrest [38]. Chihara [20] devises an ingenious procedure which makes use
of kernel polynomials to obtain the orthogonality measure of this and other

related systems. He gives for {p(α,β)n (x)} the orthogonality measure

(2.62) dυα,β(x) =
Γ (α+ β + 2)

Γ (α+ 1)Γ (β + 1)
|x|2β+1(1− x2)αχ(x)dx

where χ(x) is the characteristic function of (−1, 1). Moreover, its system

of link polynomials is Pn(x) = 2−nP
(α,β)
n (T2(x)), n ≥ 0, and dυα,β(x) can

also be obtained via the theory of polynomial mappings in [23] or directly
from (2.8) and (2.55) by the procedure we will explain in Section 3. We call

{p(α,β)n (x)} the little Jacobi polynomials of the first kind , or, simply, the little
Jacobi polynomials.

Remark 2.7. Letting α = β = 0, (2.62) gives for the system

(2.63)

xp2n(x) = p2n+1(x) +
n

4n+ 2
p2n−1(x),

xp2n+1(x) = p2n+2(x) +
n+ 1

4n+ 2
p2n(x),

n ≥ 0, p0(x) = 1, p−1(x) = 0, the orthogonality measure dυ(x) = |x|χ(x)dx.
Remark 2.8. It is easily verified that {p(α+1,β)

n (x)} is a system of sieved

polynomials of the second kind of {P (α+1,β+1)
n (x)}. The system {p(α,β)n (x)} is

not, in general, a system of sieved random walk polynomials. However, if α=

β=λ− 1/2, then {p(α,β)n (x)} and {p(α+1,β)
n (x)} are respectively the systems

of sieved ultraspherical polynomials of the first and second kinds (with k=
2), which are simultaneously random walk polynomials and systems of sieved

random walk polynomials. As noted above, {p(α,β)n (x)} can be obtained from

{P (α,β)
n (x)} through the polynomial mapping x → T2(x).
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3. Sieved Jacobi polynomials of the first kind. This is the system

{pn(x)} given by the blocks of 2k recurrence relations (1.8) with the a
(j)
n

given by (1.9) and (1.10). It is assumed throughout that the positivity condi-
tion α, β > −1 holds. Viewed as defined by blocks of 2k recurrence relations,
{pn(x)} is not a system of sieved polynomials in the sense of Section 2.9. As
blocks of k equations each, they are sieved polynomials of the first kind as
in Section 2.9, but, according to Section 2.10, not of the Jacobi polynomials.
They are, however, sieved polynomials of the first kind of the little Jacobi
polynomials, as we will see next. Thus, they provide a significant example
of a double-sieved system. As defined by blocks of 2k equations each, they
could be dealt with according to the general theory of blocks (with no need
of looking at them as sieved polynomials), thus also providing a meaningful
example for this theory.

In this section we deal with {pn(x)} as given by blocks of k recurrence
relations, i.e., as sieved polynomials of the first kind, reserving the 2k-block
approach for the polynomials of the second kind and for those in Sections 5
and 6. Thus, we separate the nth block (1.8) of recurrence relations into two
blocks respectively embracing the first k (which then corresponds not to n
but to 2n) and the last k equations (which corresponds to 2n+ 1). For the
k blocks we have

(2.60)
∆−1(2, k − 2) = 0; ∆n(2, k − 2) = Ũk−2(x), n ≥ 0;

∆n(2, k − 1) = Ũk−1(x); ∆n(3, k − 1) = Ũk−2(x), n ≥ 0.

Observing that a
(0)
n + a

(1)
n = 1/2 for n ≥ 1 and a

(1)
0 = 1/2, the system

{Pn(x)} of link polynomials will satisfy, according to (2.46),

(3.2) T̃k(x)P2n(x)

= P2n+1(x) +
n(n+ α)

4k−1(2n + α+ β)(2n + α+ β + 1)
P2n−1(x), n ≥ 0,

with P−1(x) = 0, P0(x) = 1, where T̃k(x) = 2−k+1Tk(x) is as in (2.25).

Also, as a
(k)
n + a

(k+1)
n = 1/2 for n ≥ 0, we have

(3.3) T̃k(x)P2n+1(x)

= P2n+2(x) +
(n+ β + 1)(n + α+ β + 1)

4k−1(2n + α+ β + 1)(2n + α+ β + 2)
P2n(x),

with P0(x) = 1, P1(x) = pk(x) = ∆0(1, k − 1) = T̃k(x).
From (3.2) and (3.3) it then follows that:

Theorem 3.1. The system {pn(x)} of sieved Jacobi polynomials of the

first kind satisfies

(3.4) pnk(x) = 2n(1−k)p(α,β)n (Tk(x)), n ≥ 0,
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where {p(α,β)n (x)} is the system of little Jacobi polynomials. Furthermore,

4a(0)n a
(k+1)
n−1 =

n(n+ α)

(2n + α+ β)(2n + α+ β + 1)
(3.5)

and

4a(k)n a(1)n =
(n+ β + 1)(n + α+ β + 1)

(2n + α+ β + 1)(2n + α+ β + 2)
, n ≥ 0.(3.6)

Thus, {pn(x)} actually is, in the sense of Section 2.10, a system of sieved

polynomials of the first kind of {p(α,β)n (x)}.
Because of (3.4) we could resort at this point to the theory of polynomial

mappings [23]. We follow, however, a more direct approach based on formula
(2.8). In fact, from (2.55) and (3.4) it follows that the limit of the continued
fraction of {pn(x)} is

(3.7) X(z) = Uk−1(z)X
α,β(Tk(z))

where Xα,β(z) denotes the limit of the continued fraction of {p(α,β)n (z)}.
Now let cosi, i = 0, 1, . . . , k−1, be the restriction of cos to (iπ, (i+1)π)×R,
where R denotes the real numbers. If Ω = C − {x ∈ R | |x| ≥ 1}, then cosi
applies (iπ, (i+1)π)×R conformally onto Ω. If cos−1

i : Ω → (iπ, (i+1)π)×R

is the inverse map of cosi, then

(3.8) Tk(z) = cos(k cos−1
0 (z)),

and if

(3.9) Li(z) = cos

(
1

k
cos−1

i (z)

)
, z ∈ Ω, i = 0, 1, . . . , k − 1,

then Tk(Li(z))=z, z∈Ω, so that each Li is one of the k branches of T−1
k (z).

Let γ(θ) = 1 + Reiθ, 0 ≤ θ ≤ 2π, R > 2. Then [−1, 1] is contained in the
interior of γ, and if γi=Li ◦γ for i=0, 1, . . . , k−1, then the γi piece together
on a positively oriented contour γ̃ enclosing [−1, 1] = T−1

k ([−1, 1]). The
contour γ̃ is called the lifting of γ through Tk. Since T

′
k(Li(z))L

′
i(z) = 1 and

T ′

k(z) = kUk−1(z), so that L′
i(z) = 1/(kUk−1(Li(z))), a change of variables

gives, for f continuous on γ̃,

(3.10)

\
γi

f(z) dz =
1

k

\
γ

f(Li(z))

Uk−1(Li(z))
dz,\̃

γ

f(z) dz =

k−1∑

i=0

\
γi

f(Li(z))

Uk−1(Li(z))
dz,

and for g continuous on γ,

(3.11)
\̃
γ

g(Tk(z))Uk−1(z) dz =
\
γ

g(z) dz.
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On the other hand, (2.8) and (3.7) imply, with γ, γ̃ as above, that the
moment functional L of {pn(x)} has the representation

(3.12) L(P (x)) =
1

2πi

\̃
γ

P (z)Uk−1(z)X
α,β(Tk(z)) dz,

so that if ξ0 = −1 < ξ1 < . . . < ξk−1 < ξk = 1 are the roots of T 2
k (x) − 1

(ξ0 and ξk are simple and ξ1, . . . , ξk−1 are double; observe that ξ1, . . . , ξk−1

are also the roots of Uk−1(x)), then from (3.10), (3.11) and (3.12), writing
Γ (α, β) = 1/B(α+ 1, β + 1) and using (2.62), we have

L(P (x)) =
1

2πi

k−1∑

i=0

\
γi

P (z)Uk−1(z)X
α,β(Tk(z)) dz

=
1

2πi

k−1∑

i=0

\
γ

P (Li(z))Uk−1(z)X
α,β(z) dz

=
Γ (α, β)

k

k−1∑

i=0

1\
−1

P (Li(x))|x|2β+1(1− x2)α dx

= Γ (α, β)

k−1∑

i=0

ξi+1\
ξi

P (x)|Tk(x)|2β+1(1− T 2
k (x))

α|Uk−1(x)| dx

= Γ (α, β)

1\
−1

P (x)(1 − x2)α|Tk(x)|2β+1|Uk−1(x)|2α+1 dx.

Thus:

Theorem 3.2. The orthogonality measure of the system {pn(x)} of sieved

Jacobi polynomials of the first kind is

(3.13) dµ(x)

=
Γ (α+ β + 2)

Γ (α+ 1)Γ (β + 1)
(1− x2)α|Tk(x)|2β+1|Uk−1(x)|2α+1χ(x) dx,

where χ(x) denotes the characteristic function of (−1, 1).

Remark 3.1. Representation (2.8) thus allows one to determine dµ with-
out resorting to Stieltjes’ inversion formula (2.11), which is the usual pro-
cedure for this type of problems (see [1], [7], [11], [12], [24], [25], etc.). As a
matter of fact, to prove that

(3.14) dµ(x) =
1

π
lim

ε→0+
Im(X(x − iε)) dx,

and on this basis to show that (2.38) (with Tk(z) in the place of z) implies
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(3.13), is rather sticky. The procedure used above was devised for a slightly
different purpose in [16]. See also [15], [17].

Remark 3.2. When β = −1/2 and α+ 1/2 = λ, (3.13) becomes

(3.15) dµ(x) =
Γ (λ+ 1)

Γ (λ+ 1/2)
√
π
(1− x2)λ−1/2|Uk−1(x)|2λχ(x)d(x),

which is the orthogonality measure of the sieved ultraspherical polynomials
of the first kind in [2].

Remark 3.3. It follows easily from (3.4) and the properties of {p(α,β)n (x)}
in Section 2.11 that p2nk(x) = 2(1−2k)nP

(α,β)
n (T2k(x)), n ≥ 0, and {pn(x)}

can thus be obtained from the Jacobi polynomials {P (α,β)
n (x)} by means of

the polynomial mapping x → T2k(x).

4. Sieved Jacobi polynomials of the second kind. The system
{pn(x)} of sieved Jacobi polynomials of the second kind is given by (1.8)

with the a
(j)
n as in (1.11) and (1.12).

For this system ∆n(2, 2k − 1) depends on n and the direct treatment of
{pn(x)} would require using (2.44) instead of (2.46), which is rather cum-
bersome. This can be circumvented by observing that {pn(x)} is the set of
numerator polynomials of the system {qn(x)} given by

(4.1) xq2nk+j(x) = q2nk+j+1(x) + b(j)n q2nk+j−1(x),

k ≥ 2, 0 ≤ j ≤ 2k − 1, and q−1(x) = 0, q0(x) = 1, where

(4.2)
b(0)n = a

(2k−1)
n−1 , b(1)n = a(0)n , b(k)n = a(k−1)

n ,

b(k+1)
n = a(k)n , n ≥ 0,

and, when k > 2,

(4.3) b(j)n = 1/4, j = 2, . . . , 2k − 1, j 6= k, k + 1, n ≥ 0.

We adopt the convention that b
(1)
0 = 0. As an easy calculation shows,

(4.4) ∆n(2, 2k − 1) = Ũ2k−1(x), n ≥ 0,

for the system of the first kind {qn(x)} so defined. Also,

∆n(2, 2k − 2) = xŨk−1(x)Ũk−2(x)(4.5)

− a(k)n Ũk−1(x)Ũk−3(x)− a(k−1)
n Ũ2

k−2(x)

and

∆n(3, 2k − 1) = xŨk−1(x)Ũk−2(x)(4.6)

− a(k−1)
n Ũk−1(x)Ũk−3(x)− a(k)n Ũ2

k−2(x).
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Let {Qn(x)} be the link polynomials of {qn(x)}. Then {Q(1)
n (x)} satisfies

(4.7) [x∆n+1(2, 2k − 1)− a
(0)
n+1∆n+1(3, 2k − 1)

− a(2k−1)
n ∆n(2, 2k − 2)]Q(1)

n (x)

= Q
(1)
n+1(x) + (1/4)2k−4a(0)n a(k−1)

n a(k)n a(2k−1)
n Q

(1)
n−1(x)

with Q
(1)
−1(x) = 0, Q

(1)
0 (x) = 1, where (2.47), (4.2) and (4.3) have been taken

into account. Also, because of (4.4)–(4.6), relation (4.7) can be written as

(4.8) [xU2k−1(x)− 4(a
(0)
n+1 + a(2k−1)

n )xUk−1(x)Uk−2(x)

+ 8(a
(0)
n+1a

(k−1)
n+1 + a(2k−1)

n a(k)n )Uk−1(x)Uk−3(x)

+ 8(a
(0)
n+1a

(k)
n+1 + a(2k−1)

n a(k−1)
n )U2

k−2(x)]Q̃n(x)

= Q̃n+1(x) + 64a(0)n a(k−1)
n a(k)n a(2k−1)

n Q̃n−1(x)

where

(4.9) Q̃n(x) = 2(2k−1)nQ(1)
n (x), n ≥ 0.

Now, from a
(0)
n+1 + a

(2k−1)
n = a

(k)
n + a

(k−1)
n = 1/2 it follows that

a
(0)
n+1a

(k−1)
n+1 + a(2k−1)

n a(k)n = 1/4 − (a
(0)
n+1a

(k)
n+1 + a(2k−1)

n a(k−1)
n ),

and from (2.23)–(2.25) we have

(4.10) [T2k(x) + 1− 8(a
(0)
n+1a

(k−1)
n+1 + a(2k−1)

n a(k)n )]Q̃n(x)

= Q̃n+1(x) + 64a(0)n a(k−1)
n a(k)n a(2k−1)

n Q̃n−1(x)

for n ≥ 0. This translates into

(4.11)

[
T2k(x)−

(β + 1)2 − (α+ 1)2

(2n + α+ β + 2)(2n + α+ β + 4)

]
Q̃n(x)

= Q̃n+1(x) +
4n(n + α+ 1)(n + β + 1)(n + α+ β + 2)

(2n + α+ β + 1)(2n + α+ β + 2)2(2n+ α+ β + 3)
Q̃n−1(x)

for n ≥ 0. Then (2.36) yields Q̃n(x) = P
(α+1,β+1)
n (T2k(x)), and from (2.48)

and (2.52) we finally obtain:

Theorem 4.1. The system {pn(x)} of sieved Jacobi polynomials of the

second kind satisfies

(4.12) p2(n+1)k−1(x)

= 2−(2k−1)(n+1)U2k−1(x)P
(α+1,β+1)
n (T2k(x)), n ≥ 0.
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and

p
(1)
2(n+1)k−2(x) = 2−(2k−1)n∆0(3, 2k − 1)P (α+1,β+1)

n (T2k(x))(4.13)

+
26a

(k−1)
0 a

(k)
0 a

(2k−1)
0

2(2k−1)(n+1)
(P

(α+1,β+1)
n−1 )(1)(T2k(x)).

Therefore, the limit Y (z) of the continued fraction of {pn(x)} is

Y (z) =
22k−1∆0(3, 2k − 1)

U2k−1(z)
(4.14)

+ 64
a
(k−1)
0 a

(k)
0 a

(2k−1)
0

U2k−1(z)
Xα+1,β+1(T2k(z)).

The appearance of U2k−1(z) in the denominators of the right hand side
terms of (4.14) suggests the presence of masses in [−1, 1] (at the roots of
U2k−1(x)), which may actually be the case for some systems ([13], pp. 89–90,
and Section 6 below). However,

(4.15) a
(k−1)
0 a

(k)
0 a

(2k−1)
0

(α+ β + 2)(α+ β + 3)

4(α + 1)(β + 1)
=

1

32
,

and from (2, 39), with T2k(z) in place of z, we see that

Y (z) =
22k−1∆0(3, 2k − 1)− 2(1− T2k(z)) + 8a

(k)
0

U2k−1(z)
(4.16)

+ 2(1 − z2)U2k−1(z)Xα,β(T2k(z)).

On the other hand, a calculation based on (2.23)–(2.25) and (4.6) yields

22k−1∆0(3, 2k − 1) = 4[Uk−1(z)Tk−1(z) − 2a
(k)
0 ], and it follows that the

numerator of the first term on the right hand side of (4.16) reduces to
4[Uk−1(z)Tk−1(z) + T 2

k (z)− 1] = 2zU2k−1(z). Thus

(4.17) Y (z) = 2z + 2(1− z2)U2k−1(z)Xα,β(T2k(z)),

and the moment functional L1 of {pn(x)} is

(4.18) L1(P (x)) =
1

πi

\
C

P (z)(1 − z2)U2k−1(z)Xα,β(T2k(z)) dz

where C is a positively oriented contour around [−1, 1]. Hence we have
L1 = 2(1 − x2)L with L as in (3.12), i.e., L1 is obtained from L by left
multiplication by the polynomial 2(1 − x2) (see [9] for details about this
operation), and thus:

Theorem 4.2. The orthogonality measure of the system {pn(x)} of sieved

Jacobi polynomials of the second kind is
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(4.19) dϑ(x)

=
2Γ (α+ β + 2)

Γ (α+ 1)Γ (β + 1)
(1− x2)α+1|Tk(x)|2β+1|Uk−1(x)|2α+1χ(x) dx

where χ(x) is the characteristic function of [−1, 1]. Moreover , 2(1−x2)dµ(x)
= dϑ(x), with µ as in (3.13).

Remark 4.1. If β = −1/2 and α+ 1/2 = λ, then {pn(x)} is the system
of sieved ultraspherical polynomials of the second kind in [2]. From (4.19),
its orthogonality measure is

(4.20) dϑ(x) =
2Γ (λ+ 1)

Γ (λ+ 1/2)
√
π
(1− x2)λ+1/2|Uk−1(x)|2λχ(x) dx.

Remark 4.2. The system {pn(x)} of sieved Jacobi polynomials of the
second kind is a system of sieved polynomials of the second kind of the little

Jacobi polynomials {p(α+1,β)
n (x)}. This follows at once from (2.60), (1.11)

and (1.12).

5. A related system of the first kind. The system {pn(x)} in this
section is closely related to those in Section 3. It is likewise a system of

sieved polynomials of the first kind of {p(α,β)n (x)}, and a system of sieved
random walk polynomials of the first kind as well. It cannot be obtained
via a polynomial mapping x → Tk(x) (x → T2k(x)) except in special cases.
{pn(x)} is given by the blocks of 2k equations (1.8) with

(5.1)

a(0)n =
(n+ α)

2(2n + α+ β + 1)
, a(1)n =

(n + β + 1)

2(2n + α+ β + 1)
,

a(k)n =
(n+ α+ β + 1)

2(2n + α+ β + 2)
, a(k+1)

n =
(n+ 1)

2(2n + α+ β + 2)

for n ≥ 0 and, if k > 2, with

(5.2) a(j)n = 1/4, j = 2, . . . , 2k − 1, j 6= k, k + 1, n ≥ 0.

We assume α > −1, β > −1, α + β > −1 and k ≥ 2. Clearly, (3.5) and

(3.6) hold for {pn(x)}, and also a
(0)
n +a

(1)
n = a

(k)
n +a

(k+1)
n = 1/2, n ≥ 0. We

deal with {pn(x)} by the 2k-block approach. Thus, for the link polynomials
Pn(x) := p2nk(x), n ≥ 0, we have

(5.3) [x∆n(2, 2k − 1)− a(1)n ∆n(3, 2k − 1)− a(0)n ∆n−1(2, 2k − 2)]Pn(x)

= Pn+1(x) + 42(2−k)a(0)n a
(1)
n−1a

(k−1)
n−1 a

(k)
n−1Pn−1(x), n ≥ 1,
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with ∆−1(2, 2k − 2) = 0 and

(5.4)

∆n(2, 2k − 1) = Ũ2k−1(x),

∆n(2, 2k − 2) = xŨk−1(x)Ũk−2(x)

− a(k+1)
n Ũk−1(x)Ũk−3(x)− a(k)n Ũ2

k−2(x),

∆n(3, 2k − 1) = xŨk−1(x)Ũk−2(x)

− a(k)n Ũk−1(x)Ũk−3(x)− a(k+1)
n Ũ2

k−2(x)

for n ≥ 0, where {Ũn(x)} are the monic Chebyshev polynomials of the
second kind in (2.25). Also

(5.5)
P−1(x) = 0, P0(x) = 1,

P1(x) = x∆0(2, 2k − 1)− a
(1)
0 ∆0(3, 2k − 1).

Letting

(5.6) P̃n(x) = 2(2k−1)nPn(x), n ≥ 0,

and taking into account that

a(1)n a
(k+1)
n−1 + a(0)n a

(k+1)
n−1 = 1/4 − (a(1)n a(k)n + a(0)n a

(k+1)
n−1 )

for n ≥ 1, and relations (2.23)–(2.25), we obtain from (5.1)–(5.4),

(5.7)

[
T2k(x)−

β2 − α2

(2n+ α+ β)(2n + α+ β + 2)

]
P̃n(x)

= P̃n+1(x) +
4n(n+ α)(n + β)(n+ α+ β)

(2n + α+ β − 1)(2n + α+ β)2(2n+ α+ β + 1)
P̃n−1(x),

n ≥ 1,

with P̃0(x) = 1 and, from (5.5),

(5.8) P̃1(x) =

[
T2k(x)−

β − α

(α+ β + 2)

]
+

2α

α+ β + 1
Tk(x)Uk−2(x).

Thus

(5.9) p2nk(x)

= 2(1−2k)n

[
P (α,β)
n (T2k(x)) +

2α

α+ β + 1
Tk(x)Uk−2(x)(P

(α,β)
n−1 )(1)(T2k(x))

]

for n ≥ 0. Similar calculations give for the system {P (1)
n (x)} of the first

associated polynomials of {Pn(x)} the equality

(5.10) P (1)
n (x) = 2(1−2k)n(P (α,β)

n )(1)(T2k(x)), n ≥ 0.

Hence, from (2.48),

(5.11) p
(1)
2nk−1(x) = 2(1−2k)nU2k−1(x)(P

(α,β)
n−1 )(1)(T2k(x)), n ≥ 0.
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Thus:

Theorem 5.1. The limit X(z) of the continued fraction of {pn(x)} is

(5.12) X(z) := lim
n→∞

p
(1)
2nk−1(x)

p2nk(x)
=

U2k−1(z)Xα,β(T2k(z))

1 + 2α
α+β+1Tk(z)Uk−2(z)Xα,β(T2k(z))

,

where

(5.13) Xα,β(T2k(z)) =
1

T2k(z)− 1
F

[
1, α+ 1
α+ β + 2

∣∣∣∣
2

1− T2k(z)

]
,

provided that T2k(z) 6∈ [−1, 1], i.e., z 6∈ [−1, 1].

It follows from (5.9) that for α 6= 0, {pn(x)} cannot be obtained through a
polynomial mapping. If α=0, then {pn(x)} is a special case of the sieved Ja-

cobi polynomials of the first kind in Section 3 and originates from {P (0,β)
n (x)}

via the polynomial mapping x → T2k(x).
In order to determine explicitly the orthogonality measure of {pn(x)},

precise information about X(z) is needed. This is rather sticky to obtain in
the full general case. Therefore we restrict ourselves to the case α=−β. This
is neat, leads to new and interesting systems of orthogonal polynomials, and
sheds light on the sort of difficulties that arise in the general case. Clearly,
this imposes on α the restriction −1 < α < 1. We will write Xα(z) instead
of Xα,−α(z). If α 6= 0 and |z − 1| > 2 then

Xα(z) = −
∞∑

n=0

(1 + α)n
(n+ 1)!

(
2

1− z

)n+1

(5.14)

=
1

2α

[
1−

∞∑

n=0

(α)n
n!

(
2

1− z

)n]
,

and it follows from (2.33) that

(5.15) Xα(z) =
1

2α

[
1−

(
z − 1

z + 1

)α]
, z 6∈ [−1, 1].

If α = 0, then

(5.16) X0(z) =
1

2
log

(
z − 1

z + 1

)
, z 6∈ [−1, 1].

Throughout, we use the branch of log with imaginary part in (−π, π]. Hence,
for α = −β, (5.12) yields

X(z) =
U2k−1(z)Xα(T2k(z))

1 + 2αTk(z)Uk−2(z)Xα(T2k(z))
, α 6= 0, z 6∈ [−1, 1],(5.17)

and

X(z) =
1

2
U2k−1(z) log

(
T2k(z)− 1

T2k(z) + 1

)
, α = 0, z 6∈ [−1, 1].(5.18)
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If X̂(z) is defined by (2.15) for X(z) as above, then X̂(z) is continuous on
Im z≤ 0, except possibly at the points ζ0 = −1, ζ2k = 1 and at the roots
ζ1, . . . , ζ2k−1 of U2k−1(x). Notice that, in fact, ζ1, . . . , ζ2k−1 are the double
roots of T 2

2k(x)−1 (the simple roots being ζ0 = −1 and ζ2k = 1). This follows
from relations (2.23) and (2.24). Then observe that Xα(T2k(z)) may become
infinite, according to the relative values of α, at the roots of T2k(x) + 1 or
of T2k(x)− 1. However,

(5.19) lim
z→ζj

(z − ζj)X̂(z) = 0, j = 0, 1, . . . , 2k.

On the other hand, from (5.17) it follows that w(x) = 1
π Im X̂(x) is given

by

(5.20) w(x)

=
sinπα

2πα

|U2k−1(x)|(1 − T2k(x))
α(1 + T2k(x))

−αχ(x)

|1 + Tk(x)Uk−2(x)(1− eiπα(1− T2k(x))α(1 + T2k(x))−α)|2
for x 6= ζj , j = 0, . . . , 2k, where χ(x) is the characteristic function of (−1, 1)
and sinπα

πα = 1 if α = 0. Since the roots of U2k−1(x) are the double roots of
1− T2k(x) or of 1 + T2k(x) and −1 < α < 1, so that 1±2α > −1, it follows
that w(x) is integrable on R. Thus:

Theorem 5.2. The orthogonality measure µ of {pn(x)} is absolutely

continuous and given by

(5.21) dµ(x) = w(x)dx

with w(x) as in (5.20). In particular ,

(5.22) dµ(x) = 1
2
|U2k−1(x)|χ(x)dx

for α = 0.

Remark 5.1. The analysis of µ would have been rather difficult without
appealing to Theorem 2.1 and Remark 2.1. The usual arguments for this
type of problems use Stieltjes’ inversion formula (2.11), assume that the
limit and the integral can be interchanged, and then, if w(x) turns out to

be integrable, check for masses at the points of discontinuity of X̂(z). The
test for a mass point at x = ζ, i.e.,

(5.23)
∞∑

n=0

P 2
n(ζ)

λn
< ∞, λn = L(P 2

n(x)),

is the usual resort for the latter purpose (see [7] for a discussion about
(5.23) and for many examples). However, convergence of (5.23) is in general
difficult to assert, and some sort of asymptotic analysis must be done, which
makes it difficult to determine the exact value (

∑∞

n=0 P
2
n(ζ)/λn)

−1 of the
mass at ζ. All this is avoided in our case.
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Remark 5.2. When k = 2, {pn(x)} can still be obtained through a
polynomial mapping. In fact,

(5.24) p2n(x) = 2−nqn(T2(x)), n ≥ 0,

where

(5.25) qn(x) = p(α,β)n (x) +
α

α+ β + 1
(p

(α,β)
n−1 )(1)(x), n ≥ 0,

{p(α,β)n (x)} being the system of little Jacobi polynomials.

Remark 5.3. The polynomials {pn(x)} in this section are related to
the exceptional Jacobi polynomials of [26]. These, which are denoted by

P
(α)
n (x), n ≥ 0, are given by the recurrence relation (2.36) (with α = −β)

for n ≥ 1 and by P
(α)
0 (x) = 1, P

(α)
1 (x) = x (instead of P

(α,−α)
1 (x) = x+ α

for the usual Jacobi polynomials). Thus

(5.26) P (α)
n (x) = P (α,−α)

n (x)− α(P
(α,−α)
n−1 )(1)(x), n ≥ 1,

and if X(α)(z) denotes the limit of the continued fraction of {P (α)
n (x)} then

(5.27) X(α)(z) =
Xα(z)

1− αXα(z)
, z 6∈ [−1, 1],

with Xα(z) as in (5.15) for α 6= 0 and as in (5.16) for α = 0 (clearly,

P
(0)
n (x) = P

(0,0)
n (x), n ≥ 0). The function

X̂(α)(z) =

{
X(α)(z), Im z < 0,

lim
ζ→z, Im ζ<0

X(α)(ζ), Im z = 0,

is obviously continuous, except possibly at z = ±1, but

lim
z→±1

(z ± 1)X̂(α)(z) = 0.

Furthermore, if w(x) = 1
π
Im X̂(α)(x), x ∈ R, x 6= ±1, then

(5.29) w(x) =
2 sin πα(1− x2)αχ(x)

πα((1 + x)2α + 2cos πα(1 − x2)α + (1− x)2α)
,

with sinπα
πα = 1 if α = 0, follows at once from (5.27), and it is as obtained in

[26] by a different procedure. Evidently, w(x) is continuous on R for α 6= 0

and reduces to 1
2
χ(x) if α = 0. Thus, the orthogonality measure of {P (α)

n (x)}
is dµ(x) = w(x)dx and is absolutely continuous.

Remark 5.4. As a matter of fact, the system {p̃n(x)} given by (2.40)

with p̃−1(x) = 0, p̃0(x) = 1, b
(j)
n = 0, j = 0, 1, . . . , k − 1,

(5.30) a(0)n =
n+ α

2n+ 4
, a(1)n =

n− α+ 1

2n+ 4
, n ≥ 0,
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and

(5.31) a(j)n = 1/4, j = 2, . . . , k − 1, n ≥ 0,

if k > 2, is a system of sieved polynomials of the first kind of the system

{P (α)
n (x)} in Remark 5.3. It is readily seen that

(5.32)
p̃nk(x) = 2(1−k)n[P (α)

n (Tk(x)) + αUk−2(x)(P
(α)
n−1)

(1)(Tk(x))],

p̃
(1)
nk−1(x) = 2(1−k)nUk−1(x)(P

(α)
n−1)

(1)(Tk(x))

for n ≥ 0. The limit X̃(z) of their continued fraction in terms of X(α)(Tk(z))
in (5.27) is

(5.33) X̃(z) =
Uk−1(z)X

α(Tk(z))

1− αUk−2(z)Xα(T2k(z))
, z 6∈ [−1, 1],

and in terms of Xα(Tk(z)),

(5.34) X̃(z) =
Uk−1(z)Xα(Tk(z))

1− α(Uk−2(z)− 1)Xα(Tk(z))
, z 6∈ [−1, 1].

The same techniques as above yield for their orthogonality measure

(5.35) dµ̃(x)

= 2
sinπα

πα

|Uk−1(x)|(1 − Tk(x))
α(1 + Tk(x))

−αχ(x)dx

|2 + (Uk−2(x)− 1)(1 − eiπα(1− Tk(x))α(1 + Tk(x))−α)|2
where χ(x) is the characteristic function of (−1, 1). The polynomials {p̃n(x)}
generalize {pn(x)} to the case of k odd. The polynomials {P (α)

n (x)} corre-
spond to k = 1.

6. A further system of the second kind. Let {pn(x)} be given by
(1.8) with

(6.1)

a
(0)
0 =

α+ 1

2(α + β + 1)
, a

(k−1)
0 =

1

2(α + β + 2)
,

a
(k)
0 =

α+ β + 1

2(α + β + 2)
, a

(2k−1)
0 =

β + 1

2(α + β + 3)

and

(6.2)

a(0)n =
n+ α+ 1

2(2n + α+ β + 1)
, a(k−1)

n =
n

2(2n + α+ β + 2)
,

a(k)n =
n+ α+ β + 2

2(2n + α+ β + 2)
, a(2k−1)

n =
n+ β + 1

2(2n + α+ β + 3)

for n ≥ 1, and with

(6.3) a(j)n = 1/4, 0 < j < 2k − 1, j 6= k − 1, k,

if k > 2. We assume α+ β > −1, α > −1, β > −1.
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This system is naturally related to the sieved Jacobi polynomials of the
second kind in Section 4. They are likewise sieved random walk polynomials

of the second kind: a
(0)
n+1+a

(2k−1)
n = a

(k)
n +a

(k−1)
n = 1/2 for all n ≥ 0. They

are also sieved polynomials of the second kind of the system {p(α+1,β)
n (x)}.

This follows from (2.60), (2.61), (6.1), (6.2) and (6.3).

To determine their orthogonality measure we proceed as in Section 5. Let

then {qn(x)} be such that pn(x) = q
(1)
n (x), n ≥ 0. We may take {qn(x)}

given by

xq2nk+j(x) = q2nh+j+1(x) + b(j)n q2nk+j−1(x), n ≥ 0,

and q−1(x) = 0, q0(x) = 1, where b
(0)
n = a

(2k−1)
n−1 , b

(1)
n = a

(0)
n , b

(k)
n =

a
(k−1)
n , b

(k+1)
n = a

(k)
n , the a

(j)
n being as in (6.1) and (6.2), and b

(j)
n = 1/4 for

j = 2, . . . , 2k−1, j 6= k, k+1. For the system {Pn(x)} of the link polynomials
of {qn(x)} we argue as in Section 4 to obtain in this case

(6.4) P (1)
n (x) =

1

2(2k−1)n

[
P (α+1,β+1)
n (T2k(x)) +

2(β + 1)

(α+ β + 2)(α + β + 3)
P (α+1,β+1)
n (T2k(x))

]

and

(6.5) P (2)
n (x) =

1

2(2k−1)n
(P (α+1,β+1)

n )(1)(T2n(x)).

Then, from (2.57),

p2(n+1)k−1(x) =
1

2(2k−1)
U2k−1(x)P

(1)
n (x)

and

p
(1)
2(n+1)k−2(x) = ∆0(3, 2k − 1)P (1)

n (x) +
43a

(k−1)
0 a

(k)
0 a

(2k−1)
0

4(2k−1)
P (2)
n (x),

so that the limit Y (z) of the continued fraction of {pn(x)} is

Y (z) =
22k−1∆0(3, 2k − 1)

U2k−1(z)
(6.6)

+
64a

(k−1)
0 a

(k)
0 a

(2k−1)
0 Xα+1,β+1(T2k(z))

U2k−1(z)

[
1 +

2(β + 1)

(α+ β + 2)(α + β + 3)
Xα+1,β+1(T2k(z))

]

for z 6∈ [−1, 1]. Now we assume as in Section 5 that α = −β and −1 < α < 1.
Taking into account (2.39), (6.1), (6.2) and (6.3), relation (6.6) yields

(6.7) Y (z) =
4Uk−1(z)Tk−1(z)− 2

U2k−1(z)
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+
(1− T 2

2k(z))Xα(T2k(z)) + T2k(z)− α

(1 + α)U2k−1(z)

[
1 +

1

2(1 + α)
[(1 − T 2

2k(z))Xα(T2k(z)) + T2k(z)− α]

]

with Xα as in (5.15) for α 6= 0 and as in (5.16) for α= 0. Let X(z) be the
second term on the right hand side of (6.7) and let ζ1, . . . , ζ2k−1 be the roots
of U2k−1(z). Let w(x) be given for x ∈ R by

w(x) = lim
z→x, Im z<0

1

π
Im(X(z)), x 6= ζj , 1 < j ≤ 2k,

so that

(6.8) w(x) =

(1 + α) sinπα(1 − x2)|U2k−1(x)|(1− T2k(x))
α(1 + T2k(x))

−αχ(x)

πα|2 + α + T2k(x) + (2α)−1(1− x2)U2
2k−1

(x)(1− eiπα(1− T2k(x))α(1 + T2k(x))−α)|2
=

(1 + α) sinπα(1− x2)α+1|U2k−1(x)|
2α+1χ(x)

πα|(2 + α + T2k(x))(1 + T2k(x))α + (2α)−1(1− x2)U2
2k−1

(x)((1 + T2k(x))α − eiπα(1− T2k(x))α)|2

for α 6= 0 and

(6.9) w(x) =

4(1− x2)|U2k−1(x)|χ(x)
|4 + 2T2k(x) + (1− x2)U2k−1(x)(log(1 + T2k(x)) − log(1− T2k(x)) + iπ)|2

for α = 0, χ(x) being the characteristic function of (−1, 1). Although w(x)
may be discontinuous at ζ1, . . . , ζ2k−1, it is obviously an integrable function
on R (it can be easily verified that w(x) is continuous for −1/2 ≤ α ≤
1/2). To examine the behavior of Ŷ (z) = limζ→z Y (ζ) on Im z ≥ 0, z 6=
ζ1, . . . , ζ2k−1, assume that ζ1 < . . . < ζk−1 are the roots of Uk−1(x), which
in view of (2.24) are the double roots of 1 − T2k(x), and ζk < . . . < ζ2k−1

are the roots of Tk(x) and the double roots of 1 + T2k(x). Partial fraction
decomposition yields

(6.10) 2
2Uk−1(z)Tk−1(z) − 1

U2k−1(z)
=

2k−1∑

j=1

1− ζ2j
k(z − ζj)

,

so that if L1 is the moment functional of {pn(x)} and C is a positively
oriented contour around [−1, 1], then

(6.11) L1(P (x)) =

2k−1∑

j=1

(1− ζ2j )

k
P (ζj) +

1

2πi

\
C

P (z)X(z) dz

for any polynomial P (z)∈C[x]. This suggests that each ζj , j=1, . . . , 2k−1,
is a mass point of L1 with mass 1

k (1 − ζ2j ). However, a simple calculation

on X̂(z) (defined for X(z) as above by (2.15)) gives for j = k, . . . , 2k − 1,
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where T2k(ζj) = −1, the following:

(6.12) lim
z→ζj

(z − ζj)X̂(z) = − 2

U ′

2k−1(ζj)
= −

1− ζ2j
k

,

so that

(6.13) lim
z→ζj

Re(z − ζj)X̂(z) = −
1− ζ2j

k
.

Also,

(6.14) lim
z→ζj

Re(z − ζj , )X̂(z) =
2(1 − α)

U ′
2k−1(ζj)(3 + α)

= − 1− α

k(3 + α)
(1− ζ2j )

for j = 1, . . . , k − 1, as in this case T2k(ζj) = 1. Thus:

Theorem 6.1. The moment functional L1 of the system {pn(x)} given

by (1.8), (6.1), (6.2) and (6.3) is, for −1 < α < 1,

(6.15) L1(P (x)) =
2(1 + α)

(3 + α)k

k−1∑

j=1

(1 − ζ2j )P (ζj) +

∞\
−∞

P (x)w(x) dx,

where w(x) is as in (6.8) (with sinπα
πα =1 for α=0). The orthogonal measure

bears mass points at the roots ζ1, . . . , ζk−1 of U2k−1(x) (i.e., at the double

roots of T2k(x)−1), the mass at ζj having the value 2(1+α)(1−ζ2j )/((α+3)k).

Remark 6.1. It follows that the masses at the roots ζj , j = k, . . . , 2k−1,
of Tk(x) were only apparent. Clearly, w(ζj) = ∞, j = 1, . . . , 2k − 1, for
1/2 < |α| < 1.

Remark 6.2. The system {pn(x)} shows that the condition limn→∞ a
(j)
n

= 1/4, j = 0, 1, . . . , 2k − 1, does not guarantee the absence of mass points
embedded in (−1, 1) ([7], p. 102). Of course, in this case ([7], p. 13),

2k−1∑

j=0

∞∑

j=1

|(a(j)n )1/2 − 1/2| = ∞,

as, for example,

(a(k)n )1/2 − 1/2 =

√
n

2(2n + 2)
− 1

2
=

√
2n(2n + 1)

2(2n + 1)
− 1

2
∼ 1

2n
,

i.e.,

|(a(k)n )1/2 − 1/2| = O(1/n).
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