A Property of the unitary Convolution

BY

A. SCHINZEL (WARSZAWA)

The unitary convolution $a * b$ of two arithmetic functions (i.e. functions from \mathbb{N} to \mathbb{C}) a and b is defined by the formula

$$
(a * b)(n)=\sum_{\substack{d \mid n \\(d, n / d)=1}} a(d) b(n / d)
$$

The inverse of a function f under the unitary convolution, if it exists, is a (unique) function g such that

$$
(f * g)(n)= \begin{cases}1 & \text { if } n=1 \tag{1}\\ 0 & \text { if } n>1\end{cases}
$$

W. Narkiewicz proved in [1] the following

Theorem. Every arithmetic function f such that $f(1) \neq 0$ and

$$
\sum_{n=1}^{\infty}|f(n)|<\infty
$$

has an inverse g such that

$$
\sum_{n=1}^{\infty}|g(n)|<\infty
$$

The proof was based on the theory of normed rings. Narkiewicz [2] (Problem 12) asked for an elementary, direct proof of this result. It is the aim of this paper to give such a proof.

Lemma 1. If $f(1)=1$ the inverse function of f exists and is given by the formulae

$$
\begin{equation*}
g(1)=1, \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
g(n)=\sum_{k=1}^{\omega(n)}(-1)^{k} \quad \sum_{\substack{d_{1} \ldots d_{k}=n \\\left(d_{i}, d_{j}\right)=1, d_{i}>1}} \prod_{i=1}^{k} f\left(d_{i}\right) \quad \text { for } n>1 \tag{3}
\end{equation*}
$$

where $\omega(n)$ is the number of distinct prime factors of n.
1991 Mathematics Subject Classification: Primary 11A25.

Proof. We shall check that the function given by the formulae (2) and (3) satisfies (1). For $n=1$ this is true, thus let $n>1$. By (2) and (3) we have

$$
\begin{aligned}
\sum_{\substack{d \mid n \\
(d, n / d)=1}} f(d) g\left(\frac{n}{d}\right)= & g(n)+\sum_{\substack{d \mid n \\
(d, n / d)=1,1<d<n}} f(d) g\left(\frac{n}{d}\right)+f(n) \\
= & -f(n)+\sum_{k=2}^{\omega(n)}(-1)^{k} \sum_{\substack{d_{1} \ldots d_{k}=n \\
\left(d_{i}, d_{j}\right)=1, d_{i}>1}} \prod_{i=1}^{k} f\left(d_{i}\right) \\
& +\sum_{\substack{d \mid n \\
(d, n / d)=1,1<d<n}} f(d) \\
& \times \sum_{k=1}^{\omega(n / d)}(-1)^{k} \sum_{\substack{d_{1} \ldots d_{k}=n / d \\
\left(d_{i}, d_{j}\right)=1, d_{i}>1}} \prod_{i=1}^{k} f\left(d_{i}\right)+f(n)=0,
\end{aligned}
$$

since the first and the second double sums contain the same terms with opposite signs.

Lemma 2. If a sequence \boldsymbol{a} of real numbers $a_{i} \geq 0$ satisfies

$$
\sum_{i=1}^{\infty} a_{i}<\infty
$$

then also

$$
\sum_{k=1}^{\infty} k!\sum_{i_{1}<\ldots<i_{k}} a_{i_{1}} \ldots a_{i_{k}}<\infty
$$

Proof. Let us denote $\sum_{i_{1}<\ldots<i_{k}} a_{i_{1}} \ldots a_{i_{k}}$ by $\tau_{k}(\boldsymbol{a})$ with $\tau_{0}(\boldsymbol{a})=1$ and let l be the least positive integer such that

$$
L:=\sum_{i=l}^{\infty} a_{i}<1 .
$$

We have the inequalities

$$
k!\tau_{k}(\boldsymbol{a}) \leq \tau_{1}(\boldsymbol{a})^{k}
$$

(from the Newton polynomial formula) and the identity

$$
\tau_{k}(\boldsymbol{a})=\sum_{j=0}^{\min (k, l-1)} \tau_{j}\left(a_{1}, \ldots, a_{l-1}\right) \tau_{k-j}\left(a_{l}, a_{l+1}, \ldots\right)
$$

Hence

$$
\begin{aligned}
\sum_{k=1}^{\infty} k!\tau_{k}(\boldsymbol{a}) & =\sum_{k=1}^{\infty} k!\sum_{j=0}^{\min (k, l-1)} \tau_{j}\left(a_{1}, \ldots, a_{l-1}\right) \tau_{k-j}\left(a_{l}, a_{l+1}, \ldots\right) \\
& =\sum_{j=0}^{l-1} \tau_{j}\left(a_{1}, \ldots, a_{l-1}\right) \sum_{k=j}^{\infty} k!\tau_{k-j}\left(a_{l}, a_{l+1}, \ldots\right) \\
& \leq \sum_{j=0}^{l-1} \tau_{j}\left(a_{1}, \ldots, a_{l-1}\right) \sum_{k=j}^{\infty} \frac{k!}{(k-j)!} L^{k-j}
\end{aligned}
$$

However, for $|x|<1$,

$$
\sum_{k=j}^{\infty} \frac{k!}{(k-j)!} x^{k-j}=\frac{d^{j}}{d x^{j}} \sum_{k=0}^{\infty} x^{k}=\frac{d^{j}}{d x^{j}}(1-x)^{-1}=j!(1-x)^{-1-j}
$$

Hence

$$
\begin{aligned}
& \sum_{j=0}^{l-1} \tau_{j}\left(a_{1}, \ldots, a_{l-1}\right) \sum_{k=j}^{\infty} \frac{k!}{(k-j)!} L^{k-j} \\
&=\sum_{j=0}^{l-1} \tau_{j}\left(a_{1}, \ldots, a_{l-1}\right) j!(1-L)^{-1-j}<\infty
\end{aligned}
$$

Proof of the Theorem. By the assumption,

$$
\sum_{n=1}^{\infty}\left|\frac{f(n)}{f(1)}\right|<\infty
$$

By Lemma 1 the inverse function of $f_{0}(n)=f(n) / f(1)$, denoted by g_{0}, exists and satisfies

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left|g_{0}(n)\right| & \leq 1+\sum_{k=1}^{\infty} \sum_{\substack{d_{1} \ldots d_{k}=n \\
\left(d_{i}, d_{j}\right)=1, d_{i}>1}}\left|f_{0}\left(d_{1}\right) \ldots f_{0}\left(d_{k}\right)\right| \\
& \leq \sum_{k=0}^{\infty} k!\tau_{k}\left(\left|f_{2}(2)\right|,\left|f_{0}(3)\right|, \ldots\right) .
\end{aligned}
$$

On applying Lemma 2 to the sequence

$$
a_{i}=\left|f_{0}(i+1)\right| \quad(i=1,2, \ldots)
$$

we obtain

$$
\sum_{n=1}^{\infty}\left|g_{0}(n)\right|<\infty, \quad \text { hence also } \quad \sum_{n=1}^{\infty}\left|\frac{g_{0}(n)}{f(1)}\right|<\infty
$$

However, $g(n)=g_{0}(n) / f(1)$ is the inverse of $f(n)$, which completes the proof.

REFERENCES

[1] W. Narkiewicz, On a class of arithmetical convolutions, Colloq. Math. 10 (1963), 81-94
[2] -, Some unsolved problems, Bull. Soc. Math. France Mém. 25 (1971), 159-164.
Institute of Mathematics
Polish Academy of Sciences
Sniadeckich 8
P.O. Box 137

00-950 Warszawa, Poland
E-mail: schinzel@impan.gov.pl

