ON THE FORMAL INVERSE OF POLYNOMIAL ENDOMORPHISMS

BY

PIOTR OSSOWSKI (TORUŃ)

Let k be a field of characteristic 0 . We begin by recalling some facts about the Jacobian Conjecture. We denote by $J(F)$ the Jacobian matrix of a polynomial map F.

Conjecture 1 (Jacobian Conjecture). If $F: k^{n} \rightarrow k^{n}$ is a polynomial map such that $\operatorname{det} J(F) \in k \backslash\{0\}$, then F is a polynomial automorphism, that is, there exists a polynomial map $G: k^{n} \rightarrow k^{n}$ satisfying $F(G)=X$.

Yagzhev [9] and Bass, Connell and Wright [1] showed that, if the Jacobian Conjecture is true for all $n \geq 2$ and all polynomial maps of the form $F=X-$ H with H homogeneous of degree 3 , then it is true for all polynomial maps. For the Jacobian matrix of a polynomial map F the hypothesis $\operatorname{det} J(F) \in$ $k \backslash\{0\}$ is equivalent to the nilpotence of $J(H)$.

Let $G=\left(G_{1}, \ldots, G_{n}\right)$ with $G_{i} \in k\left[\left[X_{1}, \ldots, X_{n}\right]\right]$ be the formal inverse of $F=X-H$, that is, $F(G)=X$. It is obvious that F is an automorphism if and only if G_{1}, \ldots, G_{n} are polynomials.

Since in $X-H$ all the non-zero homogeneous components have odd degree, G has the same property. Let $G_{i}=\sum_{d \geq 0} G_{i}^{(d)}$, where each $G_{i}^{(d)}$ is homogeneous of degree $2 d+1$ and $i=1, \ldots, n$. Several formulas for $G_{i}^{(d)}$ are known. In those given by Bass, Connell and Wright [1] and Drużkowski and Rusek [2], the components $G_{i}^{(d)}$ are expressed as \mathbb{Q}-linear combinations of polynomials indexed by rooted trees. Our aim is to prove that the polynomials, corresponding in the above mentioned expansions to the same rooted tree, differ by a rational factor depending on the structure of the rooted tree.

1. Rooted trees. If T is a non-directed tree, then $V(T)$ denotes the set of its vertices, and the set of its edges is a symmetric subset $E(V) \subseteq$ $V(T) \times V(T)$. A tree T with a distinguished vertex $\mathrm{rt}_{T} \in V(T)$, a root, is called a rooted tree. By induction we define the sets $V_{j}(T)$ of vertices of

[^0]height j. Let $V_{0}(T)=\left\{\mathrm{rt}_{T}\right\}$. For $j>0$ let $v \in V_{j}(T)$ iff for some $w \in V_{j-1}(T)$ there exists an edge $(w, v) \in E(T)$ and $v \notin V_{i}(T)$ for all $i<j$. Moreover, let $\operatorname{ht}(T)=\max \left\{j: V_{j}(T) \neq \emptyset\right\}$.

If $v \in V_{j}(T)$, then let

$$
v^{+}=\left\{w \in V_{j+1}(T):(w, v) \in E(T)\right\}
$$

By a leaf of a rooted tree T we mean a vertex $v \in V(T)$ such that $v^{+}=\emptyset$.
The rooted trees form a category; a morphism $T \rightarrow T^{\prime}$ is a map f : $V(T) \rightarrow V\left(T^{\prime}\right)$ such that $f\left(\mathrm{rt}_{T}\right)=\mathrm{rt}_{T^{\prime}}$ and $(f \times f)(E(T)) \subseteq E\left(T^{\prime}\right)$. If T is a rooted tree, then $\operatorname{Aut}(T)$ denotes the group of all automorphisms of T and $\alpha(T)=|\operatorname{Aut}(T)| .(|X|$ is the cardinality of the set X.)

For a rooted tree T and a vertex $v \in V(T)$ we define a rooted tree T_{v} to be a subtree of T such that $\mathrm{rt}_{T_{v}}=v$ and $w \in V\left(T_{v}\right)$ if v belongs to a path from w to the root.

Let T be a rooted tree and

$$
\mathrm{rt}_{T}^{+}=\left\{v_{11}, \ldots, v_{1 m_{1}}, \ldots, v_{s 1}, \ldots, v_{s m_{s}}\right\}
$$

Moreover, let $\left\{T_{v_{11}}, \ldots, T_{v_{1 m_{1}}}\right\}, \ldots,\left\{T_{v_{s 1}}, \ldots, T_{v_{s m_{s}}}\right\}$ be the isomorphism classes of the rooted trees $T_{v_{i j}}$. It is easy to see that

$$
\begin{equation*}
\alpha(T)=\prod_{j=1}^{s}\left(\alpha\left(T_{v_{j 1}}\right)^{m_{j}} \cdot m_{j}!\right) \tag{1}
\end{equation*}
$$

(cf. [6]).
In this note we assume that there exists an empty rooted tree \emptyset with $V(\emptyset)=\emptyset$ and $E(\emptyset)=\emptyset$.
2. Bass-Connell-Wright formal inverse expansion. Let $H=$ $\left(H_{1}, \ldots, H_{n}\right)$, where $H_{1}, \ldots, H_{n} \in k\left[X_{1}, \ldots, X_{n}\right]$ are homogeneous of degree 3. Let $\mathbf{n}=\{1, \ldots, n\}$. For $i \in \mathbf{n}$, a rooted tree T and a function $f: V(T) \rightarrow \mathbf{n}$ such that $f\left(\mathrm{rt}_{T}\right)=i$, in [1] there are defined polynomials

$$
P_{T, f}=\prod_{v \in V(T)}\left(\left(\prod_{w \in v^{+}} D_{f(w)}\right) H_{f(v)}\right)
$$

and

$$
\sigma_{i}(T)=\sum_{\substack{f: V(T) \rightarrow \mathbf{n} \\ f\left(\mathrm{rt}_{T}\right)=i}} P_{T, f} .
$$

In [1, Ch. III, 5.(4)] it is shown that if T contains a vertex such that $\left|v^{+}\right|>3$, then $\sigma_{i}(T)=0$. We denote by \mathbb{T}_{d}^{\prime} a fixed set of representatives of the isomorphism classes of rooted trees with d vertices and with $\left|v^{+}\right| \leq 3$ for each $v \in V(T)$. Note that $\mathbb{T}_{0}^{\prime}=\{\emptyset\}$. Using these observations, we can quote the following theorem.

Theorem 2 (Bass-Connell-Wright [1]). Let $F=X-H: k^{n} \rightarrow k^{n}$, where H is homogeneous of degree 3 and the matrix $J(H)$ is nilpotent. Then $G_{i}^{(0)}=X_{i}$ and

$$
G_{i}^{(d)}=\sum_{T \in \mathbb{T}_{d}^{\prime}} \frac{1}{\alpha(T)} \sigma_{i}(T) \quad \text { for } d \geq 1
$$

Theorem 2 suggests the following definition: $\sigma_{i}(\emptyset)=X_{i}$ for $i \in \mathbf{n}$.
In the sequel we use the below description of the numbers $\alpha(T)$.
Definition 3. For a rooted tree T and a vertex $v \in V(T)$ let

$$
\alpha(v, T)=\prod_{j=1}^{s} m_{j}!
$$

where m_{1}, \ldots, m_{s} are the cardinalities of the isomorphism classes of the rooted trees from $\left\{T_{w}: w \in v^{+}\right\}$. Note that $\alpha(v, T)=1$ for each leaf v.

REMARK. One can rewrite the formula (1) in the form

$$
\begin{equation*}
\alpha(T)=\alpha\left(\mathrm{rt}_{T}, T\right) \prod_{v \in \mathrm{rt}_{T}^{+}} \alpha\left(T_{v}\right) \tag{2}
\end{equation*}
$$

Lemma 4. If T is a rooted tree, then

$$
\alpha(T)=\prod_{v \in V(T)} \alpha(v, T)
$$

Proof. Use (2) and induction with respect to the height of T.
3. Drużkowski-Rusek formal inverse. In [2] we can find another description of the formal inverse. We suppose that $F=X-H$, where H is homogeneous of degree 3. It is well known that there exists a unique 3-linear symmetric polynomial map $\widetilde{H}: k^{n} \times k^{n} \times k^{n} \rightarrow k^{n}$ such that $\widetilde{H}(X, X, X)=H(X)$.

Theorem 5 (Drużkowski-Rusek [2]). If $G=\sum_{d \geq 0} G^{(d)}$ is the formal inverse of $F=X-H$, then $G^{(0)}=X$ and

$$
G^{(d)}=\sum_{p+q+r=d-1} \widetilde{H}\left(G^{(p)}, G^{(q)}, G^{(r)}\right) \quad \text { for } d \geq 1
$$

For small indices we have:

$$
\begin{aligned}
G^{(0)} & =X \\
G^{(1)} & =\widetilde{H}(X, X, X) \\
G^{(2)}= & 3 \widetilde{H}(X, X, \widetilde{H}(X, X, X)) \\
G^{(3)}= & 9 \widetilde{H}(X, X, \widetilde{H}(X, X, \widetilde{H}(X, X, X))) \\
& +3 \widetilde{H}(X, \widetilde{H}(X, X, X), \widetilde{H}(X, X, X))
\end{aligned}
$$

We shall see that each $G^{(d)}$ is a linear combination of polynomial maps corresponding to rooted trees.

Definition 6. For any rooted tree $T \in \mathbb{T}_{d}^{\prime}$ with $d \geq 1$ we define $\mathfrak{P}(T)$ to be a multiset (i.e., a set with repeated elements; see [7]) containing representatives of the isomorphism classes of the rooted trees T_{v} for $v \in \mathrm{rt}_{T}^{+}$and $3-\left|\mathrm{rt}_{T}^{+}\right|$empty trees. Thus the multiset $\mathfrak{P}(T)$ has exactly 3 elements.

Example 7. (Always the lowest vertex is the root.)

Definition 8. For a rooted tree $T \in \mathbb{T}_{d}^{\prime}$ we define, by induction on $d \geq 0$, a polynomial homogeneous map $\tau(T): k^{n} \rightarrow k^{n}$ of degree $2 d+1$ as follows:

$$
\begin{aligned}
\tau(\emptyset) & =X \quad \text { (the identity map) } \\
\tau(T) & =\widetilde{H}\left(\tau\left(T_{1}\right), \tau\left(T_{2}\right), \tau\left(T_{3}\right)\right) \quad \text { for } d \geq 1 \text { and } \mathfrak{P}(T)=\left\{T_{1}, T_{2}, T_{3}\right\} .
\end{aligned}
$$

Now, let us describe the coefficients in linear combinations like (3).
DEFINITION 9. For a rooted tree T and a vertex $v \in V(T)$ we define $\beta(v, T)$ to be the number of different sequences of elements of the multiset $\mathfrak{P}\left(T_{v}\right)$.

Lemma 10. If $d \geq 0$, then

$$
\begin{equation*}
G^{(d)}=\sum_{T \in \mathbb{T}_{d}^{\prime}} \beta(T) \tau(T), \quad \text { where } \quad \beta(T)=\prod_{v \in V(T)} \beta(v, T) . \tag{4}
\end{equation*}
$$

Proof. We prove this lemma by induction on d.
For $d=0$ the equality (4) is obvious. Note that $\beta(\emptyset)=1$.
Let $d>0$. Then

$$
\begin{aligned}
G^{(d)} & =\sum_{p+q+r=d-1} \tilde{H}\left(G^{(p)}, G^{(q)}, G^{(r)}\right) \\
& =\sum_{p+q+r=d-1} \widetilde{H}\left(\sum_{T_{1} \in \mathbb{T}_{p}^{\prime}} \beta\left(T_{1}\right) \tau\left(T_{1}\right), \sum_{T_{2} \in \mathbb{T}_{q}^{\prime}} \beta\left(T_{2}\right) \tau\left(T_{2}\right), \sum_{T_{3} \in \mathbb{T}_{r}^{\prime}} \beta\left(T_{3}\right) \tau\left(T_{3}\right)\right) \\
& =\sum_{p+q+r=d-1} \sum_{T_{1} \in \mathbb{T}_{p}^{\prime}} \sum_{T_{2} \in \mathbb{T}_{q}^{\prime}} \sum_{T_{3} \in \mathbb{T}_{r}^{\prime}} \beta\left(T_{1}\right) \beta\left(T_{2}\right) \beta\left(T_{3}\right) \cdot \widetilde{H}\left(\tau\left(T_{1}\right), \tau\left(T_{2}\right), \tau\left(T_{3}\right)\right) .
\end{aligned}
$$

All maps of the form $\widetilde{H}\left(\tau\left(T_{1}\right), \tau\left(T_{2}\right), \tau\left(T_{3}\right)\right)$ are homogeneous of degree $2 p+$ $1+2 q+1+2 r+1=2(p+q+r)+3=2 d+1$. Collecting summands with the same map $\tau(T)$, for $T \in \mathbb{T}_{d}^{\prime}$, we see that the coefficient of $\tau(T)$ is equal
to

$$
\beta\left(\operatorname{rt}_{T}, T\right) \cdot \beta\left(T_{1}\right) \beta\left(T_{2}\right) \beta\left(T_{3}\right)=\beta(T),
$$

where $\mathfrak{P}(T)=\left\{T_{1}, T_{2}, T_{3}\right\}$.
4. Main theorem. We are going to compare the expressions for $G^{(d)}$ given in the previous subsections.

Definition 11. For a rooted tree $T \in \mathbb{T}_{d}^{\prime}$ and a vertex $v \in V(T)$ we define numbers $\varrho(v, T)$ and $\varrho(T)$ as

$$
\varrho(v, T)=\alpha(v, T) \beta(v, T) \quad \text { and } \quad \varrho(T)=\prod_{v \in V(T)} \varrho(v, T) .
$$

In particular, $\varrho(\emptyset)=1$.
Corollary. If $T \in \mathbb{T}_{d}^{\prime}$, then $\varrho(T)=\alpha(T) \beta(T)$.
Lemma 12. If $T \in \mathbb{T}_{d}^{\prime}$ and $v \in V(T)$, then

$$
\varrho(v, T)=\frac{3!}{\left(3-\left|v^{+}\right|\right)!}= \begin{cases}1 & \text { for }\left|v^{+}\right|=0 \\ 3 & \text { for }\left|v^{+}\right|=1, \\ 6 & \text { for }\left|v^{+}\right| \in\{2,3\}\end{cases}
$$

Proof. It is sufficient to collect the numbers $\alpha(v, T), \beta(v, T)$ and $\varrho(v, T)$ $=\alpha(v, T) \beta(v, T)$ in a table. In the second column we assume that the rooted trees $T_{1}, T_{2}, T_{3}, \emptyset$ are all distinct.

$\left\|v^{+}\right\|$	$\mathfrak{P}\left(T_{v}\right)$	$\alpha(v, T)$	$\beta(v, T)$	$\varrho(v, T)$
0	$\{\emptyset, \emptyset, \emptyset\}$	1	1	1
1	$\left\{T_{1}, \emptyset, \emptyset\right\}$	1	3	3
2	$\left\{T_{1}, T_{1}, \emptyset\right\}$	2	3	6
	$\left\{T_{1}, T_{2}, \emptyset\right\}$	1	6	6
3	$\left\{T_{1}, T_{1}, T_{1}\right\}$	6	1	6
	$\left\{T_{1}, T_{1}, T_{2}\right\}$	2	3	6
	$\left\{T_{1}, T_{2}, T_{3}\right\}$	1	6	6

Now, compare the first and last columns. The last column is obviously equal to $3!/\left(3-\left|v^{+}\right|\right)$!.

Corollary. For $T \in \mathbb{T}_{d}^{\prime}$ we have

$$
\varrho(T)=2^{\left|\left\{v \in V(T):\left|v^{+}\right| \geq 2\right\}\right|} \cdot 3^{|V(T) \backslash \operatorname{Leaf}(T)|},
$$

where $\operatorname{Leaf}(T)$ is the set of all leaves of the rooted tree T.
In the proof of Theorem 13 we make use of the following polarization formula:

$$
\begin{equation*}
\widetilde{H}_{i}(U, V, W)=\frac{1}{3!} \sum_{p, q, r=1}^{n} U_{p} V_{q} W_{r} \frac{\partial^{3} H_{i}}{\partial X_{p} \partial X_{q} \partial X_{r}} \tag{5}
\end{equation*}
$$

(see [5, p. 251]). We also recall Euler's formula: if $F(X)$ is homogeneous of degree p, then

$$
\sum_{p=1}^{n} X_{p} \frac{\partial F(X)}{\partial X_{p}}=p \cdot F(X)
$$

We are now in a position to formulate and prove the main theorem of our paper.

Theorem 13. If $i \in \mathbf{n}$ and $T \in \mathbb{T}_{d}^{\prime}$ for $d \geq 0$, then

$$
\begin{equation*}
\sigma_{i}(T)=\varrho(T) \tau_{i}(T) \tag{6}
\end{equation*}
$$

where $\tau(T)=\left(\tau_{1}(T), \ldots, \tau_{n}(T)\right)$.
Proof. We argue by induction on the number of vertices of T.
The case $d=0$ is obvious:

$$
\sigma_{i}(\emptyset)=X_{i}=1 \cdot X_{i}=\varrho(\emptyset) \tau_{i}(\emptyset)
$$

Suppose now that $T \in \mathbb{T}_{d}^{\prime}(d \geq 1)$ and (6) is true for all rooted trees with less than d vertices. Let $\mathfrak{P}(T)=\left\{T_{1}, \ldots, T_{s}, \emptyset, \ldots, \emptyset\right\}$, where $0 \leq s \leq 3$ and T_{1}, \ldots, T_{s} are non-empty. For $i \in \mathbf{n}$, using a "tree surgery" (see [1], [8]), we can write

$$
\sigma_{i}(T)=\sigma_{i}\left(T_{1} \ldots T^{V_{s}}\right)=\sum_{j_{1}, \ldots, j_{s}=1}^{n} \sigma_{j_{1}}\left(T_{1}\right) \ldots \sigma_{j_{s}}\left(T_{s}\right) \frac{\partial^{s} H_{i}}{\partial X_{j_{1}} \ldots \partial X_{j_{s}}}
$$

Let us apply Euler's formula $3-s$ times and let $T_{j}=\emptyset$ for $j=s+1, \ldots, 3$:

$$
\begin{aligned}
\sigma_{i}(T) & =\frac{1}{(3-s)!} \sum_{j_{1}, j_{2}, j_{3}=1}^{n} \sigma_{j_{1}}\left(T_{1}\right) \ldots \sigma_{j_{s}}\left(T_{s}\right) X_{j_{s+1}} \ldots X_{j_{3}} \frac{\partial^{3} H_{i}}{\partial X_{j_{1}} \partial X_{j_{2}} \partial X_{j_{3}}} \\
& =\frac{1}{(3-s)!} \sum_{j_{1}, j_{2}, j_{3}=1}^{n} \sigma_{j_{1}}\left(T_{1}\right) \sigma_{j_{2}}\left(T_{2}\right) \sigma_{j_{3}}\left(T_{3}\right) \frac{\partial^{3} H_{i}}{\partial X_{j_{1}} \partial X_{j_{2}} \partial X_{j_{3}}} .
\end{aligned}
$$

Hence by assumption,

$$
\sigma_{i}(T)=\frac{\varrho\left(T_{1}\right) \varrho\left(T_{2}\right) \varrho\left(T_{3}\right)}{(3-s)!} \sum_{j_{1}, j_{2}, j_{3}=1}^{n} \tau_{j_{1}}\left(T_{1}\right) \tau_{j_{2}}\left(T_{2}\right) \tau_{j_{3}}\left(T_{3}\right) \frac{\partial^{3} H_{i}}{\partial X_{j_{1}} \partial X_{j_{2}} \partial X_{j_{3}}},
$$

and by (5),

$$
\sigma_{i}(T)=\frac{3!\cdot \varrho\left(T_{1}\right) \varrho\left(T_{2}\right) \varrho\left(T_{3}\right)}{(3-s)!} \widetilde{H}_{i}\left(\tau\left(T_{1}\right), \tau\left(T_{2}\right), \tau\left(T_{3}\right)\right)
$$

Finally, we apply Lemma 12, Definition 8 and Definition 11 to get

$$
\sigma_{i}(T)=\varrho\left(\operatorname{rt}_{T}, T\right) \varrho\left(T_{1}\right) \varrho\left(T_{2}\right) \varrho\left(T_{3}\right) \tau_{i}(T)=\varrho(T) \tau_{i}(T)
$$

and the proof is complete.

Corollary. If $T \in \mathbb{T}_{d}^{\prime}$ for $d \geq 0$, then

$$
\sigma(T)=\varrho(T) \tau(T)
$$

where $\sigma(T)=\left(\sigma_{1}(T), \ldots, \sigma_{n}(T)\right)$.
5. Remarks. Theorem 13 and Lemma 10 give us an alternative proof of Theorem 2. Indeed,

$$
G^{(d)}=\sum_{T \in \mathbb{T}_{d}^{\prime}} \beta(T) \tau(T)=\sum_{T \in \mathbb{T}_{d}^{\prime}} \frac{1}{\alpha(T)} \varrho(T) \tau(T)=\sum_{T \in \mathbb{T}_{d}^{\prime}} \frac{1}{\alpha(T)} \sigma(T)
$$

This proof looks simpler than the original one in [1].
It is well known that a polynomial map $F=X-H: k^{n} \rightarrow k^{n}$ with H homogeneous of degree 3 and $J(H)$ nilpotent has a polynomial inverse iff $G^{(d)}=0$ for $\operatorname{deg} G^{(d)}=2 d+1>3^{n-1}$. Bass, Connell and Wright [1] conjectures that not only $G^{(d)}=0$ but also $\sigma(T)=0$ in the case $T \in \mathbb{T}_{d}^{\prime}$ and $2 d+1>3^{n-1}$. A counterexample was given in [4]. On the other hand, Gorni and Zampieri [3] showed that there is a polynomial automorphism of the form $X-H$ as above such that for any n there exists a rooted tree T with $\tau(T) \neq 0$ and with the number of vertices of T greater than n. In both papers, the counterexample is the same polynomial map:

$$
F=\left(X_{1}+X_{4}\left(X_{1} X_{3}+X_{2} X_{4}\right), X_{2}-X_{3}\left(X_{1} X_{3}+X_{2} X_{4}\right), X_{3}+X_{4}^{3}, X_{4}\right)
$$

given by van den Essen for other reasons. In view of Theorem 13, $\tau(T) \neq 0$ iff $\sigma(T) \neq 0$, and problems solved in [3] and [4] are equivalent. Moreover, we can exhibit rooted trees T for which $\tau(T) \neq 0$ (Gorni and Zampieri have not done it).

If

$$
T_{0}=\bigvee^{\prime} \in \mathbb{T}_{4}^{\prime}, \quad T_{s}=\bigvee^{T_{s-1}} \in \mathbb{T}_{2 s+4}^{\prime} \quad \text { for } s \geq 1
$$

then (see [4]) $\sigma\left(T_{s}\right) \neq 0$ for all $s \geq 0$ and therefore the polynomial maps

$$
\begin{gathered}
\tau\left(T_{0}\right)=\widetilde{H}(\widetilde{H}(X, X, X), \widetilde{H}(X, X, X), \widetilde{H}(X, X, X)) \\
\tau\left(T_{s}\right)=\widetilde{H}\left(X, \widetilde{H}(X, X, X), \tau\left(T_{s-1}\right)\right) \quad \text { for } s \geq 1
\end{gathered}
$$

are non-zero.

REFERENCES

[1] H. Bass, E. H. Connell and D. Wright, The Jacobian conjecture: Reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. (N.S.) 7 (1982), 287-330.
[2] L. M. Drużkowski and K. Rusek, The formal inverse and the Jacobian conjecture, Ann. Polon. Math. 46 (1985), 85-90.
[3] G. Gorni and G. Zampieri, Yagzhev polynomial mappings: on the structure of the Taylor expansion of their local inverse, Ann. Polon. Math. 64 (1996), 285-290.
[4] P. Ossowski, A counterexample to a conjecture of Bass, Connell and Wright, Colloq. Math. 77 (1998), 315-320.
[5] V. L. Popov and E. B. Vinberg, Invariant theory, in: Algebraic Geometry IV, Encyclopaedia Math. Sci. 55, Springer, 1994, 123-278.
[6] C. E. Praeger and P. Schultz, On the automorphisms of rooted trees with height distributions, in: Combinatorial Mathematics X (Adelaide, 1982), Lecture Notes in Math. 1036, Springer, 1983, 319-334.
[7] R. P. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge Stud. Adv. Math. 49, Cambridge Univ. Press, 1997.
[8] D. Wright, Formal inverse expansion and the Jacobian conjecture, J. Pure Appl. Algebra 48 (1987), 199-219.
[9] A. V. Yagzhev, On Keller's problem, Sibirsk. Mat. Zh. 21 (1980), no. 5, 141150 (in Russian).

Faculty of Mathematics and Informatics
Nicholas Copernicus University
Chopina 12/18
87-100 Toruń, Poland
E-mail: ossowski@mat.uni.torun.pl

[^0]: 1991 Mathematics Subject Classification: Primary 13B25; Secondary 13B10, 14E09, 05 C 05.

 Key words and phrases: polynomial automorphisms, Jacobian Conjecture, rooted trees.

