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FLOWS ON INVARIANT SUBSETS AND
COMPACTIFICATIONS OF A LOCALLY COMPACT GROUP

BY

A. T. L A U (EDMONTON, ALBERTA), P. M I L N E S (LONDON, ONTARIO)
AND J. S. P Y M (SHEFFIELD)

1. Introduction. A natural way to construct a flow associated with a
locally compact group G is to take a compact subset V of G and ask for G
to act on V by conjugation, x 7→ ψg(x) := gxg−1 for x ∈ V , g ∈ G (and
we shall also consider the case when V is not compact). Obvious exam-
ples are when V is a compact normal subgroup and when V is a compact
invariant neighbourhood of the identity (a group which possesses such a
neighbourhood is called an IN group). In this paper we study such flows. In
particular, we investigate the relationships between these flows and the LC
compactification GLC of G which is described in Theorem 0 below. (We are
using the terminology of [1].) Our perspective on this subject is in keeping
with Lawson’s programme (see for example [7]) of exploiting the methods
of compact semigroup theory in topological dynamics.

A key feature of a flow is its enveloping semigroup. In the above context,
each ψg is a continuous map from V to itself. When the set V V of all
maps from V to V is given the product (or pointwise) topology, it becomes
compact, and the operation of composition makes it a semigroup in which
all maps f 7→ f ◦ h (h ∈ V V ) are continuous. The maps ψg (g ∈ G) are in
the topological centre Λ(V V ) := {f ∈ V V | h 7→ f ◦ h is continuous}, and
so Σ(G,V ) = (ψG)− ⊂ V V is a compact semigroup called the enveloping
semigroup of the flow (G,V ).

We shall call the flow (G,V ) distal if Σ(G,V ) is a group. Rosenblatt
[11] calls a group distal if its action on itself by inner automorphisms has the
property that gαsg

−1
α → e for any net {gα} and any s in G implies s = e.

This is the same as our concept when V is an invariant neighbourhood of

1991 Mathematics Subject Classification: 43A60, 22D05.
Key words and phrases: locally compact group, subgroup, IN group, flow, compacti-

fication, almost periodic, distal, left uniformly continuous function.
This research was supported in part by SERC grants GR/H31172 and GR/H38379

and in part by NSERC grants A7679 and A7857.

[267]



268 A. T. LAU ET AL.

the identity (Proposition 5 below). Rosenblatt’s main conclusion was that if
a distal group is almost connected, then it has polynomial growth. At about
the same time, Ruppert [12] showed that a group satisfying Rosenblatt’s
distality condition has this cancellation property: if νs = νt for any s, t in
G and ν in GLC , then s = t.

Our Section 2 discusses basic properties of the flows (G,V ). We discover
that Σ(G,V ) is to a large extent independent of V . Thus, for example,
if G is σ-compact, then for any two compact invariant neighbourhoods U ,
V of the identity which generate G, we have Σ(G,U) = Σ(G,V ). In this
case it makes sense to talk of the flow given by the action of G on itself,
and Σ(G,G) is the same compact semigroup as the others. We give several
conditions equivalent to distality. These illustrate the relationship between
Σ(G,V ) and GLC ; for example, Σ(G,V ) is a group if and only if V is
normal in GLC (that is, νV = V ν for all ν ∈ GLC). When G is an SIN
group (that is, every neighbourhood of the identity contains an invariant
neighbourhood) and V is a neighbourhood of the identity in G, it is easy
to prove that Σ(G,V ) is actually a topological group. Although IN and
SIN groups are closely related, the enveloping semigroups for IN groups can
exhibit a wide variety of behaviour. This we show in a series of results in §4,
which is devoted to the study of our ideas in the special setting of semidirect
products.

In §3 we consider the structure of GLC . For some normal subgroups N
of G (including compact ones), Nµ is a right simple semigroup for any
idempotent µ in GLC . Algebraically, therefore, Nµ = E×H, where E is the
left zero semigroup (ef = e for all e, f ∈ E) consisting of the idempotents
in Nµ, and H is a group. Under the mapping s 7→ sµ, the preimage of E
in N is a normal subgroup and the preimage of H is a subgroup, and N is
the semidirect product of these two subgroups. Thus, each idempotent of
GLC determines a semidirect product decomposition of N . Here in fact H is
algebraically isomorphic to µNµ, and E= {s∈N |µsµ=µ}. Topologically
the situation is not so simple. We give examples to illustrate the possibilities
that (i) H is dense in Nµ, and (ii) H is not dense in Nµ.

We refer the reader to [1] for terminology and results which are not
explained in our paper and for which other references are not given. We
should, however, state some facts about GLC which will be continually used
in our work.

Theorem 0. GLC is the largest semigroup compactification of the locally
compact group G in the sense that if φ is any continuous homomorphism
of G into a compact right topological semigroup H for which φ(G) ⊂ Λ(H),
then φ extends to a continuous homomorphism of GLC to H. If φ(G) is
dense in H, then φ(GLC) = H. G can be regarded as homeomorphically
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embedded in GLC. Moreover ,

(i) the multiplication G×GLC → GLC is jointly continuous, and
(ii) for any ν ∈ GLC the map s 7→ sν, G → GLC , is a continuous

injection, and so a homeomorphism on each compact subset of G.

These results can be found in [1], in particular Theorems 4.5.7 (for (i),
using Ellis’s joint continuity theorem) and Lemma 4.8.9 (for (ii), using a
result of Veech [13]).

The distal compactification GD of G is the largest semigroup compactifi-
cation of G which is a group. It can also be described as the largest continu-
ous quotient of GLC which is a group. The almost periodic compactification
GAP of G is the largest compactification which is a topological group. When
G is commutative, it can be realised as the group (Ĝd)̂, where Ĝ is the

Pontryagin dual of G, and the suffix d means that the group Ĝ is given its
discrete topology.

2. Flows determined by inner actions. We now describe more
precisely a general setting for our work. Let G be a locally compact group
acting on itself by inner automorphisms ψg : s 7→ gsg−1, g, s ∈ G, and let
O(s) = {ψg(s) | g ∈ G} be the orbit of s. We then define the “compact

conjugacy class subgroup” GC of G by GC = {s ∈ G | O(s) is compact},
which is invariant under the inner action of G, hence normal. We shall be
interested in restricting the inner action of G to GC , and even further, to
compact invariant subsets V of GC .

If we consider ψG|GC as a subset of GGCC , then the closure (ψG)− of
ψG is the enveloping semigroup Σ(G,GC) of (G,GC), which is compact
(even if GC is not) because Σ(G,GC) is the same as the closure of ψG in

Π{O(s)O(s) | s ∈ GC}, which is compact. The continuous homomorphism
g 7→ ψg, G → Σ(G,GC), extends to a continuous homomorphism, denoted
by ν 7→ ψν , from GLC onto Σ(G,GC) (using Theorem 0). When ψG is
restricted further to a compact invariant subset V ⊂ GC , the enveloping
semigroup Σ(G,V ) of the flow (G,V ) is a homomorphic image of Σ(G,GC),
in fact just the restriction of Σ(G,GC) to V . (We use the same symbol ψν
for ψν |GC and ψν |V .) The cases that will interest us most are when V ⊂ GC
is a compact normal subgroup of G, and when G is an IN (or even SIN)
group and V is a compact invariant neighbourhood of the identity e of G.
We note that GC is open if and only if G is IN (Liukkonen [8], Corollary 2.2).

Recall that G can be identified with its canonical image in GLC , so that
for ν ∈ GLC and s ∈ G the product νs is defined as an element of GLC . If,
in addition, s ∈ GC , then ψν(s) is an element of O(s), so that ψν(s)ν is also
defined in GLC . The second conclusion in the next lemma was established
in [6] when V is a compact normal subgroup of GC .
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Lemma 1. For any ν ∈ GLC and s ∈ GC , ψν(s)ν = νs. Hence νV ⊂ V ν
for any closed invariant V ⊂ GC ; also, νs = νsν if ν is idempotent.

P r o o f. Let gα → ν ∈ GLC , so that ψgα(s)→ ψν(s) ∈ O(s). Then

νs = lim
α
gαs = lim

α
gαsg

−1
α gα = lim

α
ψgα(s)gα = ψν(s)ν,

since multiplication O(s) × GLC ⊂ G × GLC → GLC is jointly continuous.
The third conclusion follows readily, as does the second since O(s) ⊂ V .

Let V ∈ GC be a compact invariant subset with e ∈ V , so that (G,V )
is a flow. Then each V n ⊂ GC is also invariant, as is the subset G1 =⋃∞
n=1 V

n ⊂ GC (G1 perhaps failing to be compact). The proof of the next
result requires little beyond taking note of the restriction homomorphism
Σ(G,G1)→ Σ(G,V n), n ∈ N, and the fact that each T ∈ Σ(G,V ) extends
naturally to V 2.

Proposition 2. The enveloping semigroups Σ(G,V n), for n ∈ N, and
Σ(G,G1) are all isomorphic.

We can now give several characterizations of distal flows in terms of the
LC compactification of G.

Theorem 3. Let V ⊂ GC be a compact invariant subset of the locally
compact group G. The following statements (i)–(vi) are equivalent :

(i) The flow (G,V ) is distal.
(ii) V is normal in GLC (i.e., νV = V ν for all ν ∈ GLC).

(iii) There is an idempotent µ in the minimal ideal of GLC for which
µV = V µ.

(iv) There is an idempotent µ in the minimal ideal of GLC for which ψµ
is the identity mapping. (In this case, µs = sµ for all s ∈ V , i.e., µ is in
the centralizer of V .)

(v) There is an idempotent µ in the minimal ideal of GLC for which the
map s 7→ µs is injective on V .

(vi) V n is normal in GLC for all n ∈ N.

When V = N is a compact normal subgroup of G, (i)–(vi) are also
equivalent to (vii) and (viii), and (ix) implies (i)–(viii).

(vii) There is a minimal idempotent µ ∈ GLC for which Nµ is a group.
(viii) There is a minimal idempotent µ ∈ GLC for which Nµ contains just

one idempotent.
(ix) The natural map from G to GD is injective on N ; equivalently , D(G)

separates the points of N .

P r o o f. (i)⇒(ii). Let ν ∈ GLC . Since {ψη | η ∈ GLC} is the group
Σ(G,V ) ⊂ V V , we have ψν(V ) = V , so from Lemma 1, V ν = ψν(V )ν = νV .
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(ii)⇒(iii) is trivial.

(iii)⇒(iv). From µV = V µ and the lemma we get V µ = ψµ(V )µ. Since
the map g 7→ gµ, G→ GLC , is injective (Theorem 0), we have V = ψµ(V ).
Thus ψµ is surjective and since (ψµ)2 = ψµ2 = ψµ, we conclude that ψµ is
the identity map on V .

(iv)⇒(v). Lemma 1 tells us that when ψµ is the identity, µs = ψµ(s)µ =
sµ for s ∈ V , and s 7→ sµ is injective by Theorem 0.

(v)⇒(iii). By Lemma 1 again, we have µψµ(V )= µψµ(V )µ= µ2V = µV ,
so ψµ(V ) = V if s 7→ µs is injective. Then Lemma 1 implies µV = V µ.

(iv)⇒(i). Since ψµ is the identity on V ,

Σ(G,V ) = {ψη | η ∈ GLC}
= {ψµψηψµ | η ∈ GLC} = {ψη | η ∈ µGLCµ} ⊂ V V ;

but general semigroup theory ([1], §1.2) tells us that for any idempotent µ
in the minimal ideal of GLC , µGLCµ is a group with µ as its identity.

The equivalence of (iii) and (vi) follows from Proposition 2.

Let N be a compact normal subgroup of G and take V = N .

(iii)⇒(vii). µN = Nµ implies that for any s ∈ N we have µs = µsµ =
sµ, and it is then easy to see that µNµ is a group.

(vii)⇒(viii) is trivial.

(viii)⇒(iii). Since µ is idempotent, it is a right identity for Nµ, and
so from µN ⊂ Nµ (Lemma 1) we have µNµ = µN . Suppose (iii) is false:
µN 6= Nµ. Then there exists an s ∈ N with sµ ∈ Nµ \ µN . If t =
ψµ(s), we have tµ = µs ∈ µN , and also t−1µ ∈ µN ; to see this, note that
t−1µ = t−1µsµs−1µ = t−1tµs−1µ = µs−1µ. So (st−1µ)2 = st−1µst−1µ =
st−1tµt−1µ = st−1µ is an idempotent in Nµ. It is not µ because µtµ = tµ,
but (st−1µ)tµ = sµt−1µtµ = sµ.

(ix)⇒(ii). This is Theorem 16(b) of [6].

The conclusions of Theorem 3 hold equally well for closed invariant sub-
sets (and subgroups) V of GC ; these are just unions of compact O(s)’s. Thus,
if G = GC and (G,GC) is distal (i.e., (G,O(s)) is distal for all s ∈ GC), then
G is normal in GLC , a consequence of which is that the maximal subgroups
in a minimal left ideal L ⊂ GLC are dense in L. To see this, let µ be any
idempotent in L. Thus L = GLCµ, and µGLCµ is a maximal group in L.
This contains µGµ, which is equal to Gµ2 = Gµ since G is normal, and Gµ
is dense in GLCµ by continuity.

The equivalence of (i) and (v) of the theorem is very close to a result
of Ruppert (Theorem 4.11 of [12]). He says that, under a mild separability
condition, the group G is distal in the sense of Rosenblatt (our definition
of that term is given just before Theorem 5 below) if and only if s 7→ νs is
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injective on G for each ν∈GLC . With our methods, we can obtain injectivity
on the whole of G only when G = GC .

A particularly simple case occurs when G is an SIN group. If V is any
compact symmetric invariant neighbourhood of the identity of G, then the
flow (G,V ) is equicontinuous (simply because for any invariant neighbour-
hood U ⊂ V , ψg(U) = gUg−1 = U for all g ∈ G). This immediately gives
the following proposition.

Proposition 4. If G is an SIN group and V is an invariant neigh-
bourhood of the identity then Σ(G,V ) is a compact topological group whose
topology coincides with that of uniform convergence on V .

Proposition 4 is essentially known. If G is SIN and is generated by a
compact symmetric neighbourhood V of the identity, then G = GC (be-
cause each s ∈ G is contained in the compact invariant set V n for some n),
that is, G belongs to the class [FC]

−
([10], page 530). A group in [FC]

−

is SIN if and only if the closure of the group of inner automorphisms in
Aut(G) is compact in the Braconnier topology ([4], §26.3; see also [10], page
530). Under the present conditions, the latter group coincides with Σ(G,V )
(see Proposition 2).

It might be thought that because IN groups are simply the extensions
of compact groups by SIN groups ([9], page 718), the structures of their
associated enveloping semigroups would be only a little more complicated.
This is far from the case, as the groups we study in §4 illustrate.

In our next proof, we need the basic characterisation of distal flows due
to Ellis [2]. In our situation, it says that a flow (G,V ) is distal if for each net
{gα} in G and any s, t in V , the relation limα gαsg

−1
α = limα gαtg

−1
α implies

s = t. We shall call the group G distal in the sense of Rosenblatt [11] if this
condition holds with V = G (even though G may not be compact).

We next consider how enveloping semigroups vary with the compact
symmetric invariant subset V ⊂ G. We have seen in Proposition 2 that
the enveloping semigroup Σ(G,X) will be the same for X = V or X = G1

=
⋃∞
n=1 V

n. Furthermore, if (G,V ) is distal so that V is normal in GLC ,
then G1 is also normal in GLC .

Theorem 5. Let G be an IN group and V a compact invariant neigh-
bourhood of the identity e of G. Then G acts distally on V if and only if
G acts distally on every compact invariant neighbourhood of the identity e
of G. The flow (G,V ) is distal if and only if G is Rosenblatt distal.

P r o o f. Suppose that the group G acts distally on V . Let W be
any compact invariant neighbourhood of e; suppose that limα ψgα(u)
= limα ψgα(v) for some net {gα} in G and u, v ∈ W . Then limα ψgα(uv−1)
= e ∈ G, so that ψgβ (uv−1) lies in V for some value β of the index α. Thus
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limα ψgαg−1
β

(ψgβ (uv−1)) = e = limα ψgαg−1
β

(e), whence ψgβ (uv−1) = e by

distality on V , so that u = v as required.

The same proof with W replaced by G shows that if (G,V ) is distal then
G is Rosenblatt distal. The converse of the last statement is obvious.

If V and W are compact invariant neighbourhoods of the identity in an
IN group G, each of which generates G, then Proposition 2 implies that
Σ(G,V ) and Σ(G,W ) are isomorphic. The situation can be different if the
neighbourhoods V and W do not generate G.

Example 6. There is an IN group G for which the enveloping semi-
groups Σ(G,V ) are not the same for all invariant neighbourhoods V of the
identity , even though the flows (G,V ) have the additional property of being
equicontinuous.

P r o o f. Take G = T× Z2 with multiplication

(m) (w,m, n)(w′,m′, n′) = (ww′einm
′
,m+m′, n+ n′).

The centre V = Z(G) = (T, 0, 0) is a compact invariant neighbourhood of
e = (1, 0, 0) ∈ G, and Σ(G,V ) is just the identity. W = (T, 0, 0) ∪ (T, 1, 0)
is another compact invariant neighbourhood of e and

ψ(w,m,n)(w
′, 1, 0) = (w,m, n)(w′, 1, 0)(w−1einm,−m,−n) = (w′ein, 1, 0),

so Σ(G,W ) ∼= T and the homomorphism G→ T sends (w,m, n) to ein. Yet
another compact invariant neighbourhood of e is W ′ =

⋃
{(T, i, j) | i, j ∈

{0,±1}}; W ′ generates G and Σ(G,W ′) ∼= T2 with (w,m, n) 7→ (ein, e−im),
so we also have Σ(G,G) ∼= T2.

There is a contrast between the group in Example 6 and the closely
related group G′ = T × R2, also with multiplication (m). Obviously, G′

contains G as a normal subgroup, but here every compact invariant neigh-
bourhood V is generating, so that Proposition 2 applies. In fact, Σ(G′, V ) ∼=
Σ(G′, G′) ∼= RAP × RAP , and if a is the homomorphism from R into RAP ,
then the homomorphism G→ RAP × RAP sends (w, x, y) to (a(x), a(−y)).
A proof of these assertions can be constructed on the same lines as the one
given below for Proposition 12.

When the action of G on a compact invariant subset V is distal,
Σ(G,V ) is a group and there is a continuous surjective homomorphism
σ : GD → Σ(G,V ). We should then expect the action s 7→ ν · s of Σ(G,V )
on V to be given by conjugation by the elements of GD. This is essentially
so, as the next proposition says, but there are a couple of details which make
the result look less transparent than the informal statement we have just
given.
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Proposition 7. Let (G,V ) be a distal flow , with V a compact invariant
subset of G. Suppose that the canonical map G → GD is injective on V ,
so that V is homeomorphically imbedded in GD (as well as in GLC). Then
σ(ν)s = νsν−1 for ν ∈ GD, s ∈ V .

P r o o f. Lemma 1 tells us that for ξ ∈ GLC and s ∈ V we have
ψξ(s)ξ = ξs. The canonical homomorphism GLC → GD is surjective, but by
hypothesis injective on V which contains ψξ(s). If we apply this homomor-
phism to the above equality, choosing ξ to be a preimage of ν, we see that
ψξ(s)ν = νs. We are now in the group GD, so we may take inverses to get
ψξ(s) = νsν−1. Applying the map σ now gives ν · s = νsν−1.

3. Algebraic structure in GLC. The group G is homeomorphically
embedded in GLC as a dense subgroup. The natural expectation would be
that for any idempotent µ in GLC , Gµ would also be a subgroup isomorphic
with G. This is often far from the case: Gµ can contain a large number
of idempotents. We shall now see how this comes about, and that each
idempotent in GLC determines a semidirect product decomposition of each
normal subgroup of GC .

We begin with a result about idempotents in GLC . For ν ∈ GLC and
V ⊂ GC we write IV (ν) = {sν | s ∈ V and sν is an idempotent in GLC}.

Lemma 8. Let V be a closed invariant subset of GC .

(i) Let µ be an idempotent in GLC and let s ∈ GC . Then the following
three statements are equivalent :

(1) sµ is an idempotent.

(2) ψµ(s) = e.

(3) µs = µ.

In this situation, IV (µ) = {sµ | s ∈ V, ψµ(s) = e}.

(ii) Let µ and µ′ be idempotents in GLC. Then either IV (µ)∩IV (µ′) = ∅
or IV (µ) = IV (µ′).

Now let ν ∈ GLC and s ∈ V .

(iii) If sν is an idempotent and s′ ∈ GC , then the following two state-
ments are equivalent :

(1) s′ν is an idempotent.

(2) ψν(s′) = ψν(s).

In this situation, IV (sν) = {s′ν | s′ ∈ V, ψν(s′) = ψν(s)}.

(iv) sν is an idempotent if and only if νs is an idempotent.



FLOWS ON INVARIANT SUBSETS 275

(v) If sν is an idempotent , then the idempotent νs is in IV V −1(sν);
furthermore, ψ2

ν(s) = ψν(s) and

~ νs = ψν(s)ν = ψ2
ν(s)ν = νψν(s).

P r o o f. To prove (i) use Lemma 1 to see that

(sµ)(sµ) = s(µs)µ = s(ψµ(s)µ)µ = sψµ(s)µ.

Then the injectivity of s′ 7→ s′µ, G → GLC (Theorem 0), shows that (1),
(2) and (3) are equivalent.

(ii) is easy, since sµ = s′µ′ is equivalent to µ = s−1s′µ′.

(iii) Writing s′ν = s′s−1(sν), we see from (i) that s′ν being idempotent
is equivalent to e = ψsν(s′s−1) = sψν(s′s−1)s−1, i.e., ψν(s′) = ψν(s).

(iv) The map η 7→ s−1ηs is an automorphism of GLC , and so preserves
idempotents.

(v) Note that νs = ψν(s)ν = ψν(s)s−1(sν) ∈ IV V −1(sν), so the first con-
clusion is established. Then by (i), e = ψsν(ψν(s)s−1) = sψ2

ν(s)ψν(s−1)s−1,
so ψ2

ν(s) = ψν(s). The first and last equalities in ~ follow from Lemma 1.

We now come to our principal theorem about structures in GLC .

Theorem 9. Let G be a locally compact group and let N ⊂ GC be a
normal subgroup of G. Let µ be an idempotent in GLC. Then N is a
semidirect product N1 × K1 of its normal subgroup N1 = ψ−1µ (e) and the
subgroup K1 = {s ∈ N | sµ = µsµ}.

In GLC , Nµ is a left group, N1µ is the set of idempotents in Nµ, and
K1µ = µK1µ is isomorphic to each of the maximal subgroups of Nµ (so
that Nµ = (N1µ) × (K1µ) algebraically). The subgroups N1 and K1 need
not be closed in N , but θ : s 7→ sµ is continuous, 1-1 and a homomorphism
from K1 to K1µ. Also, θ is a homeomorphism if N is compact.

P r o o f. Take s ∈ N . From Lemma 1, there is an s′ ∈ N such that
µs = s′µ. Thus we have (Nµ)sµ = Nµsµ = Ns′µ2 = Nµ, so that Nµ is
left simple. From Lemma 8, the set of idempotents in Nµ is N1µ where
N1 = {s ∈ N | ψµ(s) = e} is a normal subgroup since ψµ is a homo-
morphism. Since µN ⊂ Nµ (Lemma 1 again), the subgroup µNµ of Nµ
is equal to µN . If we write K1 = {s ∈ N | µs = sµ = µsµ}, then K1

is a subgroup of N and the map s 7→ sµ is an isomorphism of K1 onto
K1µ ∼= µNµ. The structure theory for left simple semigroups tells us that
Nµ = (N1µ)× (K1µ), so that N1 ∩K1 = {e}; N is the semidirect product
of N1 and K1.

The map s 7→ sµ is continuous and injective on K1 ⊂ G (Theorem 0),
and a homeomorphism of K1 when N is compact. It is also a homomorphism
on K1 since the idempotent µ commutes with the elements of K1.
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Examples to show that K1 and N1 need not be closed are provided by
Proposition 14(i) below.

4. LC-compactifications of some semidirect products. We shall
now examine our results in the context of semidirect products G = N ×K,
where K acts on the compact group N , the multiplication is given by
(s, t)(s′, t′) = (st(s′), tt′), and the topology for G is the product topology;
then N × {e} ∼= N is a normal subgroup of G, so N ⊂ GC , and K ∼= G/N .
Proposition 11 presents examples of distal flows for which the enveloping
semigroups can be explicitly determined. In Proposition 12 and Example 13
the flows are non-distal, but in the former we see that for an idempotent µ
in GLC the group µN can be dense in Nµ, while in the latter it need not be.

Observe that, in the same way as for the flow (G,N) above, there is a
continuous homomorphism ζ 7→ ψζ of KLC onto the enveloping semigroup
Σ(K,N) of the flow (K,N).

We first collect some information about compactifications of semidirect
products.

Proposition 10. Let G = N ×K be a semidirect product as above with
N compact.

(i) The flow (G,N), (g, s) 7→ gsg−1, is distal if and only if the flow
(K,N), (t, s) 7→ t(s), is distal.

(ii) GLC ∼= N ×KLC and the product in N ×KLC is given by

(s, ζ)(s′, ζ ′) = (sψζ(s
′), ζζ ′).

(iii) Every idempotent µ ∈ GLC has the form µ = (s, ξ) ∈ N × KLC ,
where ξ is an idempotent in KLC and ψξ(s) = e.

(iv) Every minimal left ideal L ⊂ GLC has the form L = N × L, where
L is a minimal left ideal in KLC.

P r o o f. We omit the details of this proof. For (i) we point out that, if
g = (s, t) ∈ G, then gs′g−1 = (Is◦t)(s′), where Is is the inner automorphism
s′ 7→ ss′s−1 of N . Part (ii) is Theorem 5.2.11 in [1], and (iv) comes from it.
(iii) is closely related to Lemma 8(i).

Remarks. One can consider extensions that are more general than
semidirect products. (See, for example, [6] and the references there for ex-
tension formalism.) If the extension G = N×K is central, the cocycle plays
no role in the flow (G,N); we still have gs′g−1 = (Is ◦ t)(s′) for g = (s, t),
as in the semidirect product case, and the conclusion of Lemma 8(i) still
holds. The group T×Z2 of Example 6 and the group T×R2 which follows
that example are central extensions; for them, and for all of our semidirect
product examples, N is abelian, so the inner automorphisms Is of N are
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trivial. However, statements (ii) and (iii) of Lemma 8 must be substantially
altered for the central extension setting. We do not know an example of a
non-central extension N ×K of a compact group N .

Proposition 11. Let K be a discrete abelian group with compact dual
group K̂, let K act on (the direct product) N = T × K̂ by t : (w, t̂ ) 7→
(wt̂ (t), t̂ ), and let G = N ×K be the semidirect product. Then

(i) Σ(K,N) ∼= KAP , and
(ii) N is normal in GLC.

P r o o f. (i) Recall that KAP ∼= (K̂d)̂. Then if {tα} ⊂ K converges to
χ ∈ KAP , we have tα(w, t̂ ) = (wt̂ (tα), t̂ ) → (wχ(t̂ ), t̂ ) for all (w, t̂ ) ∈ N ,
from which it is not hard to see that Σ(K,N) ∼= KAP .

(ii) Since KAP is a group, the flow (K,N) is distal. Hence (G,N) is
distal and N is normal in GLC by Theorem 3.

Remark. The flows (K,N) and (G,N) in the previous theorem are

seldom equicontinuous; for example, they are not if K = Z and K̂ = T.
Nevertheless, we still have an enveloping semigroup which is a topological
group, but this is in the pointwise topology and not in the topology of
uniform convergence on V as it was in Proposition 4.

The next proposition expands on ideas used in [6], Example 18. For it
H and K are topological groups with H compact and K infinite discrete,
and G is the semidirect product N × K = HK × K with multiplication
(f, t)(f ′, t′) = (fRtf

′, tt′); here we are thinking of HK as the set of all
functions from K into H, so Rtf

′(t1) = f ′(t1t). In this setting the action
of K on N is never distal so there exist idempotents µ ∈ GLC for which
µN $ Nµ; nonetheless, µN is always dense in Nµ. In the rest of this
paper, βK denotes the Stone–Čech compactification of the discrete space
K.

Proposition 12. Let H, K and G = N ×K = HK ×K be as above.
Then

(i) Σ(K,N) ∼= βK,
(ii) N is not normal in GLC , and

(iii) µN is dense in Nµ for every idempotent µ ∈ GLC.

P r o o f. First note that each f ∈ N = HK extends to an f̃ ∈ C(βK,H),

the space of all continuous functions from βK into H; in fact, N ∼= Ñ :=
C(βK,H). It is then clear how the transformations ψζ ∈ Σ(K,N), ζ ∈ βK,
act on N : if f ∈ N and tα → ζ in βK, we have Rtαf → ψζ(f) (pointwise),
so

[ψζ(f)](t) = lim
α
Rtαf(t) = lim

α
f(ttα) = lim

α
f̃(ttα) = f̃(tζ).
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(i) Let ν, η ∈ βK with η 6= ν, so there is a set V ⊂ K ⊂ βK with
η ∈ V and ν 6∈ V (closure in βK). Choose a member h ∈ H, h 6= e, and
define a function f ∈ N by f(t) = h if t ∈ V , f(t) = e otherwise; then

f̃(η) 6= f̃(µ), so
ψη(f) = f̃(· η) 6= f̃(· ν) = ψν(f)

and the homomorphism ν′ 7→ ψν′ , βK → Σ(K,N), is 1-1, hence an isomor-
phism.

(ii) Since Σ(K,N) ∼= βK, which is not a group, the flow (K,N) is not
distal, nor is (G,N), and N is not normal in GLC (Theorem 3).

(iii) Let µ = (f, ξ) be an idempotent in GLC ∼= N × βK, where ξ is an
idempotent in βK and f ∈ N with ψξ(f) = e, and let

g ∈ Nµ = {(f, e)(f, ξ) | f ∈ N} = {(f, ξ) | f ∈ N},
g = (f1, ξ), say. We approximate g by members of

µN = {(f, ξ)(f, e) | f ∈ N} = {(fψξ(f), ξ) | f ∈ N} ⊂ Nµ
as follows: for any finite A ⊂ K we find an f ∈ N such that (fψξ(f))|A =
f1|A.

So, let L be the left ideal βK ξ ⊂ βK. From Theorem 0, the map
t 7→ tξ, K → L, is injective, and the total disconnectedness of βK gives a
continuous function F ∈ C(L,H) such that F(tξ) = [f−1f1](t) = f(t)−1f1(t)
for all t ∈ A. Then defining f(t) = F(tξ) for all t ∈ N , we get the required

function f , since f̃(ν) = F(νξ) for all ν ∈ βK; so [ψξ(f)](t) = f̃(tξ) =
F(tξξ) = F(tξ) = [f−1f1](t) for all t ∈ A.

Part (iii) of Proposition 12 raises the intriguing

Question. What conditions does one require on a compact normal
subgroup N ⊂ G to ensure that µN is dense in Nµ for every idempotent
µ ∈ GLC?

We do not know the answer. In the present setting of semidirect products
G = N ×K, the action of K on N must not be distal if we want µN $ Nµ.
Here is an example where µN is not dense in Nµ. It appears in [3] (II.5.5)
as an example due to Furstenberg of a proximal flow.

Example 13. There is a group G with a compact normal subgroup N ′

with the property that for all minimal idempotents µ ∈ GLC , µN ′ is a sin-
gleton and so is not dense in N ′µ.

P r o o f. Let N be the almost periodic compactification RAP ∼= (Rd)∧ of
the additive real numbers R, and let K = (R+,×) act on N in the natural
way,

[a(χ)](x) := χ(ax) for a ∈ K, χ ∈ N and x ∈ R,
so that we have the semidirect product G = N ×K. Then, for n ∈ N ⊂ R+,
[n(χ)](x) = χ(x)n. Now there is a net {nα} ⊂ N such that wnα → 1 for
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all w ∈ T. It follows that Σ(K,N) has a zero, onto which every minimal
idempotent ξ ∈ KLC must map, namely ψξ(N) = {e} ⊂ N . Thus µ =
(χ, ξ) is a minimal idempotent in GLC for all χ ∈ N , and µ(N, 1) is the
singleton µ.

Remarks. 1. If L is a minimal left ideal in KLC so that L = N × L is
a minimal left ideal in GLC , we have µL = (χ,L), a maximal subgroup of
L = N × L that is not dense in L.

2. This example raises a general question about the maximal subgroups
G′ of a minimal left ideal L in GLC . Is it possible for G′ to be trivial, that
is, for L to consist entirely of idempotents?

Part (iii) of the next proposition shows that in the setting of Proposi-
tion 12, writing N = HK as a semidirect product N1 × K1 is very much
the same as the decomposition of C-valued bounded functions on a group
in [5] (Theorem 3–4). For this we identify N = HK with Ñ = C(βK,H)
and need the definition of a minimal function f ∈ HK . Such a function is
characterized by the existence of a minimal idempotent ξ ∈ βK for which
f(·) = f̃(· ξ), where f̃ is the continuous extension of f to βK. (See [1], §4.8,
for more details.)

Proposition 14. As in Proposition 12, let G = N × K = HK × K,
and identify N = HK with Ñ = C(βK,H). Suppose that µ is a minimal
idempotent in GLC , so µ = (f, ξ) ∈ L = N×L ⊂ N×βK ∼= G, where ξ is an
idempotent in a minimal left ideal L ⊂ βK and f ∈ N with ψξ(f) = e ∈ N .
As in Theorem 9, let N1 = ψ−1µ (e) and K1 = {s ∈ N | sµ = µsµ}.

(i) The subgroups N1 and K1 of N are not closed.

(ii) We have N1 = {f ∈ N | f̃(ν) = e ∈ H for all ν ∈ L}, and for
any other minimal idempotent µ′ = (f′, ξ′) ∈ L = N × L, the corresponding
subgroup N ′1 coincides with N1.

(iii) ψξ(N) = {f̃(· ξ) | f ∈ N} is a maximal subgroup of H-valued
minimal functions on K, and ψξ(N) 6= ψξ′(N) if ξ and ξ′ are different
minimal idempotents in L; also, K1 = fψξ(N)f−1.

P r o o f. (i) N1 contains {f ∈ N | limt→∞ f(t) = e ∈ H}, which is dense
in N , and Proposition 12(iii) says that µN = µNµ is dense in Nµ, hence
also K1 = {s ∈ N | sµ = µNµ} is dense in N .

(ii) Observing that e denotes here first the identity of N , then that of K,
we have

N1 = ψ−1µ (e) = {f ∈ N | (f, ξ)(f, e) = (fψξ(f), ξ) = (f, ξ) = µ}

= {f ∈ N | ψξ(f) = e ∈ N} = {f ∈ N | f̃( · ξ) = e ∈ N}

= {f ∈ N | f̃(ν) = e ∈ H for all ν ∈ L}
(since (Kξ)− = L). The last claim of (ii) follows from this.
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(iii) Note first that ψξ(N) = {f̃(· ξ) | f ∈ N} consists of minimal H-
valued functions on K, and indeed is a maximal subgroup in N of such
functions.

To see that ψξ(N) 6= ψξ′(N) if ξ 6= ξ′ are minimal idempotents in L, take
an F ∈ C(L,H) with F (ξ) 6= F (ξ′) and define f ∈ N by f(t) = F (tξ); then

f ∈ ψξ(N) = {f̃1(· ξ) | f1 ∈ N} and f 6∈ ψξ′(N), since if f = F (· ξ) = f̃2(· ξ′)
for some f2 ∈ N , then F (νξ) = f̃2(νξ′) for all ν ∈ βK, so F (ξ) = F (eξ) =

f̃2(eξ′) = f̃2(ξ′ξ′) = F (ξ′ξ) = F (ξ′), which is a contradiction.
To establish the last claim, note that an f ∈ K1 must satisfy

(f, e)µ = (f, e)(f, ξ) = (f f, ξ) = µ(f, e) = (f, ξ)(f, e) = (fψξ(f), ξ),

i.e., f f = fψξ(f). Thus K1 = {f ∈ N | f = fψξ(f)f−1} = fψξ(N)f−1.

Notes 1. If we consider G = ZZ
2 × Z and want to write N = ZZ

2 as
N1 × K1, there are 2c choices for N1, since βZ has 2c minimal left ideals
L = βKξ ([1], 4.12.6). For each fixed choice of L, and so of N1, there are
2c choices for K1 = ψξ(N), since βZ also has 2c minimal right ideals, i.e.,
L contains 2c minimal idempotents ξ. Suppose that Z2 is replaced with a
non-abelian group such as the symmetric group S3, so that the functions
f ∈ N1 will have a role to play in determining the K1’s (Proposition 14(iii)).
Thus we are considering SZ

3 × Z, and for fixed choices of N1 = ker ε = {f ∈
N | ψξ(f) = e ∈ N} and maximal subgroup ψξ(N) of minimal functions,
the subgroup N1 must be very large; for example, it contains

{f ∈ N = SZ
3 | lim

n→∞
f(n) = e ∈ S3}

if ξ is at∞. In such a case, there is a plethora of K1’s of the form fψξ(N)f−1

corresponding to the various f’s inN1; often these subgroups fψξ(N)f−1 ⊂ N
do not consist of minimal functions.

2. In the general case G = HK × K, let us consider what happens if
we work with another minimal left ideal L′ ⊂ βK, L′ 6= L. Then we get
the same maximal subgroups in N of minimal functions on K that we got
from L. For let ξ′ ∈ L′ be the minimal idempotent that is in the same
minimal right ideal as the minimal idempotent ξ ∈ L, so that ξξ′ = ξ′ and

ξ′ξ = ξ; suppose also that f = f̃(· ξ) ∈ ψξ(N). Then f̃(ν) = f̃(νξ) for all

ν ∈ βK, and in particular for ν = tξ′, so that f̃(tξ′) = f̃(tξ′ξ) = f̃(tξ) =

f(t). Thus ψξ(N) = ψξ′(N) = {f̃(· ξ′) | f ∈ N}, which implies that the
subgroup K ′1 from ξ′ is equal to K1 (from ξ) if H is abelian. However, as
has been indicated, the subgroups N ′1 and N1 can be quite different even
for abelian H; if H is not abelian, then a function f′ ∈ N ′1 can give a
K ′1 = f′ψξ′(N)f′−1 that is quite different from any K1 coming from L.

3. The situation is very simple for Example 13, namely G = N ×K =
RAP×R+; for every minimal idempotent µ ∈ GLC , we have N1 = ker ε = N ,
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and K1 = {e}. On the other hand, when the action of K on N is distal, we
always have N1 = {e} and K1 = N .
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Added in proof. With regard to the sentence before Proposition 11, we now have
an example of a non-central extension N × K with N compact. It is modified from a
discrete 6-dimensional nilpotent group.


