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ON THE ISOPERIMETRY OF GRAPHS WITH MANY ENDS

BY

CHRISTOPHE P I T T E T (TOULOUSE)

Let X be a connected graph with uniformly bounded degree. We show
that if there is a radius r such that, by removing from X any ball of ra-
dius r, we get at least three unbounded connected components, then X
satisfies a strong isoperimetric inequality. In particular, the non-reduced l2-
cohomology of X coincides with the reduced l2-cohomology of X and is of
uncountable dimension. (Those facts are well known when X is the Cayley
graph of a finitely generated group with infinitely many ends.)

1. Introduction. We consider graphs X with deg(X) < ∞ (that is,
there is a constant D such that for any vertex v of X we have deg(v) < D).

Theorem 1.1. Let X be a connected graph with deg(X) < ∞. If there
is a constant r > 0 such that for each x ∈ X the complement of the ball of
radius r with center x has at least three unbounded connected components,
then there is an ε > 0 such that for all finite sets Ω of vertices of X,

|∂Ω|/|Ω| ≥ ε.

(See §2 below for the definition of the metric on X and for the definition
of the boundary ∂Ω.) Notice that a Cayley graph X of a finitely generated
group with infinitely many ends satisfies the hypothesis of the theorem. Be-
fore giving the proof, we mention that the idea of the proof comes from
differential geometry. If x0 is a base point in a complete Riemannian mani-
fold X and if

Z(x) = − grad(d(x0, x))

is well defined (this is the case if for example X is simply connected and of
non-positive sectional curvature), and if this vector field satisfies

div(Z(x)) ≤ −δ2 < 0

for all x∈X, then the divergence version of the Stokes formula shows that X
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satisfies a strong isoperimetric inequality (see [Gr], 05C, for a more general
situation; see also [Av]).

If x0 is a base point of a graph X, we define (on a quasi-isometric subset
of X) a map Z which moves points in the direction of x0 by a uniformly
bounded distance (see the proof of Lemma 5.1). The key point is then
to show that a hypothesis on the number of ends of X implies that many
points of X have at least two preimages (that is, if x is such a point then,
by definition of the discrete divergence, div(Z(x)) ≤ −1). See the proof of
Lemma 5.1. The existence on X of such a map implies a strong isoperimetric
inequality (see Proposition 2.1). The reverse implication also holds and is
an application of the marriage lemma of P. Hall (we give a self-contained
proof of this implication in the last section).

The application to l2-cohomology mentioned in the abstract is proved as
follows. One shows that the space of locally constant functions (modulo the
constants) on the (totally disconnected and compact) space of ends of X
injects into the l2-cohomology group H1

(2)(X) (see [ABCKT], Ch. 4, §2.4,

p. 50). Then, using the strong isoperimetric inequality of Theorem 1.1, one
shows that the (bounded) coboundary operator

d : C0
(2)(X)→ C1

(2)(X)

satisfies, for some ε > 0,

‖df‖2 ≥ ε‖f‖2
for all functions f with compact support (see [Ge] or [Gr], 8.C, “Examples
and applications”, p. 248) and as d is continuous, the inequality also holds on
the whole Hilbert space C0

(2)(X). This implies that the image of d is closed,
i.e. that the reduced and non-reduced cohomologies coincide. The above
argument provides a direct way (that is, without using Stalling’s structure
theorem on groups with many ends) to prove that the l2-cohomology of
groups with infinitely many ends is non-zero in dimension 1. This fact is
used in the proof of the theorem of Gromov saying that the fundamental
group of a closed Kähler manifold has at most one end (see [Gr89] and
[ABCKT], Ch. 4).

When the graph X has homogeneity properties (for example if X is a
Cayley graph), see [SW] and [Du], [St]. The motivation for writing this paper
came from a discussion with A. Valette. I’m very grateful to him. Thanks
are also due to R. Brooks for mentioning the marriage lemma.

2. A criterion for strong isoperimetry. Let X be a connected graph
with deg(X) <∞. We consider the path metric d on X in which each edge
has length one. We denote by V the set of vertices of X. If Ω ⊂ V is a
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subset, its boundary in X is the set

∂Ω = {u ∈ Ω : ∃v ∈ V \Ω : d(u, v) = 1}.
We say that X has the property of strong isoperimetry if there exists ε > 0
such that for all finite non-empty subsets Ω in V ,

|∂Ω|/|Ω| ≥ ε.

Proposition 2.1 (cf. [GLP], 6.17).With the notations as above, if there
is a map Z : V → V and a constant C > 0 such that

d(Z(v), v) ≤ C, |Z−1(v)| ≥ 2, ∀v ∈ V,
then X has the property of strong isoperimetry.

P r o o f. We first assume that C=1. Let Ω⊂V . We define Ω0 = Ω \∂Ω.
By hypothesis the distance between a point and its image under the map Z
is at most one. Hence

Z−1(Ω0) ⊂ Ω.
According to the second condition imposed on Z, we have

2|Ω0| ≤ |Z−1(Ω0)|.
Hence |Ω0| ≤ 1

2 |Ω| so that |∂Ω| ≥ 1
2 |Ω|.

To handle the cases when C ≥ 1, let X ′ be the graph obtained from X
by adding edges between vertices at mutual distance less than or equal to
C. We consider on X ′ the path metric in which each edge has length one.
On this new graph X ′, the map Z satisfies the hypothesis of the proposition
with C = 1. Moreover, there is a constant K > 0 (depending on C and on
the degree of X) such that, for any finite subset Ω of V ,

K|∂Ω| ≥ |∂′Ω|.
Hence ε = 1/(2K) is as required.

3. Example. The following example illustrates the above proposition
and shows directly that a finitely generated group containing a free subgroup
on two generators has the property of strong isoperimetry.

Let F be the free group on two letters a and b. Let w be a non-empty
reduced word on the alphabet S = {a, a−1, b, b−1} (that is, a standard rep-
resentative for an element of F ). We denote by f(w) the word obtained by
forgetting the last letter of w. With respect to the word metric on F induced
by S, the map Z : F → F defined by Z(e) = e and Z(w) = f(w) for w 6= e
moves points by a distance of one at the most. The set of preimages of any
point contains at least three points.

More generally, let Γ be a finitely generated group containing an isomor-
phic copy of F . Let S be a generating set of Γ containing a and b. Let T be



310 C. PITTET

a left-transversal of F in Γ . That is,

Γ =
⋃
t∈T

tF

and the union is disjoint. We can extend the map Z to Γ as follows:

Z(t) = t, Z(tw) = tf(w).

With respect to the word metric on Γ induced by S, the map Z moves
points by a distance of one at the most. The set of preimages of any point
contains at least three points. Hence the above proposition shows that Γ
has the property of strong isoperimetry.

4. The quasi-isometry relation

Definition 4.1. Two metric spaces X,Y are quasi-isometric if there
exist a constant λ > 1 and maps f : X → Y and g : Y → X such that:

1. d(f(x), f(x′)) ≤ λd(x, x′) + λ, ∀x, x′ ∈ X.
2. d(g(y), g(y′)) ≤ λd(y, y′) + λ, ∀y, y′ ∈ Y .
3. d(g ◦ f(x), x) ≤ λ, ∀x ∈ X.
4. d(f ◦ g(y), y) ≤ λ, ∀y ∈ Y .

The map f is a quasi-isometry , g (which is also a quasi-isometry) is a
quasi-inverse of f , and λ is a quasi-isometry constant for f .

Let X be a metric space and let R > 0. Let Ω ⊂ X. Let

NR(Ω) = {x ∈ X : ∃x′ ∈ Ω : d(x, x′) ≤ R}
be the R-neighborhood of Ω. If x ∈ X we denote by d(x,Ω) = infy∈Ω d(x, y)
the distance between x and Ω.

Proposition 4.1 (cf. [Ka], Lemma 4.2). Let X and Y be two connected
graphs with deg(X) < ∞ and deg(Y ) < ∞. If X is quasi-isometric to Y
then X has the property of strong isoperimetry if and only if Y does.

P r o o f. Let V be the set of vertices of X with metric induced by inclu-
sion. Let W be the set of vertices of Y with metric induced by inclusion.
Let f : V → W be a quasi-isometry. The proposition is an immediate con-
sequence of the following statement (extracted from [Pi]).

There are constants C > 1 and R > 0 such that for all finite subsets
Ω ⊂ V ,

|∂NR(f(Ω))| ≤ C|∂Ω|, |f(Ω)| ≤ |Ω| ≤ C|f(Ω)|.
We prove the first inequality. Let g be a quasi-inverse of f and let λ be

a constant of quasi-isometry. We can assume λ ∈ N. We choose R = λ+ 1.
We want to define a map

h : ∂NR(f(Ω))→ ∂Ω
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which is “almost injective”. First, we notice that if y ∈ ∂NR(f(Ω)) then
g(y) 6∈ Ω. This is because if g(y) ∈ Ω then

d(y, f(Ω)) ≤ d(y, f ◦ g(y)) ≤ λ < R

and this contradicts y ∈ ∂NR(f(Ω)). We choose x ∈ Ω such that

d(g(y), x) = d(g(y), Ω).

As g(y) 6∈ Ω it follows that x ∈ ∂Ω. We put h(y) = x.
Now we check that there is a constant C > 1 such that, if x ∈ ∂Ω then

|h−1(x)| ≤ C. Let y ∈ h−1(x). Then

d(g(y), x) = d(g(y), Ω) ≤ λd(f ◦ g(y), f(Ω)) + λ

≤ λ(λ+ d(y, f(Ω))) + λ ≤ λ2 + λR+ λ = M.

Hence

d(y, f(x)) ≤ d(f ◦ g(y), f(x)) + λ ≤ λM + 2λ.

We choose

C = deg(Y )λM+2λ.

This proves the first inequality of the above statement. The others are ob-
vious.

5. Proof of the theorem. Let X be a metric space. Let m > 0. We
consider subsets U ofX with the following property (cf. [Gr], 1A): if u, v ∈ U
and if u 6= v then

d(u, v) ≥ m.
If V is such a subset which is maximal with respect to inclusion, we also get

∀x ∈ X, ∃v ∈ V : d(x, v) < m.

Such a subset is called maximal m-separated .

Lemma 5.1. Let X be a connected graph with path metric in which each
edge has length one. Assume that there is an r > 0 such that for every x
in X the set X \Br(x) has at least three unbounded connected components.
Let m ∈ N be such that m > 4r + 2. Let V be a subset of the vertices of
X which is maximal m-separated. Then there exists a map Z : V → V with
the following properties:

d(Z(v), v) ≤ 2m+ 1, |Z−1(v)| ≥ 2, ∀v ∈ V.
P r o o f. (The following definition of Z was suggested by G. Levitt.) We

choose a base point v0 ∈ V . Let v ∈ V . If d(v0, v) ≤ m, we put Z(v)=v0. If
d(v0, v) > m, we choose a geodesic segment gv of X between v and v0. Let
x ∈ gv be the point of gv at a distance of m+ 1 from v. Let w ∈ V be such
that

d(x,w) = d(x, V ).
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We define Z(v) = w. If v ∈ V and if d(v0, v) > m, we have

d(v, Z(v)) ≤ d(v, x) + d(x,w) < m+ 1 +m

by maximality of V . We want to show that

|Z−1(u)| ≥ 2, ∀u ∈ V.
Claim. Let u ∈ V . Let C be an unbounded connected component of

X \Br(u) such that v0 6∈ C. Let v ∈ C ∩ V be such that

d(v0, v) = d(v0, C ∩ V ).

(Such a v exists because C is unbounded and V is maximal.) Then Z(v) = u.

The claim implies the desired property of Z because by hypothesis X \
Br(u) has at least three unbounded components.

We remark that if A and B are two distinct connected components of
X \Br(u) and if a ∈ A ∩ V and b ∈ B ∩ V then

d(a, b) ≥ d(a, u)− r + d(b, u)− r ≥ 2m− 2r > m

(the first inequality above holds because a geodesic path starting from a
and ending at b must meet Br(u)). To prove the above claim in the case
d(v, v0) = m we have to show that v0 = u. The point v0 cannot be in a
connected component of X \Br(u): it is not in C by hypothesis, moreover,
according to the above inequality and as we assume d(v, v0) = m, it is not
in any other component. We conclude that v0 ∈ Br(u). But r < m and V
is m-separated, which implies that u = v0.

From now on, we assume that d(v, v0) ≥ m + 1. We denote by x the
point on the chosen geodesic segment gv between v and v0 at distance m+1
from v. To prove the above claim we need two intermediate steps.

Step 1. Either x ∈ C or d(x, u) ≤ 2r + 1 (or both).

To prove it, we define l = d(x,Br(u)). If x ∈ X \ (C ∪Br(u)) we have

m+ 1 = d(x, v) ≥ l +m− r
(the above inequality is clear: a geodesic path starting from x and ending
at v must meet Br(u)). Hence r + 1 ≥ l. This shows that

d(x, u) = l + r ≤ 2r + 1

and proves Step 1.

Step 2. Let D be a component of X \Br(u) other than C. If v′ ∈ V ∩D
then

d(x, u) < d(x, v′).

To prove it, we first assume that x ∈ C. We have

d(x, v′) ≥ d(u, x)− r + d(u, v′)− r ≥ d(u, x) +m− 2r > d(u, x).



ISOPERIMETRY OF GRAPHS 313

If x 6∈ C, we can assume, thanks to Step 1, that d(x, u) ≤ 2r + 1. But

d(x, v′) ≥ d(u, v′)− d(u, x) ≥ m− (2r + 1) > 2r + 1

because m > 4r + 2. This proves Step 2.

Let v be such that d(v0, v) > m. Let w = Z(v). The point w cannot be
in C because we have

d(v0, w) ≤ m+ d(v0, x) < m+ 1 + d(v0, x) = d(v0, v)

and v realizes the distance between v0 and the set V ∩ C. Thanks to the
minimality condition

d(x, V ) = d(x,w)

on w, Step 2 (applied with v′ = w) shows that w cannot be in any other
component of X \Br(u). Hence w ∈ Br(u). That is, w = u.

To conclude the proof of the theorem, we consider the graph X ′ obtained
from the metric space V as follows. The set of vertices of X ′ is V . The edges
of X ′ are the couples of points u, v ∈ V such that dX(u, v) ≤ 2m + 1.
Notice that deg(X ′) <∞. As V is a maximal m-separated subset of X, the
graph X ′ is connected and quasi-isometric to X (the choice of the constant
2m + 1 allows associating with each path of X between two points u, v of
V a path in X ′ of the same length or shorter, joining u to v). According to
Lemma 5.1 and Proposition 2.1, the graph X ′ has the strong isoperimetry
property. Proposition 4.1 implies that so does X.

6. The marriage lemma. The aim of this section, which is indepen-
dent of the preceding ones, is to give a self-contained proof of Proposition
6.2 which is the reciprocal of Proposition 2.1. See [CGH] for equivalent con-
ditions in terms of pseudogroups and paradoxical decompositions. Lemma
6.1 below is the version we need of the marriage lemma of P. Hall (cf. [Kri]).

Recall that in a partially ordered set (poset), a subset which is totally
ordered is called a chain. An antichain in a poset P is a subset A ⊂ P such
that no two elements are comparable, i.e. if a, b ∈ A and a ≤ b then a = b.

Proposition 6.1 (Dilworth). Let P be a finite poset. Let d be the max-
imal cardinality of an antichain of P . Then P is a disjoint union of d
chains.

P r o o f. If |P | = 1 this is true. Assume this is true for all posets of
cardinality less than |P |. We consider two cases.

Case 1: There is an antichain A ⊂ P of maximal cardinality such that
both sets

P+ = {x ∈ P : ∃a ∈ A : x ≥ a},
P− = {x ∈ P : ∃a ∈ A : x ≤ a}

strictly contain A.
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Notice that P+∩P−=A because A is an antichain and that P+∪ P−=P
because A is an antichain of maximal cardinality. The antichainA is a fortiori
of maximal cardinality, say d, in the poset P+. Hence by the induction hy-
pothesis we can decompose P+ into disjoints chains T1, . . . , Td. The same is
true for A ⊂ P− and we can decompose P− into disjoints chains B1, . . . , Bd.
Each intersection A ∩ Ti is a singleton. The same is true for A ∩ Bi. After
a permutation of the indices of the Bi we get d chains T1 ∪B1, . . . , Td ∪Bd
which partition P .

Case 2: Any antichain A ⊂ P of maximal cardinality either contains
only maximal elements or contains only minimal elements.

This implies that an antichain of maximal cardinality coincides either
with the set µ of minimal elements of P or with the set M of maximal
elements in P . Let M = max{|µ|, |M|}. Let m0 ∈ µ and M0 ∈ M be such
that m0 ≤ M0 (the case m0 = M0 is not excluded). Let A be an antichain
of maximal cardinality in the poset P \ {m0,M0}. Since either µ \ {m0} or
M\ {M0} has cardinality M − 1, we deduce that |A| ≥M − 1.

We claim that |A| ≤ M − 1. Otherwise A would be an antichain of
maximal cardinality in P , hence A would coincide with µ or with M. But
this is absurd since neither m0 nor M0 belongs to A. By the induction
hypothesis P \ {m0,M0} is a disjoint union of chains C1, . . . , CM−1. Hence
P is the disjoint union of the chains C1, . . . , CM−1, {m0,M0}.

Let X(A,B) be a bipartite graph, that is, the set of vertices decomposes
as V (X) = AtB and the edges satisfy E(X) ⊂ A×B. If Ω ⊂ A we define

R(Ω) = {b ∈ B : ∃a ∈ Ω : (a, b) ∈ E(X)}.
We will use the notation RX(Ω) when specifying the graph is needed.

Lemma 6.1 (The marriage lemma of P. Hall). Let X(A,B) be a finite
bipartite graph. Let n ∈ N. The following conditions are equivalent.

1. |R(Ω)| ≥ n|Ω|, ∀Ω ⊂ A.
2. There exists a set of injection(s) is : A → B, s = 1, . . . , n, with

(a, is(a)) ∈ E(X) for all a ∈ A and 1 ≤ s ≤ n and with is(A) ∩ it(A) = ∅
if s 6= t.

P r o o f. Notice that the second condition implies the first one. It is
enough to prove the lemma in the special case n = 1. The general case
is obtained by induction on n as follows. Assume the lemma is true for 1
and n. We want to show that it is true for n+ 1. By hypothesis

|R(Ω)| ≥ (n+ 1)|Ω|, ∀Ω ⊂ A,
in particular |R(Ω)| ≥ |Ω|. The induction hypothesis implies that there
exists an injection i : A → B with (a, i(a)) ∈ E(X). Let Y be the graph
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obtained from X by removing the set of vertices i(A) and all edges with a
vertex in i(A). The graph Y = Y (A,B \ i(B)) is bipartite. If Ω is a subset
of A then

RX(Ω) = RY (Ω) t i(A),

hence |RY (Ω)| ≥ n|Ω|. The induction hypothesis applied to Y implies the
existence of n injections i1, . . . , in from A into B \ i(A). Thus the n + 1
injections i, i1, . . . , in from A into B have the required properties.

The bipartite graph X(A,B) defines a partial order on V (X): a < b if
and only if (a, b) ∈ E(X). Let us prove that B is an antichain of maximal
cardinality. Let U ⊂ V (X) be an antichain. We have

|U | = |U ∩A|+ |U ∩B|.

By hypothesis |R(U ∩A)| ≥ |U ∩A|. Hence

|U | ≤ |R(U ∩A)|+ |U ∩B|.

As U is an antichain, the sets R(U ∩A) and U ∩B are two disjoint subsets
of B. This proves that |U | ≤ |B|. By Proposition 6.1 the set V (X) can be
partitioned into |B| chains. Let a ∈ A. Let b be the unique element of B
contained in the same chain as a. We define i : A→ B by i(a) = b.

Lemma 6.2. Let A and B be countable sets and let X(A,B) be a bipartite
graph with V (X) = A t B and E(X) ⊂ A × B. Assume that the degree
of each vertex of X is finite. Assume that R(A) = B and |R(Ω)| ≥ 2|Ω|
for all finite subsets Ω ⊂ A. Then there exists a map f : B → A such that
(f(b), b) ∈ E(X) for all b ∈ B and |f−1(a)| ≥ 2 for all a ∈ A.

P r o o f. Let A = {a1, a2, . . .}. Let An = {a1, . . . , an} and Bn = R(An).
Let Xn be the finite bipartite graph whose vertices are V (Xn) = An t Bn
and whose edges are E(Xn) = (An×Bn)∩E(X). By hypothesis, if Ω ⊂ An
then R(Ω) ⊂ Bn and |R(Ω)| ≥ 2|Ω|. By Lemma 6.1, for each n ∈ N
there exist two injections in, jn : An → Bn such that (a, in(a)) ∈ E(X) and
(a, jn(a)) ∈ E(X) for all a ∈ An and such that in(An) ∩ jn(An) = ∅.

As B contains the disjoint union in(An) t jn(An) we can define an ap-
plication fn : B → A to be the inverse of in on in(An) and the inverse of jn
on jn(An). On the complementary set, we choose for each b ∈ B an image
point a ∈ A such that (a, b) ∈ E(X). By construction, |f−1n (a)| ≥ 2 for all
a ∈ An. As the vertices of B have finite degree and as Bn is finite, it follows
that for each n ∈ N the family of maps

{fk|Bn
}k∈N

is finite. Hence we can choose for each n ∈ N an infinite subset In ⊂ N such
that if k, l ∈ In then fk|Bn = fl|Bn . Moreover, we can choose the In such
that In ⊂ Im if n ≥ m.
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We define the required map f : B → A as follows. Let b ∈ B. Choose
n ∈ N such that b ∈ Bn. Choose k ∈ In and define f(b) = fk(b). From
the properties of the sets In the map f is well defined and does not de-
pend on the choices of n and k ∈ In. Notice that (f(b), b) ∈ E(X) for all
b ∈ B.

Let a ∈ A. We now check that |f−1(a)| ≥ 2. Let n ∈ N with a ∈ An.
Let k ∈ In be large enough so that An ⊂ Ak. As |f−1k (x)| ≥ 2 for all x ∈ Ak,
let b 6= b′ be two points in Bk such that fk(b) = fk(b′) = a. Notice that
R({a}) ⊂ R(An) = Bn, hence b, b′ ∈ Bn and as k ∈ In by definition of f we
have f(b) = fk(b) = a and f(b′) = fk(b′) = a.

Before we prove the reciprocal of Proposition 2.1 we recall equivalent
formulations of the strong isoperimetric inequality for a connected graph X
with uniformly bounded degree. We denote the set of vertices of X by V
and in what follows we denote by

Nk(Ω) = {x ∈ V : d(x,Ω) ≤ k}

the k-neighborhood of Ω in the discrete metric space V (with metric induced
by the path metric of X). The k-boundary of Ω is

∂kΩ = Nk(Ω) \Ω.

We say that X satisfies a strong isoperimetric inequality if

∃k ≥ 1, ∃ε > 0, ∀Ω ⊂ V, |∂kΩ| ≥ ε|Ω|.

Notice that as we assume that X is connected with uniformly bounded
degree, the existence of a k ≥ 1 in the above condition implies that the
condition holds for all k ≥ 1. An obviously equivalent formulation of the
strong isoperimetric inequality is

∃k ≥ 1, ∃ε > 0, ∀Ω ⊂ V : |Nk(Ω)| ≥ (1 + ε)|Ω|.

Iterating the operation of taking the k-neighborhood, we get

|Nnk(Ω)| ≥ (1 + ε)n|Ω|.

This shows that if a connected graph with uniformly bounded degree satisfies
a strong isoperimetric inequality then for any m > 0 there exists k large
enough such that

|Nk(Ω)| ≥ m|Ω|
for all Ω ⊂ V . In the following we will need m = 2.

Proposition 6.2. Let X be a connected graph with uniformly bounded
degree. LetV be the set of vertices of X. If X satisfies a strong isoperimetric
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inequality then there exists a map Z : V → V and an integer k ∈ N such
that

d(Z(v), v) ≤ k, |Z−1(v)| ≥ 2, ∀v ∈ V.
P r o o f. According to the above discussion we can choose k ∈ N large

enough such that for all Ω ⊂ V ,

|Nk(Ω)| ≥ 2|Ω|.

Let A and B be two copies of the set V of vertices. Consider the bipartite
graph Y (A,B) whose vertices are V (Y ) = A tB and whose edges are

E(Y ) = {(x, y) ∈ A×B : dX(x, y) ≤ k}.

The above inequality says that |R(Ω)| ≥ 2|Ω| for all Ω ⊂ A. Lemma 6.2
implies the existence of a map Z : V → V with the required properties.
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