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BOUNDS FOR THE SINGULAR VALUES

OF SMOOTH KERNELS

BY

CH ING -HUA CHANG AND CHUNG -WE I HA (HSIN-CHU)

Let k ∈ L2[0, 1]2. The Hilbert–Schmidt operator K with kernel k is
defined on the Hilbert space L2[0, 1] by

Kf(x) =

1\
0

k(x, y)f(y) dy.

We denote by {sn(K)} the sequence of singular values of K, which are the
positive eigenvalues of the positive square root of K∗K. As usual {sn(K)}
is arranged in the decreasing order and counted according to multiplicities.
As extensions of some classical results of Fredholm [3] and Weyl [7] when
K is Hermitian, the asymptotic estimates of {sn(K)} have been obtained
in Blyumin–Kotlyar [1], Oehring [5], and Weidmann [6] for the kernel k sat-
isfying some smoothness assumptions analogous to those from the classical
Fourier series.

The purpose of this paper is to give upper bounds for sn(K) in terms of
n, which seem more desirable, and improve some of the results cited above.
If k(x, y) ≡ k(x − y) for some k ∈ L2[0, 1] which is periodically extended,
then {sn(K)} consists of the moduli of the Fourier coefficients of k. Thus
these bounds imply results concerning the absolute convergence of Fourier
series under comparable conditions (see Zygmund [8, pp. 240–242]). Our
results are based on an interesting inequality of Fan [2], which makes the
proofs simple and straightforward.

We first recall that

(1)

∞
∑

n=1

s2n(K) =

1\
0

1\
0

|k(x, y)|2 dx dy.

Moreover, it follows from Fan [2, Theorem 1] (see also Gohberg–Krein [4, p.
47]) that for any orthonormal family {φj : 1 ≤ j ≤ n} in L2[0, 1],
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(2)

n
∑

j=1

s2j (K) ≥
n
∑

j=1

1\
0

|Kφj(x)|2 dx.

Lemma 1. For any integer n ≥ 1,

(3) s22n(K) ≤ 1

2

n
∑

j=1

∆j(k;n),

where for 1 ≤ j ≤ n, Ij = [(j − 1)/n, j/n] and

∆j(k;n) =
\
Ij

\
Ij

[

1\
0

|k(z, x) − k(z, y)|2 dz
]

dx dy.

P r o o f. For 1 ≤ j ≤ n we define

φj(x) =

{√
n if x ∈ Ij ,

0 otherwise.

Clearly {φj : 1 ≤ j ≤ n} is orthonormal. Moreover,

1\
0

|Kφj(x)|2 dx = n

1\
0

∣

∣

∣

\
Ij

k(x, y) dy
∣

∣

∣

2

dx

= n

1\
0

( \
Ij

k(z, x) dx
)( \

Ij

k(z, y) dy
)

dz

= n
\
Ij

\
Ij

[

1\
0

k(z, x)k(z, y) dz
]

dx dy.

We write
1\
0

1\
0

|k(x, y)|2 dx dy =
n

2

n
∑

j=1

\
Ij

\
Ij

[

1\
0

(|k(z, x)|2 + |k(z, y)|2) dz
]

dx dy.

By (1), (2),

∞
∑

j=n+1

s2j(K) ≤
1\
0

1\
0

|k(x, y)|2 dx dy −
n
∑

j=1

1\
0

|Kφj(x)|2 dx

=
n

2

n
∑

j=1

\
Ij

\
Ij

[

1\
0

|k(z, x) − k(z, y)|2 dz
]

dx dy,

from which (3) follows.

As the inequality of Fan on which the proof of Lemma 1 is based is valid
for any compact operator on a Hilbert space, (3) can be easily generalized to
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the higher dimensional case in which k ∈ L2(D2) and D ⊂ R
d is a bounded

domain, d ≥ 1.

We shall keep the notation of Lemma 1 throughout the rest of this paper.
Moreover, we set k(0) ≡ k and denote the rth order partial derivative of k
with respect to y, if it exists, by

k(r)(x, y) ≡ ∂rk

∂yr
(x, y).

For kernels with the partial derivatives, Lemma 1 can be extended to the
following

Lemma 2. If m ≥ 1, k(r) is absolutely continuous in y for almost all

x ∈ [0, 1] for 0 ≤ r ≤ m − 1, and k(m) ∈ L2[0, 1]2, then for any integer

n ≥ 1,

(4) s22n+m(K) ≤ 2

n2m(m− 1)!2

n
∑

j=1

∆j(k
(m);n).

P r o o f. We choose a point cj ∈ Ij for each 1 ≤ j ≤ n such that the
second inequality in (6) below holds, and define

k1(x, y) =

{

∑m
r=1 k

(r)(x, cj)(y − cj)
r/r! if x ∈ [0, 1], y ∈ Ij ,

0 otherwise.

Let h(x, y) = k(x, y) − k1(x, y). Since h ∈ L2[0, 1]2 and differs from k by a
degenerate kernel of rank ≤ m, it follows that s2n+m(K) ≤ s2n(H) (see [4,
p. 29]). We define k0(x, y) = k1(x, y) + k(x, cj) so that

(5) |h(z, x) − h(z, y)| ≤ |k(z, x) − k0(z, x)| + |k(z, y)− k0(z, y)|.
For a fixed 1 ≤ j ≤ n, if x ∈ Ij , then using the Taylor formula with the
Cauchy remainder we have

|k(z, x) − k0(z, x)| ≤
1

nm−1(m− 1)!

\
Ij

|k(m)(z, t) − k(m)(z, cj)| dt

for z ∈ [0, 1] and so by Hölder inequality and the choice of the point cj ∈ Ij ,

(6)

1\
0

|k(z, x) − k0(z, x)|2 dz

≤ 1

n2m−1(m− 1)!2

1\
0

\
Ij

|k(m)(z, t) − k(m)(z, cj)|2 dt dz

≤ 1

n2m−2(m− 1)!2

\
Ij

\
Ij

[

1\
0

|k(m)(z, t)− k(m)(z, y)|2 dz
]

dt dy.
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Hence\
Ij

\
Ij

[

1\
0

|k(z, x) − k0(z, x)|2 dz
]

dx dy ≤ 1

n2m(m− 1)!2
∆(k(m);n).

We also have a similar inequality for the second term on the right hand side
of (5). Thus (4) follows from (3).

In the following we shall assume that either m = 0, or m ≥ 1 and k(r) is
absolutely continuous in y for almost all x ∈ [0, 1] for 0 ≤ r ≤ m− 1.

Theorem 1. If k(m) ∈ L2[0, 1]2 satisfies the integrated Lipschitz condi-

tion
1\
0

|k(m)(z, x) − k(m)(z, y)|2 dz ≤ C|x− y|2α

for 0 ≤ x, y ≤ 1, where C > 0, 0 < α ≤ 1, then for n ≥ 1,

(7) s2n+m(K) ≤
√
2C

(m− 1)!

1

nm+1/2+α
.

It is immediate that (7) follows from (4). We refer to an interesting result
in [6, Lemma 1], by which together with Lemmas 1, 2 further results along
these lines can be obtained.

Theorem 2. If k(m) satisfies the Lipschitz condition

|k(m)(z, x)− k(m)(z, y)| ≤ A(z)|x − y|α

for 0 ≤ x, y, z ≤ 1, where 0 < α ≤ 1, and for almost all z ∈ [0, 1], k(m)(z, y)
is of bounded variation in y with total variation B(z) on [0, 1] such that

C =
T1
0
A(z)B(z) dz < ∞, then for n ≥ 1,

(8) s2n+m(K) ≤
√
2C

(m− 1)!

1

nm+1+α/2
.

P r o o f. For 1 ≤ j ≤ n by definition\
Ij

\
Ij

|k(m)(z, x)− k(m)(z, y)|dx dy ≤ 1

n2
Bj(z)

for almost all z ∈ [0, 1], where Bj(z) denotes the total variation on Ij of
k(m)(z, y) as a function of y, and so

n
∑

j=1

∆j(k
(m);n) ≤ 1

n2+α

n
∑

j=1

1\
0

A(z)Bj(z) dz =
C

n2+α
,

from which (8) follows.

We refer to [1] for an asymptotic property of {sn(K)} under an assump-
tion similar to that of Theorem 2.
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Theorem 3. If k(m)(x, y) is absolutely continuous in y for almost all

x ∈ [0, 1] and

C =

1\
0

[

1\
0

|k(m+1)(x, y)|p dy
]2/p

dx < ∞,

where 1 ≤ p ≤ 2, then for n ≥ 1,

(9) s2n+m(K) ≤
√
2C

(m− 1)!

1

nm+2−1/p
.

P r o o f. For 1 ≤ j ≤ n,

∆j(k
(m);n) ≤ 1

n2

1\
0

[ \
Ij

|k(m+1)(z, t)| dt
]2

dz

≤ 1

n2+2/q

1\
0

[ \
Ij

|k(m+1)(z, t)|p dt
]2/p

dz,

where q = p/(p− 1). By assumption 2/p ≥ 1 and so

n
∑

j=1

∆j(k
(m);n) ≤ C

n2+2/q
,

from which (9) follows.

We refer to [5] for a related result for the case m = 0.
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