BOUNDS FOR THE SINGULAR VALUES
 OF SMOOTH KERNELS

BY
CHING-HUA CHANG and CHUNG-WEI HA (HSIN-CHU)

Let $k \in L^{2}[0,1]^{2}$. The Hilbert-Schmidt operator K with kernel k is defined on the Hilbert space $L^{2}[0,1]$ by

$$
K f(x)=\int_{0}^{1} k(x, y) f(y) d y
$$

We denote by $\left\{s_{n}(K)\right\}$ the sequence of singular values of K, which are the positive eigenvalues of the positive square root of $K^{*} K$. As usual $\left\{s_{n}(K)\right\}$ is arranged in the decreasing order and counted according to multiplicities. As extensions of some classical results of Fredholm [3] and Weyl [7] when K is Hermitian, the asymptotic estimates of $\left\{s_{n}(K)\right\}$ have been obtained in Blyumin-Kotlyar [1], Oehring [5], and Weidmann [6] for the kernel k satisfying some smoothness assumptions analogous to those from the classical Fourier series.

The purpose of this paper is to give upper bounds for $s_{n}(K)$ in terms of n, which seem more desirable, and improve some of the results cited above. If $k(x, y) \equiv k(x-y)$ for some $k \in L^{2}[0,1]$ which is periodically extended, then $\left\{s_{n}(K)\right\}$ consists of the moduli of the Fourier coefficients of k. Thus these bounds imply results concerning the absolute convergence of Fourier series under comparable conditions (see Zygmund [8, pp. 240-242]). Our results are based on an interesting inequality of Fan [2], which makes the proofs simple and straightforward.

We first recall that

$$
\begin{equation*}
\sum_{n=1}^{\infty} s_{n}^{2}(K)=\int_{0}^{1} \int_{0}^{1}|k(x, y)|^{2} d x d y \tag{1}
\end{equation*}
$$

Moreover, it follows from Fan [2, Theorem 1] (see also Gohberg-Krein [4, p. 47]) that for any orthonormal family $\left\{\phi_{j}: 1 \leq j \leq n\right\}$ in $L^{2}[0,1]$,

[^0]\[

$$
\begin{equation*}
\sum_{j=1}^{n} s_{j}^{2}(K) \geq \sum_{j=1}^{n} \int_{0}^{1}\left|K \phi_{j}(x)\right|^{2} d x \tag{2}
\end{equation*}
$$

\]

Lemma 1. For any integer $n \geq 1$,

$$
\begin{equation*}
s_{2 n}^{2}(K) \leq \frac{1}{2} \sum_{j=1}^{n} \Delta_{j}(k ; n), \tag{3}
\end{equation*}
$$

where for $1 \leq j \leq n, I_{j}=[(j-1) / n, j / n]$ and

$$
\Delta_{j}(k ; n)=\int_{I_{j}} \int_{I_{j}}\left[\int_{0}^{1}|k(z, x)-k(z, y)|^{2} d z\right] d x d y
$$

Proof. For $1 \leq j \leq n$ we define

$$
\phi_{j}(x)= \begin{cases}\sqrt{n} & \text { if } x \in I_{j} \\ 0 & \text { otherwise }\end{cases}
$$

Clearly $\left\{\phi_{j}: 1 \leq j \leq n\right\}$ is orthonormal. Moreover,

$$
\begin{aligned}
\int_{0}^{1}\left|K \phi_{j}(x)\right|^{2} d x & =n \int_{0}^{1}\left|\int_{I_{j}} k(x, y) d y\right|^{2} d x \\
& =n \int_{0}^{1}\left(\int_{I_{j}} \overline{k(z, x)} d x\right)\left(\int_{I_{j}} k(z, y) d y\right) d z \\
& =n \int_{I_{j}} \int_{I_{j}}\left[\int_{0}^{1} \overline{k(z, x)} k(z, y) d z\right] d x d y
\end{aligned}
$$

We write

$$
\int_{0}^{1} \int_{0}^{1}|k(x, y)|^{2} d x d y=\frac{n}{2} \sum_{j=1}^{n} \iint_{I_{j}} \int_{I_{j}}\left[\int_{0}^{1}\left(|k(z, x)|^{2}+|k(z, y)|^{2}\right) d z\right] d x d y .
$$

By (1), (2),

$$
\begin{aligned}
\sum_{j=n+1}^{\infty} s_{j}^{2}(K) & \leq \int_{0}^{1} \int_{0}^{1}|k(x, y)|^{2} d x d y-\sum_{j=1}^{n} \int_{0}^{1}\left|K \phi_{j}(x)\right|^{2} d x \\
& =\frac{n}{2} \sum_{j=1}^{n} \int_{I_{j} I_{j}}\left[\int_{0}^{1}|k(z, x)-k(z, y)|^{2} d z\right] d x d y
\end{aligned}
$$

from which (3) follows.
As the inequality of Fan on which the proof of Lemma 1 is based is valid for any compact operator on a Hilbert space, (3) can be easily generalized to
the higher dimensional case in which $k \in L^{2}\left(D^{2}\right)$ and $D \subset \mathbb{R}^{d}$ is a bounded domain, $d \geq 1$.

We shall keep the notation of Lemma 1 throughout the rest of this paper. Moreover, we set $k^{(0)} \equiv k$ and denote the r th order partial derivative of k with respect to y, if it exists, by

$$
k^{(r)}(x, y) \equiv \frac{\partial^{r} k}{\partial y^{r}}(x, y)
$$

For kernels with the partial derivatives, Lemma 1 can be extended to the following

LEMMA 2. If $m \geq 1, k^{(r)}$ is absolutely continuous in y for almost all $x \in[0,1]$ for $0 \leq r \leq m-1$, and $k^{(m)} \in L^{2}[0,1]^{2}$, then for any integer $n \geq 1$,

$$
\begin{equation*}
s_{2 n+m}^{2}(K) \leq \frac{2}{n^{2 m}(m-1)!^{2}} \sum_{j=1}^{n} \Delta_{j}\left(k^{(m)} ; n\right) \tag{4}
\end{equation*}
$$

Proof. We choose a point $c_{j} \in I_{j}$ for each $1 \leq j \leq n$ such that the second inequality in (6) below holds, and define

$$
k_{1}(x, y)= \begin{cases}\sum_{r=1}^{m} k^{(r)}\left(x, c_{j}\right)\left(y-c_{j}\right)^{r} / r! & \text { if } x \in[0,1], y \in I_{j} \\ 0 & \text { otherwise }\end{cases}
$$

Let $h(x, y)=k(x, y)-k_{1}(x, y)$. Since $h \in L^{2}[0,1]^{2}$ and differs from k by a degenerate kernel of rank $\leq m$, it follows that $s_{2 n+m}(K) \leq s_{2 n}(H)$ (see [4, p. 29]). We define $k_{0}(x, y)=k_{1}(x, y)+k\left(x, c_{j}\right)$ so that

$$
\begin{equation*}
|h(z, x)-h(z, y)| \leq\left|k(z, x)-k_{0}(z, x)\right|+\left|k(z, y)-k_{0}(z, y)\right| \tag{5}
\end{equation*}
$$

For a fixed $1 \leq j \leq n$, if $x \in I_{j}$, then using the Taylor formula with the Cauchy remainder we have

$$
\left|k(z, x)-k_{0}(z, x)\right| \leq \frac{1}{n^{m-1}(m-1)!} \int_{I_{j}}\left|k^{(m)}(z, t)-k^{(m)}\left(z, c_{j}\right)\right| d t
$$

for $z \in[0,1]$ and so by Hölder inequality and the choice of the point $c_{j} \in I_{j}$,
(6) $\int_{0}^{1}\left|k(z, x)-k_{0}(z, x)\right|^{2} d z$

$$
\begin{aligned}
& \leq \frac{1}{n^{2 m-1}(m-1)!^{2}} \int_{0}^{1} \int_{I_{j}}\left|k^{(m)}(z, t)-k^{(m)}\left(z, c_{j}\right)\right|^{2} d t d z \\
& \leq \frac{1}{n^{2 m-2}(m-1)!^{2}} \int_{I_{j}} \int_{I_{j}}\left[\int_{0}^{1}\left|k^{(m)}(z, t)-k^{(m)}(z, y)\right|^{2} d z\right] d t d y
\end{aligned}
$$

Hence

$$
\int_{I_{j}} \int_{I_{j}}\left[\int_{0}^{1}\left|k(z, x)-k_{0}(z, x)\right|^{2} d z\right] d x d y \leq \frac{1}{n^{2 m}(m-1)!^{2}} \Delta\left(k^{(m)} ; n\right)
$$

We also have a similar inequality for the second term on the right hand side of (5). Thus (4) follows from (3).

In the following we shall assume that either $m=0$, or $m \geq 1$ and $k^{(r)}$ is absolutely continuous in y for almost all $x \in[0,1]$ for $0 \leq r \leq m-1$.

Theorem 1. If $k^{(m)} \in L^{2}[0,1]^{2}$ satisfies the integrated Lipschitz condition

$$
\int_{0}^{1}\left|k^{(m)}(z, x)-k^{(m)}(z, y)\right|^{2} d z \leq C|x-y|^{2 \alpha}
$$

for $0 \leq x, y \leq 1$, where $C>0,0<\alpha \leq 1$, then for $n \geq 1$,

$$
\begin{equation*}
s_{2 n+m}(K) \leq \frac{\sqrt{2 C}}{(m-1)!} \frac{1}{n^{m+1 / 2+\alpha}} \tag{7}
\end{equation*}
$$

It is immediate that (7) follows from (4). We refer to an interesting result in [6, Lemma 1], by which together with Lemmas 1, 2 further results along these lines can be obtained.

THEOREM 2. If $k^{(m)}$ satisfies the Lipschitz condition

$$
\left|k^{(m)}(z, x)-k^{(m)}(z, y)\right| \leq A(z)|x-y|^{\alpha}
$$

for $0 \leq x, y, z \leq 1$, where $0<\alpha \leq 1$, and for almost all $z \in[0,1], k^{(m)}(z, y)$ is of bounded variation in y with total variation $B(z)$ on $[0,1]$ such that $C=\int_{0}^{1} A(z) B(z) d z<\infty$, then for $n \geq 1$,

$$
\begin{equation*}
s_{2 n+m}(K) \leq \frac{\sqrt{2 C}}{(m-1)!} \frac{1}{n^{m+1+\alpha / 2}} \tag{8}
\end{equation*}
$$

Proof. For $1 \leq j \leq n$ by definition

$$
\iint_{I_{j}} I_{I_{j}}\left|k^{(m)}(z, x)-k^{(m)}(z, y)\right| d x d y \leq \frac{1}{n^{2}} B_{j}(z)
$$

for almost all $z \in[0,1]$, where $B_{j}(z)$ denotes the total variation on I_{j} of $k^{(m)}(z, y)$ as a function of y, and so

$$
\sum_{j=1}^{n} \Delta_{j}\left(k^{(m)} ; n\right) \leq \frac{1}{n^{2+\alpha}} \sum_{j=1}^{n} \int_{0}^{1} A(z) B_{j}(z) d z=\frac{C}{n^{2+\alpha}}
$$

from which (8) follows.
We refer to [1] for an asymptotic property of $\left\{s_{n}(K)\right\}$ under an assumption similar to that of Theorem 2.

ThEOREM 3. If $k^{(m)}(x, y)$ is absolutely continuous in y for almost all $x \in[0,1]$ and

$$
C=\int_{0}^{1}\left[\int_{0}^{1}\left|k^{(m+1)}(x, y)\right|^{p} d y\right]^{2 / p} d x<\infty
$$

where $1 \leq p \leq 2$, then for $n \geq 1$,

$$
\begin{equation*}
s_{2 n+m}(K) \leq \frac{\sqrt{2 C}}{(m-1)!} \frac{1}{n^{m+2-1 / p}} \tag{9}
\end{equation*}
$$

Proof. For $1 \leq j \leq n$,

$$
\begin{aligned}
\Delta_{j}\left(k^{(m)} ; n\right) & \leq \frac{1}{n^{2}} \int_{0}^{1}\left[\int_{I_{j}}\left|k^{(m+1)}(z, t)\right| d t\right]^{2} d z \\
& \leq \frac{1}{n^{2+2 / q}} \int_{0}^{1}\left[\int_{I_{j}}\left|k^{(m+1)}(z, t)\right|^{p} d t\right]^{2 / p} d z
\end{aligned}
$$

where $q=p /(p-1)$. By assumption $2 / p \geq 1$ and so

$$
\sum_{j=1}^{n} \Delta_{j}\left(k^{(m)} ; n\right) \leq \frac{C}{n^{2+2 / q}}
$$

from which (9) follows.
We refer to [5] for a related result for the case $m=0$.

REFERENCES

[1] S. L. Bljumin [S. L. Blyumin] and B. D. Kotljar [B. D. Kotlyar], Hilbert-Schmidt operators and the absolute convergence of Fourier series, Math. USSR-Izv. 4 (1970), 215-223.
[2] K. Fan, Maximum properties and inequalities for the eigenvalues of completely continuous operators, Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 760-766.
[3] I. Fredholm, Sur une classe d'équations fonctionnelles, Acta Math. 27 (1903), 365-390.
[4] I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, Transl. Math. Monographs, 18, Amer. Math. Soc., Providence, R.I., 1969.
[5] C. Oehring, Singular numbers of smooth kernels II, Math. Proc. Cambridge Philos. Soc. 105 (1989), 165-167.
[6] J. Weidmann, Integraloperatoren der Spurklasse, Math. Ann. 163 (1966), 340-345.
[7] H. Weyl, Das Asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen, ibid. 71 (1912), 441-479.
[8] A. Zygmund, Trigonometric Series, Vol. 1, Cambridge Univ. Press, Cambridge, 1968.

Department of Mathematics
National Tsing Hua University
Hsin Chu, Taiwan
E-mail: cwha@math.nthu.edu.tw

[^0]: 1991 Mathematics Subject Classification: 45A75, 45C05.

