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On a certain map of a triangle

by

Grzegorz Św i r s z c z (Warszawa)

Abstract. The paper answers some questions asked by Sharkovski concerning the
map F : (u, v) 7→ (u(4 − u − v), uv) of the triangle ∆ = {u, v ≥ 0 : u + v ≤ 4}. We
construct an absolutely continuous σ-finite invariant measure for F . We also prove the
following strange phenomenon. The preimages of side I = ∆ ∩ {v = 0} form a dense
subset

⋃
F−n(I) of ∆ and there is another dense set Λ consisting of points whose orbits

approach the interval I but are not attracted by I .

1. Introduction. The theory of dynamical systems deals with maps (or
flows) on some spaces and investigates the structure of their trajectories from
the topological, analytic or statistical point of view. There is one large class
of systems where this aim is achieved: hyperbolic systems. Now the main
problem is to develop a qualitative and ergodic theory for nonhyperbolic
systems. The standard examples of such systems are: unimodal maps of
the interval ([1]), the Hénon map ([3]), the Lozi attractor ([3]), iterations of
rational maps of the Riemann sphere ([2]).

Here the formulas defining the dynamics are extremely simple (e.g. given
by quadratic polynomials) whereas the analysis of the orbit structure is very
difficult.

Recently Sharkovski proposed a simple map of a triangle ∆ generalizing
the unimodal map of the interval (similar to the Hénon map, see below).
He asked whether there is an attractor inside the triangle with some good
properties: transitivity, expansion, existence of an ergodic invariant measure
etc. In this paper we show that if there is an attractor then it must be very
strange. There exist two subsets Ω and Λ of the triangle with the following
properties:

(i) Ω and Λ are disjoint,
(ii) Ω and Λ are each dense in ∆,
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46 G. Świrszcz

(iii) Ω is the union of the preimages of a side I of the triangle ∆,
(iv) the trajectories of points of Λ approach the side I but they are not

attracted by I.

Therefore there cannot exist a closed, transitive and topologically ex-
panding attractor.

Moreover, we give an explicit formula for the invariant σ-finite measure.
The next task is to study its ergodic properties. We plan to do it in the
future.

2. Statement of the results. We consider the following dynamical
system:

(1) F (u, v) = (u(4 − u − v), uv).

The mapping F maps the triangle ∆ with vertices (0, 0), (0, 4), (4, 0) onto
itself. Let I denote the interval [(4, 0); (0, 4)]. It is worth noticing that f0

restricted to I is the map x 7→ x(4 − x) (a full parabola).
In the present paper we prove the following theorems:

Theorem 1. The map f0 has an absolutely-continuous σ-finite invariant

measure.

Theorem 2. The preimages of I form a dense subset Ω of the triangle.

Theorem 3. There exists a dense subset Λ of the triangle disjoint from

Ω with the following property : for each p ∈ Λ we have ω(p) ∩ I 6= ∅ and

ω(p) is not included in I.

3. Changes of variables and notation. We shall also use another
chart

x = (u − 2)
√

u(4 − u − v), y = u(4 − u − v) − 2.

Here the map takes the form

(2) f(x, y) = (y|x|, x2 − 2).

Fig. 1
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Now f maps the circle D = {x2 +y2 ≤ 4} onto itself and f(∂D) = ∂D. The
fixed points of f are X0 = (0,−2),X1 = (−1,−1),X2 = (

√
3, 1).

We shall use the following notation:

• X = (x, y),

• Xk = (xk, yk) = fk(X) = f ◦ . . . ◦ f(X),

• χn(X) = (x0x1x2 . . . xn−1)2,

• µ(C) — the Lebesgue measure of a set C,

• Jf(X) — the jacobian of f at the point X,

• ̺(X) = 4 − x2 − y2,

• Γ = ∂D = {̺(X) = 0},

• A =
⋃∞

n=1 f−n(Γ ).

It is easy to see that

(3) ̺(f(X)) = 4 − [x2y2 + (x2 − 2)2] = x2(4 − x2 − y2) = x2̺(X)

so that

(4) ̺(Xk) = χk(X)̺(X).

From the above property it immediately follows that f(x, y) ∈ Γ iff
either x = 0 and f(x, y) = X0 or (x, y) ∈ Γ . Therefore

A =

∞
⋃

n=1

f−n(X0) ∪ Γ.

Of course f is not differentiable in D, but it is differentiable in D\{(x, y) :
x = 0} and we have the formulas

(5) Df(X) =

[ x

|x|y |x|
2x 0

]

, Jf(X) = 2x2, Jfk(X) = 2kχk(X).

4. Proof of Theorem 1. We define ν(B) for any subset B of D as

ν(B) =
\
B

(4 − x2 − y2)−1 d2X.

The measure ν has a density with respect to Lebesgue measure

dν

dµ
= (4 − x2 − y2)−1 = ̺(x, y)−1

and is invariant with respect to the map f . Indeed, as f is two-to-one,

ν(B) =
\
B

̺(x, y)−1 d2X =
1

2

\
f−1(B)

̺(f(x, y))−1J(f(x, y)) d2X.

Now from (3) and (5) we obtain
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ν(B) =
1

2

\
f−1(B)

2x2

x2̺(X)
d2X = ν(f−1(B)).

5. Proof of Theorem 2. We work in the coordinate system (u, v)
but we preserve some notations: ∆ is the triangle, I = {(u, 0) ∈ ∆}, A =
⋃∞

n=1 F−n(I).
The map F is not invertible, but F restricted to each of the sets ∆− =

{0 ≤ u ≤ 2}, ∆+ = {2 ≤ u ≤ 4} is invertible and the inverse functions are

g±(u, v) =

(

2 ±
√

4 − u − v,
v

2 ±
√

4 − u − v

)

.

Wherever it does not lead to misunderstanding we shall identify points
(u, 0) from I with their first coordinate u.

Let us denote by γ = ∆ ∩ {u = 2} the segment separating ∆+ and ∆−.
One can see that γ = F−3[(0, 0)]. For any finite sequence a = (a1, . . . , ak),
ai ∈ Z, we define

γa = g|ak |
σk

◦ . . . ◦ g|a1|
σ1

(γ)

where σi denotes the sign of ai. We have
⋃

a γa ⊂ A. We denote the
endpoints of γa by α(a) = γa ∩ I. As F |I is a full parabola, the points α(a)

form a dense subset of I (see [1]). We consider eight curves δj
0, j = 1, . . . , 8,

parts of preimages of I, such that:

(i) δj
0 = γa for some a,

(ii) δj
0 ⊆ F−k(γ), k = 2, 3, 4, 5,

(iii) α
(1)
0 < α

(2)
0 < . . . < α

(8)
0 where α

(j)
0 = δj

0 ∩ I,

(iv) α
(1)
0 = g2

−(2, 0), α
(8)
0 = g2

− ◦ g+ ◦ g2
+(2, 0),

(v) α
(j)
0 = 4 sin2

[

π

16

(

1 +
j − 1

8

)]

.

R e m a r k 1. The property (v) follows from the first four ones and the
fact that g−|I is conjugate to the tent map t (see the proof of Lemma 4).

We define δj
i = gi

−(δj
0), αj

i = δj
i ∩ I, i = 1, 2, . . . , j = 1, . . . , 8. Of course

δj
i ⊆ A for every i, j. The curves δj

i divide the set Pε = {(u, v) : v < ε} into
an infinite sequence of domains ωi, i = 1, 2, . . . (see Figure 2). We define
additionally ω0 as the part of Pε lying to the right of the curve δ8

0 .
Assume that C ⊂ ∆ is an open ball with C ∩ A = ∅. We strive to show

that there would have to exist an iteration Fn such that

(i) Fn(C) ∩ Pε = Cn,ε 6= ∅,
(ii) Cn,ε is not contained in any ωk.

These two properties will lead us to a contradiction with the assumption
C ∩ A = ∅.
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Fig. 2

The property (i) is achieved by means of the following lemma.

Lemma 1 (Exponential contraction). There exists a constant K such

that if C is as above (C ∩ A = ∅) then the set E of points in C such that

vn < K · 2−n/2

has positive Lebesgue measure.
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We shall prove this lemma later.
The map F restricted to the interval I = ∆ ∩ {v = 0} is a quadratic

map (full parabola) and is conjugate to the tent map u 7→ 2u for 0 ≤ u ≤ 2,
u 7→ 4 − 2u for 2 ≤ u ≤ 4. It is a strongly expanding map.

It turns out that this expanding property is not lost in the small neighour-
hood Pε of I. So, whenever some distinct points of E ⊂ C approach I then
they should diverge along I. Their v-coordinates tend to 0 very fast, but
their u-coordinates should behave randomly.

The property (ii) follows from the following two lemmas.

Lemma 2 (Strong distortion). For every λ > 0 and every integer m > 0
there exists n > m such that

u(1)

u(2)
> 2 − λ

for some U (i) = (u(i), v(i)) ∈ Fn(E), i = 1, 2, where E is the set from

Lemma 1.

Lemma 3. There exists ε > 0 such that if U (1), U (2) belong to one com-

ponent ωk, k = 1, 2, . . . , in Pε = {v < ε} then

(1.99)−1 <
u(2)

u(1)
< 1.99.

Now let U (1) = (u(1), v(1)), U (2) = (u(2), v(2)) be points in Cn,ε such that
there does not exist any i > 0 for which U (1), U (2) ∈ ωi. Therefore either
U (1) ∈ ωi, U (2) ∈ ωj , i 6= j, or U (1), U (2) ∈ ω0. Since Fn(C) is connected,

in the first case it would intersect some δj
i . As δj

i ⊂ A it would mean that
Fn(C) ∩ A 6= ∅ ⇒ C ∩ A 6= ∅, a contradiction.

Assume then that U (1), U (2) ∈ ω0. This means that u(1), u(2) ≥ 2 −
√

2
and therefore |u(1)−u(2)| > 0.99·(2−

√
2) > 0.4. This is a quite large number

and the first four preimages of γ (whose equations can of course be written
explicitly) divide ω0 into subsets of diameter smaller than 0.4. Therefore
also in this case Fn(C) intersects A, which ends the proof of Theorem 2.

P r o o f o f L e m m a 3. Let U (1), U (2) belong to one component ωk of
Pε \ {δi

j} and let ωk be bounded by two curves δ′, δ′′ ∈ {δi
j}, δ′′ on the right

of δ′.
It is enough to show the estimate of Lemma 3 for the case when the

points lie on these curves: U (1) ∈ δ′, U (2) ∈ δ′′.

If U (1), U (2) are on the side I then v1 = v2 = 0 and u(1) = αj
i , u(2) = αj′

i′ ,
which can be calculated. Indeed, the map F restricted to I is conjugate to
the tent map

p 7→
{

2p, p ∈ [0, π/4],
π/2 − 2p, [π/4, π/2],
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by means of the conjugation u = 4 sin2 p. So, we get

α
(j)
0 = 4 sin2 (j + 7)π

128
, pj

i+1 =
1

2
pj

i , α
(j)
i+1 = 4 sin2(j + 7)π2−7+i.

Therefore

α
(k)
i

α
(l)
i

≤ Θ

[

k + 7

l + 7

]2

where Θ ≈ 1.053. Indeed, sin2 α/sin2 β < Θ(α/β)2 for α, β ≤ π/8 (see the
proof of Lemma 4).

Now we have to extend this estimate to points above I.
If ε is small then in the first eight domains ω1, . . . , ω8 the required es-

timate holds (with a very wide margin). The problem is with the domains
ωk for large k.

We shall estimate the relative positions of the points U (1), U (2) by the

relative positions of their iterations U
(1)
n , U

(2)
n . Because F (u, v) = (u(4 − u

−v), uv) the trajectories {U (1)
n }, {U (2)

n } remain in the domain Pε, i.e. v
(1)
n <

ε and v
(2)
n < ε if u

(1)
n , u

(2)
n < 2 +

√
2 (i.e. in the domains

⋃∞
j=1 ωj).

Let n be such that U
(1)
n , U

(2)
n ∈ ωj , j = 1, . . . , 8. We shall estimate

u(2)/u(1) from above by means of u
(2)
n /u

(1)
n which is good. We introduce

additional two points on the side I:

U (3) = (u(1), 0), U (4) = (u(2), 0)

(the projections of U (1), U (2) onto I). Let U
(3)
n = (u

(3)
n , 0), U

(4)
n = (u

(4)
n , 0)

(u(3) = u(1), u(4) = u(2)) be their trajectories. We write

u(2)

u(1)
=

u(3)

u(4)
· u(4)

u(1)
· u(2)

u(3)
.

Lemma 4. There exists a continuous function ξ(v), v > 0, ξ(0) = 1, such

that if u(j) ≤ 2 −
√

2 and u
(j)
n < 2 then

u(3)

u(4)
≤ Θ2 u

(3)
n

u
(4)
n

,
u(4)

u(1)
≤ Θ2 u

(4)
n

u
(1)
n

,
u(2)

u(3)
≤ Θ3ξ(v(2)) · u

(2)
n

u
(3)
n

.

From this lemma we get

u(2)

u(1)
≤ Θ7ξ(v(2)) · u

(2)
n

u
(1)
n

where u
(2)
n /u

(1)
n has a good estimate (because we are in the first eight do-

mains):

u
(2)
n

u
(1)
n

≈ [1 + O(ε)] · α
(j+1)
0

α
(j)
0

≤ [1 + O(ε)] · Θ ·
(

8

7

)2

.
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One can check that if Θ = 1.053 then Θ8 · (8/7)2 ≈ 1.97. From this, Lemma
3 follows.

P r o o f o f L e m m a 4. The map F is conjugate to the map

T (p, q) = (arcsin(2
√

cos2 p − q/4 sin p), 4q sin2 p) = (p1, q1)

by means of the conjugacy h(p, q) = (4 sin2 p, q). T restricted to the interval
[0, π/2] × {0} is the tent map

t(p) =

{

2p, p ∈ [0, π/4],
π/2 − 2p, [π/4, π/2].

Let P (i) = (p(i), q(i)) = h−1(U (i)), i = 1, 2, 3, 4. As (sin x)/x is decreasing
in [0, π/2], we have

(6) 1 ≥ sin x

x
≥ 8

π
sin

π

8
> 0.974495 for x ∈ [0, π/8].

Let

Θ =

(

8

π
sin

π

8

)−2

≈ 1.053.

Because

(7)
u(i)

u(j)
=

sin2 p(i)

sin2 p(j)
, i, j = 1, 2, 3, 4,

we have

(8)
1

Θ

[

p(i)

p(j)

]2

≤ u(i)

u(j)
≤ Θ

[

p(i)

p(j)

]2

, i, j = 1, 2, 3, 4.

Now because p
(i)
n = 2np(i) for i = 3, 4 we get p

(3)
n /p

(4)
n = p(3)/p(4) and

then

u(3)

u(4)
≤ Θ

[

p(3)

p(4)

]2

= Θ

[

p
(3)
n

p
(4)
n

]2

≤ Θ2 u
(3)
n

u
(4)
n

.

Note that this holds because u
(i)
n < 2 by assumption. This ends the proof

of the first inequality of Lemma 4. Similarly we get the inequality

(9)
u(2)

u(3)
=

u(4)

u(2)
=

u(4)

u(3)
≤ Θ2 u

(4)
n

u
(3)
n

as u(3) = u(1), u(2) = u(4). As F (u, v) = (u(4 − u − v), uv), we immediately

get u
(3)
n ≥ u

(1)
n (the points on I “move faster” than the ones above). From

this the second inequality of Lemma 4 follows.
If (p1, q1) = T (p, q) and q = 0 then p1 = 2p and we have

p1(p, 0) − p1(p, q) < 2pq,(10)

q1(p, q) ≤ 3

5
q.(11)
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Indeed, |arcsin a − arcsin b| ≤ 2|a − b| for a, b ≤
√

2/2. Thus

arcsin(2
√

cos2 p sin p) − arcsin(2
√

cos2 p − q/4 sin p)

≤ 4 sin p(
√

cos2 p −
√

cos2 p − q/4)

≤ q sin p
√

cos2 p +
√

cos2 p − q/4
≤ q tan p ≤ 2pq

as tan p ≤ 2p for p ≤ π/4. The inequality (11) is a consequence of the fact
that 4 sin π/8 ≤ 3/5.

From (11) we obtain

q(2)
n ≤

(

3

5

)n

v(2).

Now from (10) we have

p
(2)
n+1 = p1(p(2)

n , q(2)
n ) ≥ p1(p(2)

n , 0) − 2q(2)
n p(2)

n = (1 − q(2)
n )2p(2)

n

and hence

p
(2)
n+1 ≥ 2(1 − (3/5)nv(2))p(2)

n .

By simple induction we obtain

p
(2)
n+1 ≥

[ ∞
∏

i=1

(

1 −
(

3

5

)i

v(2)

)]

2np(2).

We put

ξ(v(2)) =

[ n
∏

i=1

(

1 −
(

3

5

)i

v(2)

)]−2

.

The infinite product is convergent, so the definition is correct and ξ(v(2))

has all the desired properties. Because p
(4)
n+1 = 2np(4) = 2np(2) for the fourth

point on the q = 0 axis, we get from this and (8),

u
(4)
n

u
(2)
n

≤ Θ

[

p
(4)
n

p
(2)
n

]2

≤ Θξ(v(2)).

Now the first inequality of Lemma 4 follows from (9).

6. Proof of Lemmas 1 and 2. In this section we shall work in the
(x, y) chart.

P r o o f o f L e m m a 1. As C is a connected set disjoint from A =
⋃∞

n=1 f−n(Γ ), fk|C is a diffeomorphism onto its image for every k. We have
(from (5))

µ(fk(C)) =
\
C

Jfk d2X = 2k
\
C

χk(X) d2X.
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Let K > 0 be a constant whose value will be specified later. We define

Cn = {X ∈ C : ̺(Xn) ≥ K · 2−n/2} for n = 0, 1, 2, . . .

We shall show that

(12) µ(Cn) ≤ 16π

K
2−n/2.

From this, Lemma 1 follows because the set C \ ⋃

Cn consists of points
which approach the boundary Γ very fast, and has positive Lebesgue mea-
sure for large K (the explicit relation between ̺(Xn) and vn will be given
later).

To show (12) we use the formula

2n
\

Cn

χn(X) d2X = µ(fn(Cn)) ≤ µ(D) = 4π

and the estimate

χn(X) ≥ χn(X)
̺(X)

4
=

1

4
̺(Xn) ≥ K · 2−n/2/4

for X ∈ Cn. Therefore

2nK · 2−n/2−2µ(Cn) ≤ 4π.

We shall call the property ̺(Xn) < K ·2−n/2, X ∈ C\⋃

Cn, n = 1, 2, . . . ,
exponential contraction. The ratio

√
2 of exponential contraction can be

replaced by any other ratio d > 1.

P r o o f o f L e m m a 2. First we show that

supX∈E χn(X)

infX∈E χn(X)
> K · 2n

for some constant K = K(E) not depending on n. (Here E = C \ ⋃

Cn is
the subset defined above.)

We have the estimate

µ(fn(E)) = 2n
\
E

χn(X) d2X ≥ 2nµ(E) inf
X∈E

χn(X).

On the other hand,

̺(Xn) = χn(X)2̺(X) ≤ 4 sup
Y ∈E

χn(Y )2, X ∈ E,

and

µ(fn(E)) ≤ µ({̺(X) ≤ 4 sup
E

χn}) ≤ 4π sup
E

χn

(because ̺(X) = 4 − |X|2). From this the inequality

supX∈E χn(X)

infX∈E χn(X)
≥ µ(E)

4π
· 2n
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follows. Now because ̺(Xn) = χn(X)̺(X) we get

supX∈E ̺(Xn)

infX∈E ̺(Xn)
> K1 · 2n

where K1 is a constant depending on the initial ball C.
We pass to the (u, v) coordinates. It turns out that the function ̺(X)

has a simple expression here: it is the second component v2 of the second
iteration of U = (u, v). Indeed,

̺(x, y) = 4 − x2 − y2 = vu2(4 − u − v) = v2.

Therefore the exponential contraction property also holds in the coordinates
(u, v), which means that for any open set C ⊂ ∆ there exists an open subset
E of C such that vn < K · 2−n/2 for U ∈ E, n = 1, 2, . . . (compare proof of
Lemma 1). Therefore

supX∈E vn

infX∈E vn
> K2 · 2n.

Assume now that the statement of Lemma 2 is false. This would mean
that there exist λ, m such that for every n > m, u

(1)
n /u

(2)
n < 2 − λ for

every U
(1)
n , U

(2)
n ∈ Fn(E), U (i) = (u

(i)
n , v

(i)
n ). One can check that vn =

v0u0u1u2 . . . un−1. Therefore

v
(1)
n

v
(2)
n

=
v
(1)
0 u

(1)
0 u

(1)
1 u

(1)
2 . . . u

(1)
n−1

v
(2)
0 u

(2)
0 u

(2)
1 u

(2)
2 . . . u

(2)
n−1

(13)

<
v
(1)
0 u

(1)
0 u

(1)
1 u

(1)
2 . . . u

(1)
m−1

v
(2)
0 u

(2)
0 u

(2)
1 u

(2)
2 . . . u

(2)
m−1

(2 − λ)n−m < L(2 − λ)n

where

L =
1

(2 − λ)m
sup

U (1),U (2)∈E

(

v
(1)
0 u

(1)
0 u

(1)
1 . . . u

(1)
m−1

v
(2)
0 u

(2)
0 u

(2)
1 . . . u

(2)
m−1

)

.

From (13) we get the inequality

L(2 − λ)n > K2 · 2n, n = 1, 2, . . . ,

which cannot hold for large n.

7. Proof of Theorem 3. Set B = {U : ω(U)∩ I 6= ∅, ω(U)∩ (∆ \ I) 6=
∅}. We have to prove that for any ball C0 ⊆ ∆, C0 ∩ B 6= ∅.

We use the form (II). The map F has the fixed point (3, 0) on the in-
variant interval I = {0 ≤ u ≤ 4, v = 0}. It is a repelling fixed point, as the

linear part of F at (3, 0) is
[

−2 −3

0 3

]

.

Take the set R = {(u, v) : 0 < v < 1/8, |u − 3| < v} (triangle with one
vertex at the source (3, 0)) and the sets Pk = {(u, v) ∈ ∆ : v < 1/(8k)},
k = 1, 2, . . . (stripes approaching the interval I; see Figure 3).
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Fig. 3

Let C0 be the ball. From Theorem 1 we know that C0 intersects A =
⋃∞

n=1 F−n({U (0)}), where U (0) = (0, 0) corresponds to the fixed point X(0)

for the map f . So there exists a connected open subset C ′
0 ⊆ C0 such

that Fn(C ′
0) ⊆ P1 for some n and U (0) ∈ cl Fn(C ′

0). After several further
iterations the set C ′

0 starts to intersect the triangle R, Fm(C ′
0) ∩ R 6= ∅

(m ≥ n). The points of Fm(C ′
0) ∩ R leave P1 under next iterations.

We repeat the same analysis with P1 replaced with P2 and C0 replaced
with C1 = C ′

0 ∩F−m(R). We get some C ′
1 such that Fm1(C ′

1 ∩R)∩P2 6= ∅.
Next we apply the same to C2 = C ′

1 ∩ F−m1(R ∩ P2) etc.
By repeating this procedure we obtain a sequence of nonempty sets Ci

such that C0 ⊃ C1 ⊃ C2 ⊃ . . . As ∆ is a compact set the intersection
⋂

i Ci

is nonempty. Let U0 ∈ ⋂

i Ci. Then:

(i) for every k there exists n such that Fn(U0) ∈ Pk,
(ii) for every N there exists n > N such that Fn(U0) ∈ PkFn(U0) ∈ R.

Therefore U0 ∈ B. This ends the proof of Theorem 3.
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suppl. au no. 8, 9–10.

Institute of Mathematics
University of Warsaw
Banacha 2
02-097 Warszawa, Poland
E-mail: swirszcz@mimuw.edu.pl

Received 7 November 1996;

in revised form 12 May 1997


