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Abstract. We investigate the sequential topology τs on a complete Boolean algebra
B determined by algebraically convergent sequences in B. We show the role of weak
distributivity of B in separation axioms for the sequential topology. The main result
is that a necessary and sufficient condition for B to carry a strictly positive Maharam
submeasure is that B is ccc and that the space (B, τs) is Hausdorff. We also characterize
sequential cardinals.

1. Introduction. We deal with sequential topologies on complete Bool-
ean algebras from the point of view of separation axioms.

Our motivation comes from the still open Control Measure Problem
of D. Maharam (1947, [Ma]). Maharam asked whether every σ-complete
Boolean algebra that carries a strictly positive continuous submeasure ad-
mits a σ-additive measure.

Let us review basic notions and facts concerning Maharam’s problem.
More details and further information can be found in Fremlin’s work [Fr1].

Let B be a Boolean algebra. A submeasure on B is a function µ : B → R+

with the properties

(i) µ(0) = 0,
(ii) µ(a) ≤ µ(b) whenever a ≤ b (monotonicity),

(iii) µ(a ∨ b) ≤ µ(a) + µ(b) (subadditivity).
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A submeasure µ on B is

(iv) exhaustive if limµ(an) = 0 for every sequence {an : n ∈ ω} of disjoint
elements,

(v) strictly positive if µ(a) = 0 only if a = 0,
(vi) a (finitely additive) measure if µ(a∨b) = µ(a)+µ(b) for any disjoint

a and b.

If B is a σ-complete algebra, a submeasure µ on B is called a Maharam
submeasure if it is continuous, i.e. limµ(an) = 0 for every decreasing se-
quence {an : n ∈ ω} such that

∧{an : n ∈ ω} = 0. It is easy to see that a
measure on a σ-complete algebra is continuous if and only if it is σ-additive.

We consider the following four classes of Boolean algebras.

MBA: the class of all Boolean algebras that carry a strictly positive finitely
additive measure.

McBA: the class of all measure algebras, i.e. complete Boolean algebras that
carry a strictly positive σ-additive measure.

EBA: the class of all Boolean algebras that carry a strictly positive exhaus-
tive submeasure.

CcBA: the class of all complete algebras that carry a strictly positive con-
tinuous submeasure.

The diagram below shows the obvious relations between these classes:

CcBA ⊂ EBA
∪ ∪

McBA ⊂ MBA

The following theorem, whose proof is scattered throughout Fremlin’s
work [Fr1], gives additional information. Note that the relations between the
classes with measure are the same as between the classes with submeasure.

1.1. Theorem. (i) The class MBA consists exactly of all subalgebras of
algebras in McBA.

(ii) The class EBA consists exactly of all subalgebras of algebras in CcBA.
(iii) The class McBA consists of all algebras in MBA that are complete

and weakly distributive.
(iv) The class CcBA consists of all algebras in EBA that are complete and

weakly distributive.

The problem whether CcBA = McBA is the problem of Maharam men-
tioned above. It follows from Theorem 1.1 that it is equivalent to the problem
whether EBA = MBA.

The class MBA is closed under regular completions: Let B be a Boolean
algebra and let µ be a finitely additive strictly positive measure. It follows
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from [Ke] that µ can be extended to a strictly positive measure on the
completion B.

Similarly, the class EBA is closed under regular completions (this was
kindly pointed to us by S. Koppelberg): Let B be a Boolean algebra and
let µ be a strictly positive exhaustive submeasure. By [Fr1], B can be em-
bedded into a complete Boolean algebra A such that µ can be extended
to a strictly positive exhaustive submeasure on A. By Sikorski’s Extension
Theorem ([Ko], p. 70), the completion B embeds in A, and so B also carries
a strictly positive exhaustive submeasure.

Consider an algebra B ∈ CcBA and let µ be a strictly positive Maharam
submeasure on B. The submeasure µ determines a topology on B: (B, %µ)
is a metric space with the distance defined by %µ(a, b) = µ(a M b) for any
a, b ∈ B. If ν is another such submeasure then %µ and %ν are equivalent;
they determine the same topology on B. In [Ma], Maharam studied a se-
quential topology on complete Boolean algebras from the point of view of
metrizability.

We study sequential topologies on complete Boolean algebras in a more
general setting. Our goal is to show that the sequential topology τs on a ccc
complete Boolean algebra B is Hausdorff if and only if B carries a strictly
positive Maharam submeasure. Following [AnCh] and [Pl] we say that a
cardinal κ is a sequential cardinal if there exists a continuous real-valued
function on the space (P(κ), τs) which is not continuous with respect to the
product topology. We prove that κ is a sequential cardinal if and only if κ is
uncountable and there is a nontrivial Maharam submeasure on the algebra
P(κ).

2. Sequential topology. We review some notions from topology.

2.1. Definition. Let (X, τ) be a topological space. The space X is

(i) sequential if a subset A ⊆ X is closed whenever it contains all limits
of τ -convergent sequences of elements of A;

(ii) Fréchet if for every A ⊆ X,

clτ (A) = {x ∈ X : (∃〈xn : n ∈ ω〉 ⊆ A) xn→τ x}.

It is clear that every Fréchet space is sequential.
Now, consider a complete Boolean algebra B; σ-completeness is sufficient

for the following definition. For a sequence 〈bn : n ∈ ω〉 of elements of B we
define

lim bn =
∧

k∈ω

∨

n≥k
bn and lim bn =

∨

k∈ω

∧

n≥k
bn.

We say that a sequence 〈bn〉 algebraically converges to an element b ∈ B
in symbols, bn → b, if lim bn = lim bn = b.
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A sequence 〈bn〉 algebraically converges if and only if there exist an
increasing sequence 〈an〉 and a decreasing sequence 〈cn〉 such that an ≤
bn ≤ cn for all n ∈ ω, and

∨
n∈ω an =

∧
n∈ω cn.

2.2. We summarize basic properties of →:

(i) every sequence has at most one limit;
(ii) for a constant sequence 〈x : n ∈ ω〉, we have 〈x : n ∈ ω〉 → x;

(iii) xn → 0 iff limxn = 0;
(iv) if the xn’s are pairwise disjoint then xn → 0;
(v) lim(xn ∨ yn) = limxn ∨ lim yn;

(vi) if xn → x and yn → y then xn ∨ yn → x ∨ y and −xn → −x;
(vii) if 〈xn〉 is increasing then xn →

∨
n∈ω xn.

2.3. Sequential topology on B. Consider all topologies τ on B with the
following property:

if xn → x then xn→τ x.
There is a largest topology with respect to inclusion among all such topolo-
gies. We denote it by τs and call it the sequential topology on B.

The topology τs can be described as follows, by definining the closure
operation: For any subset A of the algebra B let

u(A) = {x : x is the limit of a sequence {xn} of elements of A}.
The closure of a set A in the topology τs is obtained by iteration of u:

clτs(A) =
⋃
α<ω1

u(α)(A),

where u(α+1)(A) = u(u(α)(A)), and u(α)(A) =
⋃
β<α u

(β) for a limit α.
It is clear that the topology τs is T1, i.e. every singleton is a closed set.

Moreover, (B, τs) is a Fréchet space if and only if cl(A) = u(A) for every
A ⊆ B.

We remark that a sequence {xn} converges to x topologically if and
only if every subsequence of {xn} has a subsequence that converges to x
algebraically.

Example (Measure algebras). Let B be a complete Boolean algebra
carrying a strictly positive σ-additive measure µ. For any a, b ∈ B, let

%(a, b) = µ(a M b);

% is a metric on B and the topology given by % coincides with the sequential
topology. Hence (B, τs) is metrizable.

Maharam’s Control Measure Problem is equivalent to the question of
whether there exist complete Boolean algebras other than the algebras in
the class McBA for which the sequential topology is metrizable.
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Properties of the topology τs

2.4. Proposition. (i) The operation of taking complement is continuous
(and hence a homeomorphism).

(ii) For a fixed a, the function a ∨ x is a continuous function of x.
(iii) For a fixed a, the function a M x is continuous.

The operation ∨ is generally not a continuous function of two variables.
As a consequence of (iii), the space (B, τs) is homogeneous: given a, b ∈ B,
there is a homeomorphism f such that f(a) = b, namely f(x) = (xM b) M a.
The topology τs is determined by the family N0 of all neighborhoods of 0
as for every a ∈ B and every set W , W is a neighborhood of a if and only
if a MW ∈ N0.

As a consequence of homogeneity of (B, τs), B does not have isolated
points unless B is finite.

2.5. Lemma. Let B be a σ-complete algebra. Let {un}∞n=0 be an antichain
in B, and let U be a neighborhood of 0. Then there exists a k such that
B ¹
∨
n≥k un ⊂ U .

P r o o f. If not, then for every k there exists an element xk below
∨
n≥k un

such that xk 6∈ U . But then the sequence {xk}k converges to 0 and so,
because U ∈ N0, there exists some k0 such that xk ∈ U for all k > k0; a
contradiction.

A subset D of a Boolean algebra B is dense if for every b ∈ B, b 6= 0,
there is some d ∈ D, d 6= 0, such that d ≤ b. We call D downward closed if
a < d ∈ D implies a ∈ D.

If H is a downward closed subset of B then H MH = H ∨H, and hence
if H is also an open set then so is H ∨H.

A downward closed dense set is called open dense. Since we consider a
topology on B we shall call dense and open dense sets algebraically dense
and algebraically open dense to avoid confusion with the corresponding topo-
logical terms.

2.6. Corollary. (i) Every neighborhood of 0 contains all but finitely
many atoms.

(ii) If B is atomless then every neighborhood of 0 contains an alge-
braically open dense subset of B.

(iii) If B is atomless and ccc, then for every U ∈ N0 there exists a k such
that 1 ∈ U M . . . M U (k times).

P r o o f. (i) is clear.
(ii) Let V be a neighborhood of 0. If V does not contain an algebraically

open dense set then B − V is algebraically dense below some u 6= 0 and
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hence contains a pairwise disjoint set {xn}n. But then limxn = 0 and so
there is some n such that xn ∈ V ; a contradiction.

(iii) As U is algebraically dense in B, there exists a maximal antichain of
B included in U , and by ccc the antichain is countable: {un}n ⊂ U . There
exists a k so that u =

∨
n>k un ∈ U , and then u0 ∨ u1 ∨ . . . ∨ uk ∨ u = 1.

2.7. Proposition. If B is atomless and ccc, then (B, τs) is connected.

P r o o f. Assume that there are two disjoint nonempty clopen sets X and
Y with X∪Y = B and 0 ∈ X, and let a ∈ Y . Let C be a maximal chain in B
such that inf C = 0 and supC = a. Let x = sup(C∩X); by ccc, x is the limit
of a sequence in C∩X and therefore x ∈ X. Let y = inf(Y ∩{c ∈ C : c ≥ x}).
Using the ccc again we have y ∈ Y , and clearly x < y. By maximality, both
x and y are in C. Since B is atomless, there exists some z with x < z < y.
This contradicts the maximality of C.

2.8. Lemma. (i) An ideal I on a σ-complete Boolean algebra B is a
closed set in the sequential topology if and only if it is a σ-complete ideal.

(ii) If I is a σ-ideal on B then the sequential topology on the quotient
algebra B/I is the quotient topology of τs given by the canonical projection.

(iii) If τs is Fréchet then so is the quotient topology.

3. Fréchet spaces. We shall now consider those complete Boolean alge-
bras for which the sequential topology is Fréchet. We will show that this is
equivalent to an algebraic property. First we make the following observation:

3.1. Proposition. If (B, τs) is a Fréchet space then for every V ∈ N0

there is some U ⊆ V in N0 such that U is downward closed.

P r o o f. If V ∈ N0, consider the set

X = {a ∈ B : there exists some b ≤ a such that b 6∈ V },
and let u(X) be the set of all limits of sequences in X. As τs is Fréchet, u(X)
is the closure of X. We shall prove that the set U = B − u(X) is downward
closed and contains 0.

For the first claim it suffices to show that a ∈ u(X) and a < b implies
b ∈ u(X). Thus let a = lim an with an ∈ X. It follows that b = lim(an ∨ b),
and since an ∨ b ∈ X, we have b ∈ u(X).

To see that 0 6∈ u(X), assume that {an} ⊆ X and lim an = 0. Then
there are xn ≤ an in B − V , but this is impossible because limxn = 0.
Hence 0 is not in u(X).

Thus if (B, τs) is Fréchet, its topology is determined by the set N d
0 of all

U ∈ N0 that are downward closed. N d
0 is a neighborhood base of 0.

3.2. Definition. Let κ be an infinite cardinal. A Boolean algebra B is
(ω, κ)-weakly distributive if for every sequence {Pn} of maximal antichains,
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each of size at most κ, there exists a dense set Q with the property that each
q ∈ Q meets only finitely many elements of each Pn. B is weakly distributive
if it is (ω, ω)-weakly distributive.

If B is a κ+-complete Boolean algebra then B is (ω, κ)-weakly distribu-
tive if and only if it satisfies the following distributive law:

∧
n

∨
α

anα =
∨

f :ω→[κ]<ω

∧
n

∨

α∈f(n)

anα.

We recall two frequently used cardinal characteristics.

3.3. Definition. The splitting number is the least cardinal s of a family
S of infinite subsets of ω such that for every infinite X ⊆ ω there is some
S ∈ S such that both X ∩ S and X − S are infinite. (S “splits” X.)

The bounding number is the least cardinal b of a family F of functions
from ω to ω such that F is unbounded; i.e. for every g ∈ ωω there is some
f ∈ F such that g(n) ≤ f(n) for infinitely many n.

The following characterization of Fréchet spaces (B, τs) uses the cardinal
invariant b and is similar to several other results using b, such as in [BlJe].
A consequence of Theorem 3.4 is that (P (κ), τs) is a Fréchet space if and
only if κ < b.

3.4. Theorem. Let B be a complete Boolean algebra. The sequential
space (B, τs) is Fréchet if and only if B is weakly distributive and satisfies
the b-chain condition.

We first reformulate the condition stated in Theorem 3.4. Let B be a
complete Boolean algebra. We call a matrix {amn} increasing if each row
{amn : n ∈ ω} is an increasing sequence with limit 1. Note that B is weakly
distributive if and only if for every increasing matrix {amn},∨

f∈ωω
lim am,f(m) = 1.

3.5. Lemma. A complete Boolean algebra B is weakly distributive and
satisfies the b-chain condition if and only if for every increasing matrix
{amn} there exists a function f ∈ ωω such that lim am,f(m) = 1.

P r o o f. First let B be weakly distributive and satisfy b-c.c., and let
{amn} be an increasing matrix. By the b-chain condition there exists a set
F ⊂ ωω of size less than b such that

∨
f∈F lim am,f(m) = 1. Let g : ω → ω

be an upper bound of F under eventual domination. Since the matrix is
increasing, we have lim am,f(m) ≤ lim am,g(m) for every f ∈ F . Therefore
lim am,g(m) = 1.

Conversely, assume that the condition holds. Then B is weakly distribu-
tive, and we verify the b-chain condition. Thus let W be a partition of 1;
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we prove that |W | < b. Let {fu : u ∈ W} be any family of functions from
ω to ω indexed by elements of W . For each m and each n we let

amn =
∨
{u ∈W : fu(m) < n}.

The matrix {amn} is increasing and therefore there exists a function g : ω →
ω such that lim am,g(m) = 1. Since W is an antichain, it follows that for any
u ∈ W there is some mu such that u ≤ am,g(m) for every m ≥ mu. Hence
fu(m) < g(m) for every m ≥ mu and it follows that g is an upper bound of
the family {fu : u ∈ W}. Therefore every family of functions of size |W | is
bounded and so |W | < b.

P r o o f o f T h e o r e m 3.4. We wish to show that the condition in Lem-
ma 3.5 is necessary and sufficient for the space (B, τs) to be Fréchet. To see
that the condition holds if (B, τs) is Fréchet, we recall [Ma] that for (B, τs),
being Fréchet is equivalent to the following statement: whenever {xmn},
{ym} and z are such that limn xmn = ym for each m and limm ym = z, then
there is an f : ω → ω such that limm xm,f(m) = z.

To show that the condition implies that (B, τs) is Fréchet, let {xmn},
{ym} and z be as above. For each m and each n let umn = xmn M (−ym),
and let amn =

∧
k≥n umk. For each m, limn umn = 1; the matrix {amn} is

increasing, with each row converging to 1 and so there exists some f : ω → ω
such that lim am,f(m) = 1. It follows that limm

∧
k≥f(m) umk = 1, and so

lim(xm,f(m) M (−z)) = lim(xm,f(m) M (−ym)) = limum,f(m)) = 1. Hence
limxm,f(m) = z.

We conclude with the following observation that we shall use in Section 5.

3.6. Lemma. (a) For every set A ⊆ B, cl(A) =
⋂{A M V : V ∈ N0}.

(b) If (B, τs) is Fréchet and A is downward closed then cl(A) =
⋂{A∨V :

V ∈ N d
0 }, and cl(A) is downward closed.

P r o o f. (a) For any x ∈ B, x ∈ cl(A) iff for all V ∈ N0, (V Mx)∩A 6= ∅,
i.e. there exist v ∈ V and a ∈ A such that vMx = a. The latter is equivalent
to x = a M v, or x ∈ A M V .

(b) If both A and V are downward closed then A ∨ V = A M V .

3.7. Corollary. For every U ∈ N0, cl(U) ⊆ UMU . If (B, τs) is Fréchet ,
then cl(U) ⊆ U ∨ U for every U ∈ N d

0 .

4. Separation axioms. We will now discuss separation axioms for the
topology τs. We immediately see that the sequential topology on B is T1.
The space is Hausdorff if and only if every point b 6= 0 can be separated
from 0, which is equivalent to the statement that for every b 6= 0 there exists
some V ∈ N0 such that b 6∈ V M V .



The sequential topology 67

4.1. Theorem. If (B, τs) is a Hausdorff space then B is (ω, ω1)-weakly
distributive.

We first prove a weaker statement, namely that being Hausdorff implies
weak distributivity:

4.2. Lemma. If B is not weakly distributive then there exists an a 6= 0
such that c ∈ cl(U) for every c ≤ a and every U ∈ N0. Hence (B, τs) is not
Hausdorff.

P r o o f. Assume that B is not (ω, ω)-weakly distributive. There is some
a 6= 0 and there exists an infinite matrix {amn} such that each row is
a partition of a, and for any nonzero x ≤ a there is some m such that
x ∧ amn 6= 0 for infinitely many n.

Let c ≤ a and let U be an arbitrary neighborhood of 0. We will show
that c ∈ cl(U). For every m and every n let ymn = c ∧ ∨i≥n ami. Since
the sequence {y0n} converges to 0 there exists some n0 such that y0n0 ∈ U ;
let x0 = y0n0 . Next we consider the sequence {y1n ∨ x0}. This sequence
converges to x0 and so there exists some n1 such that x1 ∈ U where x1 =
y1n1 ∨ x0. We proceed by induction and obtain a sequence {nm} and an
increasing sequence {xm} of elements of U . This sequence converges to c
because otherwise, if we let b 6= 0 be the complement of

∨
n xn in c, then

b ≤ ∧m
∨
i<nm

ami and so b meets only finitely many elements in each row
of the matrix. Hence c ∈ cl(U).

P r o o f o f T h e o r e m 4.1. Let (B, τs) be a Hausdorff space. To prove
that B is (ω, ω1)-weakly distributive, let

A = {anα : n ∈ ω, α ∈ ω1}
be a matrix such that each row is a partition of 1. Denote by X the set of
all those x ∈ B that meet at most countably many elements of each row
of A. As B is (ω, ω)-weakly distributive, for every nonzero x ∈ X there is
a nonzero y ≤ x that meets only finitely many elements of each row of A.
Thus we complete the proof by showing that

∨
X = 1.

Assume otherwise; without loss of generality we may assume that every
x 6= 0 meets uncountably many elements of at least one row of A. Then the
matrix A represents a Boolean-valued name for a cofinal function from ω
into ω1. Thus B collapses ω1 and therefore there exists a matrix

{bnα : n ∈ ω, α ∈ ω1}
such that each row and each column is a partition of 1 (the name for a
one-to-one mapping of ω onto ω1). We get a contradiction to Hausdorffness
by showing that 1 is in the closure of every V ∈ N0.

Let V ∈ N0 be arbitrary. By Lemma 2.5 there is for every α ∈ ω1 some
nα ∈ ω such that vα =

∨
i≥nα biα ∈ V . Thus there exists some n and an
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infinite set {αk}k such that nαk = n for all k. Now, by 2.2(v),

lim
k

∨

i<n

biαk =
∨

i<n

lim
k
biαk = 0.

Therefore limk vαk = 1 and so 1 is in the closure of V .

For (ω, ω1)-weak distributivity we refer to Namba’s work [Na] which
shows that it may or may not be equivalent to (ω, ω)-weak distributivity. If
b = ω1 then (ω, ω)-weak distributivity and (ω, ω1)-weak distributivity are
equivalent, and there is a model of ZFC in which they are not equivalent.
Below (in 4.5(i)) we give another example of a complete Boolean algebra
that is (ω, ω)-weakly distributive but not (ω, ω1)-weakly distributive.

Theorem 4.1 cannot be extended by replacing ω1 with∞: Example 4.5(ii),
due to Prikry [Pr], provides a complete Boolean algebra that is Hausdorff
(therefore weakly distributive) but not (ω, κ)-weakly distributive, for a mea-
surable κ.

In view of Theorems 3.4 and 4.1 the question arises about the relative
strength of being a Hausdorff space and being a Fréchet space. Example 4.3
below shows that Hausdorff does not imply Fréchet: the space (P (b), τs) is
Hausdorff but not Fréchet.

For the other direction, see Examples 4.4 and 4.5. If T is a Suslin tree
then (B(T ), τs) is Fréchet but not Hausdorff.

4.3. Example. For every infinite cardinal κ the space (P (κ), τs) is Haus-
dorff. This is because each principal ultrafilter on κ is a closed and open
subset of P (κ).

We identify P (κ) with 2κ (via characteristic functions). For each α ∈ κ
the set {X ⊆ κ : α ∈ X} and its complement {X ⊆ κ : α 6∈ X} are closed
under limits of sequences and so are both closed and open. This implies
that the topology τs extends the product topology, and the space (P (κ), τs)
is a totally disconnected Hausdorff space. If κ = ℵ0 then τs is equal to
the product topology. To see this, let U ⊆ P (ω) be an open set in the
sequential topology and let A ∈ U . For each n let Sn denote the basic open
set (in the product topology) {X ⊆ ω : X ∩ n = A ∩ n}. It suffices to show
that U contains some Sn as a subset. If not, there exists for each n some
Xn ∈ Sn − U . But A = limnXn, and since the complement of U is closed,
A 6∈ U ; a contradiction.

When κ is an uncountable cardinal, the space (P (κ), τs) is not compact
and so τs is strictly stronger than the product topology.

By [Tr] the space (P (κ), τs) is sequentially compact if and only if κ < s,
the splitting number.

By [Gł], (P (κ), τs) is regular if and only if κ = ω. See Corollary 4.7.
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4.4. Example (Aronszajn trees). We show that the Boolean algebra
associated with a Suslin tree is an example of a Fréchet space that is not
Hausdorff. We point out that in ZFC, the only known examples of algebras
that are Fréchet spaces are measure algebras.

Let T be an Aronszajn tree and assume that each node has at least
two immediate successors. Let B(T ) denote the complete Boolean algebra
that has upside down T as a dense set. We will show that (B(T ), τs) is
not a Hausdorff space. This shows that the converse of Theorem 4.1 is not
provable: if T is a Suslin tree then B(T ) is a ccc ω-distributive Boolean
algebra.

We prove that 0 and 1 cannot be separated by open sets: we show that
1 ∈ V M V for every open neighborhood V of 0. Let V ∈ N0. For every
α ∈ ω1, the αth level Tα of the tree is a countable partition of 1 and so
there exists a finite set uα ⊆ Tα such that xα =

∨
(Tα − uα) ∈ V . Let

yα =
∨
uα. We claim that there is a β such that yβ ∈ V ; this will complete

the proof as 1 = xβ M yβ ∈ V M V .
Let f : [ω1]2 → {0, 1} be the function defined as follows: f(α, β) = 0 if

yα ∧ yβ = 0 and f(α, β) = 1 otherwise. By the Dushnik–Miller Theorem
there exists a set I ⊆ ω1, either homogeneous in color 0 and of size ℵ0, or
homogeneous in color 1 and of size ℵ1. The latter case is impossible because
the uαs are disjoint finite sets in an Aronszajn tree (see [Je], Lemma 24.2).
Hence there is an infinite set {αn : n ∈ ω} such that the yαn are pairwise
disjoint. Thus the sequence {yαn} converges to 0 and so there exists some
n such that yαn ∈ V .

4.5. Examples (using large cardinals).

(i) Assume that there exists a nontrivial ℵ2-saturated σ-ideal I on P (ω1),
and assume that b = ℵ2. Both these assumptions are consequences of Mar-
tin’s Maximum (MM), with I = the nonstationary ideal.

Let B = P (ω1)/I. Then B is a complete Boolean algebra and satisfies
the ℵ2-chain condition. Since b = ℵ2, the space (P (ω1), τs) is Fréchet, and
so by Lemma 2.8, (B, τs) is Fréchet. Therefore B is weakly distributive.

Since forcing with B collapses ℵ1, B is not (ω, ω1)-weakly distributive,
and hence (B, τs) is not Hausdorff.

The space (P (ω1), τs) is separable: this follows from MM, specifically
from p = ℵ2 (cf. [Fr0], [To] and [Ro]). Hence (B, τs) is separable, and so the
complete Boolean algebra B is countably generated.

This example is in the spirit of [Gł] where a similar example is presented
using MA and a measurable cardinal.

(ii) Let κ be a measurable cardinal, and let B be the complete Boolean
algebra associated with Prikry forcing. B is not (ω, κ)-weakly distributive
as it changes the cofinality of κ to ω. But the space (B, τs) is Hausdorff: For
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any a ∈ B+ there is a κ-complete ultrafilter on B containing a (cf. [Pr]).
Every such ultrafilter is a clopen set in (B, τs).

Thus Hausdorffness does not imply (ω,∞)-weak distributivity of (B, τs).
We do not know if the large cardinal assumption is necessary.

A topological space is regular if points can be separated from closed sets;
equivalently, for every point x and its neighborhood U there exists an open
set V such that x ∈ V and cl(V ) ⊆ U . The space (B, τs) is regular if and
only if for every U ∈ N0 there is some V ∈ N0 such that cl(V ) ⊆ U .

A result proved independently in [Tr] and [Gł] states that the atomic
algebra P (ω1) is not regular. The following lemma uses the method employed
in these papers.

4.6. Lemma. In the space (P (ω1), τs) for every V ∈ N0 there exists a
closed unbounded set C ⊂ ω1 such that ω1 − β ∈ cl(V ) for every β ∈ C.

P r o o f. Let V be an open neighborhood of ∅. Let {Aαn : α ∈ ω1, n ∈ ω}
be an Ulam matrix, i.e. a double array of subsets of ω1 with the following
properties:

Aαn ∩Aαm = ∅ (n 6= m),
Aαn ∩Aβn = ∅ (α 6= β),⋃

n∈ω
Aαn = ω1 − α.

By Lemma 2.5 there exists for each α some kα such that Xα =
⋃
n≥kα Aαn

is in V . There exist some k and an uncountable set W such that kα = k
for every α ∈ W . Let C be the set of all limits of increasing sequences of
ordinals in W . We claim that ω1 − β ∈ cl(V ) for every β ∈ C.

Let α0 < α1 < . . . < αn < . . . be in W such that β = limn αn. Note that
limn

⋃
i<k Aαni =

⋃
i<k limnAαni = ∅, and hence X = limnXαn = ω1 − β.

Therefore X ∈ cl(V ).

4.7. Corollary. The space (P (ω1), τs) is not regular.

P r o o f. Let U be the set of all x ⊂ ω1 whose complement is uncountable.
U is an open neighborhood of ∅ and, by Lemma 4.6, does not contain cl(V )
for any V ∈ N0.

4.8. Corollary. If a complete Boolean algebra B does not satisfy the
countable chain condition then (B, τs) is not regular.

P r o o f. B contains P (ω1) as a complete subalgebra, therefore as a closed
subspace. Hence it is not regular.

4.9. Corollary. Let B = P (ω1), or more generally , let B be a complete
Boolean algebra that does not satisfy the countable chain condition. If {Un}n
is a countable subset of N0 then

⋂
n cl(Un) is uncountable.
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P r o o f. This follows easily from Lemma 4.6 when B = P (ω1). In the
general case, (B, τs) contains P (ω1) as a subspace and each Un ∩ P (ω1) is
an open neighborhood of ∅.

4.10. Corollary. Let B be a complete Boolean algebra, and assume
that in the space (B, τs) there exists a countable family {Un}n of neighbor-
hoods of 0 such that

⋂
n cl(Un) = {0}. Then B satisfies the countable chain

condition and (B, τs) is Fréchet.

P r o o f. B satisfies ccc by Corollary 4.9. Also, (B, τs) is clearly Hausdorff
and so B is weakly distributive by Lemma 4.2. Hence, by Theorem 3.4, B
is a Fréchet space.

We conclude this section with some remarks:
A Fréchet space is Hausdorff if and only if

⋂
{V ∨ V : V ∈ N0} = {0}.

Even more is true: If the space (B, τs) is Fréchet and Hausdorff, then for
every k, ⋂

{V ∨ . . . ∨ V (k times) : V ∈ N0} = {0}.
This is a consequence of the following:

4.11. Lemma. Let B be a σ-complete Boolean algebra such that (B, τs) is
Fréchet. Then for every U ∈ N d

0 there exists a V ∈ N d
0 such that V ∨V ∨V ⊆

U ∨ U .

In the next section we use this consequence of Lemma 4.11:

4.12. Corollary. If B is as in Lemma 4.11 and U ∈ N d
0 then there

exists a V ⊆ U in N d
0 such that cl(V ) ∨ cl(V ) ⊆ U ∨ U .

(To see that this follows from Lemma 4.11, use cl(V ) ⊆ V ∨ V .)

P r o o f (of Lemma 4.11). Assume that for every V ∈ N d
0 there exist x,

y and z in V such that x ∨ y ∨ z 6∈ U ∨ U . Note that U ∨ U = U M U and is
downward closed.

Let V0 = U ; by induction we define neighborhoods Vn and points xn, yn,
zn as follows: For each n let xn, yn, zn ∈ Vn be such that xn∨yn∨zn 6∈ U∨U .
Then let Vn+1 ⊆ Vn be in N d

0 and such that the sets xn ∨ Vn+1, yn ∨ Vn+1

and zn ∨ Vn+1 are all included in Vn; such a neighborhood exists by the
one-sided continuity of ∨.

Let X =
⋂
n cl(Vn) and x = limn xn, y = limn yn and z = limn zn. The

set X is topologically closed and downward closed, and X ⊆ cl(U) ⊆ U ∨U .
We claim that x, y, z ∈ X. Thus let us prove that x ∈ cl(Vn) for each n.

We have xn ∈ Vn, and by induction on k > 0 we see that xn ∨ xn+1 ∨ . . . ∨
xn+k ∈ Vn. Thus

∨
i≥n xi ∈ cl(Vn) and x ∈ cl(Vn).
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Next we claim that x∨X ⊆ X (and similarly for y, z). Let n be arbitrary;
we show that x ∨X ⊆ cl(Vn). For any k we have xn ∨ . . . ∨ xn+k ∨ Vn+k+1

⊆ Vn, and by the one-sided continuity of ∨ it follows that xn ∨ . . . ∨ xn+k

∨cl(Vn+k+1) ⊆ cl(Vn). Hence xn∨. . .∨xn+k∨X ⊆ cl(Vn), and so
∨
i≥n xi∨X

⊆ cl(Vn). As x ≤ ∨i≥n xi and cl(Vn) is downward closed, we have x ∨ X
⊆ cl(Vn).

Now it follows that x∨ y∨ z is in X and hence in U ∨U . But x∨ y∨ z =
limn(xn ∨ yn ∨ zn). As the complement of U ∨ U is upward closed, we have∨
i≥n(xi ∨ yi ∨ zi) 6∈ U ∨ U for each n, and because U ∨ U is topologically

open, we have x ∨ y ∨ z 6∈ U ∨ U , a contradiction.

5. Metrizability. We will show that for complete ccc Boolean algebras,
Hausdorffness of the sequential topology is a strong property: it implies
metrizability, and equivalently, the existence of a strictly positive Maharam
submeasure. We remark that the assumption of completeness is essential.

5.1. Theorem. If B is a complete Boolean algebra, then the following
are equivalent :

(i) B is ccc and (B, τs) is a Hausdorff space,
(ii) there exists a countable family {Un}n of open neighborhoods of 0

such that
⋂
n cl(Un) = {0},

(iii) the operation ∨ is continuous at (0,0), i.e. for every V ∈ N0 there
exists a U ∈ N0 such that U ∨ U ⊆ V ,

(iv) (B, τs) is a regular space,
(v) (B, τs) is a metrizable space,
(vi) B carries a strictly positive Maharam submeasure.

The equivalence of (v) and (vi) is proved in [Ma], and (v) implies (i). We
shall prove in this section that properties (i)–(iv) are equivalent and imply
(vi). First we claim that each of the four properties implies that B satisfies
ccc, and that the space (B, τs) is Fréchet.

If B is ccc and Hausdorff, then by Theorems 4.1 and 3.4 it is Fréchet.
Property (ii) implies Fréchet by Corollary 4.10, and property (iv) implies

(i) (and hence Fréchet) by Corollary 4.8.
To complete the claim, 5.2–5.5 below prove that (iii) implies Fréchet. Let

B be a complete Boolean algebra and assume that ∨ is continuous at (0,0).

5.2. Lemma. B satisfies the countable chain condition.

If B does not satisfy ccc then (B, τs) contains P (ω1) as a closed subspace.
Thus the lemma is a consequence of the following lemma closely related to
Corollary 4.7:
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5.3. Lemma. In (P (ω1), τs) the operation ∪ is not continuous at (∅, ∅).
P r o o f. Let U be the set of all x ⊂ ω1 whose complement is uncountable.

U is an open neighborhood of ∅. We will show that for every V ∈ N0 there
exist Y and Z in V such that Y ∪ Z 6∈ U . Thus let V ∈ N0.

By Lemma 4.6 there exists an X such that X 6∈ U while X ∈ cl(V ).
By Corollary 3.7 there exist Y and Z in V such that X = Y M Z. But
Y M Z ⊆ Y ∪ Z and therefore Y ∪ Z 6∈ U .

5.4. Lemma. B is weakly distributive.

P r o o f. Assume that B is not weakly distributive. By Lemma 4.2 there
exists some a 6= 0 such that a ∈ cl(V ) for every V ∈ N0.

Let U = {x ∈ B : x 6≥ a}; then U is a neighborhood of 0. We claim that
V ∨ V 6⊆ U for every V ∈ N0, contradicting the continuity of ∨. Thus let
V ∈ N0 be arbitrary.

We have a ∈ cl(V ). By Corollary 3.7, a ∈ V M V and so there exist x
and y in V such that a = xM y. If we let b = x∨ y then b ≥ a and therefore
b 6∈ U . But b ∈ V ∨ V , completing the proof.

5.5. Corollary. (B, τs) is Fréchet.

P r o o f. Use Theorem 3.4.

For the rest of Section 5 we assume that B is a complete Boolean algebra
that satisfies the countable chain condition, and that the space (B, τs) is
Fréchet. In particular, N d

0 is a neighborhood base, so we shall only consider
those neighborhoods of 0 that are downward closed.

To prove that (i)–(iv) are equivalent, we first observe that (iii) implies
(iv):

5.6. Proposition. If ∨ is continuous at (0,0) then (B, τs) is regular.

P r o o f. Let V ∈ N0. By homogeneity, it suffices to find an open U such
that cl(U) ⊆ V . Since ∨ is continuous at (0,0) and since (B, τs) is Fréchet,
by Corollary 3.7 there exists a U ∈ N d

0 such that cl(U) ⊆ U ∨ U ⊆ V .

As (iv) implies (i), it remains to show that (i) implies (ii) and that (ii)
implies (iii). Lemma 5.7 proves the latter:

5.7. Lemma. Assume that (B, τs) satisfies (ii). Then the operation ∨ is
continuous at (0,0).

P r o o f. As (B, τs) is Fréchet, the set N d
0 of all downward closed open

neighborhoods of 0 is a neighborhood base. Thus let us assume that there
exists a U ∈ N d

0 such that for every V ∈ N0 there exist x and y in V with
x ∨ y 6∈ U .

Let {Vn}n in N d
0 be such that

⋂
n cl(Vn) = {0}. We construct a descend-

ing sequence of neighborhoods Un in N d
0 as follows: Let U0 = V0 ∩U . Given
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Un let xn, yn ∈ Un be such that xn ∨ yn 6∈ U . By (separate) continuity of ∨
there exists a set Un+1 ∈ N d

0 such that xn∨Un+1 ⊂ Un and yn∨Un+1 ⊂ Un;
moreover, we may assume that Un+1 is included in Vn+1.

Let x = limxn and y = lim yn. First we claim that x = y = 0 and
therefore x ∨ y = 0 ∈ U .

We have x =
∧
n zn where zn =

∨
k xn+k. It suffices to prove that for

each n,
∧
m zm is in the closure of Un, and for that it is enough to show that

zm ∈ cl(Un) for each m ≥ n.
Let n be arbitrary and letm ≥ n. As for each k we have xm+k∨Um+k+1 ⊂

Um+k, it follows (by induction on k) that xm∨xm+1∨. . .∨xm+k ∈ Um ⊂ Un.
Hence zm ∈ cl(Un).

Now we get a contradiction by showing that x∨ y 6∈ U . We have x∨ y =
lim(xn∨yn) =

∧
n zn where zn =

∨
k≥n(xk∨yk). As U is a downward closed

open set and xk∨yk 6∈ U for each k, we have zn 6∈ U for each n and therefore∧
n zn 6∈ U .

We now prove that (i) implies (ii):

5.8. Lemma. Let B be a complete ccc Boolean algebra such that (B, τs)
is a Hausdorff space. Then there exists a sequence {Un}n in N0 such that⋂
n cl(Un) = {0}.

P r o o f. For any given b ∈ B+ we shall find a sequence {Vn}n in N d
0 such

that cb = b−∨(
⋂
n cl(Vn)) 6= 0. Then the set of all such cb is algebraically

dense and therefore there exists a partition {ck}k of 1 and sequences {V kn }n
with

∨
(
⋂
n cl(V kn ))∧ ck = 0. Now if we let Un = V 0

n ∩V 1
n ∩ . . .∩V nn for each

n, we get a sequence with the desired properties.
Thus let b 6= 0. We construct the sequence {Vn}n. For every set S ⊆ B

let S(n) denote the n-fold joint S ∨ . . . ∨ S.
As the space is Hausdorff, there exists a V0 ∈ N d

0 such that b 6∈ V0 ∨ V0.
By Lemma 4.11 and Corollary 4.12 there exists for each n some Vn+1 ∈ N d

0

such that cl(Vn+1)∨cl(Vn+1) ⊆ Vn∨Vn, and V (3)
n+1 ⊆ V (2)

n . Let X =
⋂
n cl(Vn)

and a =
∨
X.

In order to prove that b − a 6= 0, it suffices to show that a ∈ V0 ∨ V0,
because that set is downward closed and b is outside it. By ccc, a = limn an
where an ∈ X(n) for each n. We claim that X(n) ⊆ V2 ∨V2 for each n. Then
a ∈ cl(V2 ∨ V2) ⊆ V (4)

2 ⊆ V (3)
1 ⊆ V (2)

0 .
The claim is proved as follows (we may assume that n is even):

X(n) ⊆ (cl(Vn+1))(n) ⊆ V (n)
n ⊆ . . . ⊆ V (2)

2 .

This completes the proof of the equivalence of properties (i)–(iv). We
make the following remark:
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5.9. Corollary. Let B be a complete Boolean algebra such that (B, τs)
is a regular space. Then the Boolean operations ∧, − and M are continuous,
and (B,M,0, τs) is a topological group. Moreover , (B, τs) is a completely
regular space.

P r o o f. As (B, τs) is Fréchet, 0 has a neighborhood base N d
0 of sets

for which U M U = U ∨ U . Because ∨ is continuous at (0,0), M is also
continuous at (0,0). From that it easily follows that M is continuous (at every
(u, v) ∈ B × B) and that (B,M,0, τs) is a topological group. Consequently,
∨ and ∧ are also continuous everywhere. Finally, every regular topological
group is completely regular (cf. [HeRo]).

We now prove (vi), assuming that (B, τs) is regular.

5.10. Lemma. (a) There exists a sequence {Un}n of elements of N d
0 such

that cl(Un+1) ⊂ Un+1 ∨Un+1 ⊂ Un for every n and such that
⋂
n Un = {0}.

(b) Moreover , {Un}n is a neighborhood base of 0.

P r o o f. (a) By continuity of ∨ there is a sequence {Un}n in N d
0 such that

Un+1 ∨ Un+1 ⊂ Un for every n. By (ii) we may assume that
⋂
n Un = {0}.

(b) We prove that the Un form a neighborhood base. Assume not. Then
there exists a V ∈ N0 such that Un 6⊆ V for every n. For each n let xn be
such that xn ∈ Un − V .

It follows by induction on k that xn+1 ∨ xn+2 ∨ . . .∨ xn+k ∈ Un for each
n and each k. Thus

∨
k xn+k ∈ cl(Un) and it follows that limxn ∈ Um for

each m; hence limxn = 0 and so limxn = 0. This is a contradiction because
V is a neighborhood of 0.

We are now ready to prove (vi). Let {Un}n be a neighborhood base of 0
as in Lemma 5.10, with U0 = B. Let D be the set of all rational numbers of
the form r =

∑k
i=1 2−ni where {n1, . . . , nk} is a finite increasing sequence

of positive integers. For each r ∈ D as above, let Vr = Un1 ∨ . . . ∨ Unk , and
let V1 = U0 = B. For each a ∈ B, we define

µ(a) = inf{r ∈ D ∪ {1} : a ∈ Vr}.
5.11. Lemma. The function µ is a strictly positive Maharam submeasure.

P r o o f. We repeatedly use the following fact that follows by induction
on k: For every increasing sequence {n1, . . . , nk} of nonnegative integers,
Un1+1 ∨ . . . ∨ Unk+1 ⊆ Un1 .

First, if a ≤ b then µ(a) ≤ µ(b); this is because for all r, s ∈ D, if r ≤ s
then Vr ⊆ Vs.

Second, µ(a∨b) ≤ µ(a)+µ(b) for all a and b; this is because Vr∨Vs ⊆ Vr+s
for all r and s such that r + s < 1.

Third, the submeasure µ is strictly positive: if a 6= 0 then there exists a
positive integer n such that a 6∈ Un = V1/2n , and so µ(a) ≥ 1/2n.
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Next we show that µ is continuous: if {an}n is a descending sequence
converging in B to 0 then for every k eventually all an are in Uk, hence
µ(an) ≤ 1/2k for eventually all n, and so limn µ(an) = 0.

Finally, the topology induced by the submeasure µ coincides with τs: this
is because Un ⊆ {a ∈ B : µ(a) ≤ 1/2n} ⊆ ⋂k>n(Un ∨ Uk) = cl(Un) ⊆ Un−1

for each n > 0.

6. Sequential cardinals. We now turn our attention to the atomic
Boolean algebra P (κ) where κ is an infinite cardinal. We compare two
topologies on P (κ): the product topology τc (when P (κ) is identified with
the product space {0, 1}κ) and the sequential topology τs.

If f is a real-valued function on B we say that f is sequentially continuous
if it is continuous in the sequential topology τs on B. Equivalently, f(an)
converges to f(a) whenever an converges algebraically to a.

As τs is stronger than τc, every real-valued function on P (κ) that is
continuous in the product topology is sequentially continuous. Following
[AnCh] we say that κ is a sequential cardinal if there exists a discontinuous
real-valued function that is sequentially continuous.

A submeasure µ on P (κ) is nontrivial if µ(κ) > 0 and µ({α}) = 0 for
every α ∈ κ. If µ is a Maharam submeasure on P (κ) then it is a sequentially
continuous function. If µ is nontrivial then it is discontinuous in the product
topology, because it takes the value 0 on the dense set [κ]ℵ0 . Thus if P (κ)
carries a nontrivial Maharam submeasure then κ is a sequential cardinal. In
particular, the least real-valued measurable cardinal is sequential. Keisler
and Tarski asked in [KeTa] whether the least sequential cardinal is real-
valued measurable.

It follows from Theorem 6.2 below that if the Control Measure Problem
has a positive answer then so does the Keisler–Tarski question.

We use the following theorem of G. Plebanek ([Pl], Theorem 6.1). A
σ-complete Boolean algebra B carries a Mazur functional if there exists a
sequentially continuous real-valued function f on B such that f(0) = 0 and
f(b) > 0 for all b 6= 0.

6.1. Theorem (Plebanek). If κ is a sequential cardinal then there exists
a σ-complete proper ideal H on P (κ) containing all singletons and such that
the algebra P (κ)/H carries a Mazur functional.

6.2. Theorem. An infinite cardinal is sequential if and only if the algebra
P (κ) carries a nontrivial Maharam submeasure.

P r o o f. Let κ be a sequential cardinal. By Theorem 6.1 the σ-complete
algebra B = P (κ)/H carries a Mazur functional f . First we claim that B
satisfies the countable chain condition, and hence is a complete algebra. If
not, there is an uncountable antichain, and it follows that there is some ε > 0
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and there are infinitely many pairwise disjoint elements an, n = 0, 1, 2, . . . ,
such that |f(an)| ≥ ε for all n. This contradicts the sequential continuity of
f as limn an = 0.

For each n, let Un be the set of all a ∈ B such that |f(a)| < 1/n. The
Un are neighborhoods of 0 and satisfy property (ii) of Theorem 5.1.

By Theorem 5.1, B carries a strictly positive Maharam submeasure.
This submeasure induces a strictly positive Maharam submeasure on P (κ)
that vanishes H and therefore on singletons. Thus P (κ) carries a nontrivial
Maharam submeasure.
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