Distinguishing two partition properties of ω_{1}

by
Péter Komjáth (Budapest)

$$
\text { Abstract. It is consistent that } \omega_{1} \rightarrow\left(\omega_{1},(\omega: 2)\right)^{2} \text { but } \omega_{1} \nrightarrow\left(\omega_{1}, \omega+2\right)^{2}
$$

One of the classic results in combinatorial set theory is the DushnikMiller theorem [3] which states that $\omega_{1} \rightarrow\left(\omega_{1}, \omega\right)^{2}$ holds and so gives the first transfinite variant of Ramsey's theorem. Later Erdős and Rado [4] extended this to $\omega_{1} \rightarrow\left(\omega_{1}, \omega+1\right)^{2}$ and for a long period it was open if the even stronger $\omega_{1} \rightarrow\left(\omega_{1}, \omega+2\right)^{2}$ holds. This was finally answered by A. Hajnal, who in [5] showed that if the continuum hypothesis is true then $\omega_{1} \nrightarrow\left(\omega_{1}, \omega+2\right)^{2}$ holds. Actually, Hajnal gave a stronger example, he produced a graph witnessing $\omega_{1} \nrightarrow\left(\omega_{1},(\omega: 2)\right)^{2}$. (See [2] for applications of his method to topology.) The consistency of the positive partition relation $\omega_{1} \rightarrow\left(\omega_{1},(\omega: 2)\right)^{2}$ was then given by J. Baumgartner and A. Hajnal in [1], in fact they deduced this from $\mathrm{MA}_{\aleph_{1}}$. Only much later did Todorčević prove the consistency of the relation $\omega_{1} \rightarrow\left(\omega_{1}, \omega+2\right)^{2}$ and even that of $\omega_{1} \rightarrow\left(\omega_{1}, \alpha\right)^{2}$ for any countable ordinal α (see [6]). In an unpublished work he also showed that $\mathrm{MA}_{\aleph_{1}}$ alone implies $\omega_{1} \rightarrow\left(\omega_{1}, \omega^{2}\right)^{2}$ but at present it seems unsolved if the full positive result follows from Martin's axiom. Here we show that the two variants of the Hajnal partition theorem are indeed different; it is consistent that $\omega_{1} \rightarrow\left(\omega_{1},(\omega: 2)\right)^{2}$ holds yet $\omega_{1} \nrightarrow\left(\omega_{1}, \omega+2\right)^{2}$.

Notation. Definitions. If $(A,<)$ is an ordered set and $A, B \subseteq V$ then $A<B$ denotes that $x<y$ holds whenever $x \in A, y \in B . A<\{a\}$ is denoted by $A<a$, etc. If S is a set and κ is a cardinal, then $[S]^{\kappa}=\{X \subseteq S:|X|=\kappa\}$ and $[S]^{<\kappa}=\{X \subseteq S:|X|<\kappa\}$. A graph is an ordered pair (V, X) where V is some set (the set of vertices) and $X \subseteq[V]^{2}$ (the set of edges). In some cases we identify the graph and X. If (V, X) is a graph, a set $A \subseteq V$ is a

[^0]complete subgraph if $[A]^{2} \subseteq X$, and it is an independent set if $[A]^{2} \cap X=\emptyset$. If X is a graph on some ordered set $(V,<)$ and β, γ are ordinals, then a subgraph of type $(\beta: \gamma)$ is a subset $B \times C \subseteq X$ where the types of B, C are β, γ, respectively, and $B<C$.

If α, β, γ are ordinals, then the partition relation $\alpha \rightarrow(\beta, \gamma)^{2}$ denotes that the following statement is true: every graph on a vertex set of type α has either an independent set of type β or a complete subgraph of type γ. The negation of this statement is denoted, of course, by $\alpha \nrightarrow(\beta, \gamma)^{2}$. Similarly, $\alpha \rightarrow(\beta,(\gamma: \delta))^{2}$ denotes that in a graph on α if there is no independent set of type β then there is a complete bipartite graph of type $(\gamma: \delta)$. Again, the negation is obtained by crossing the arrow.

Theorem. It is consistent that $\omega_{1} \nrightarrow\left(\omega_{1}, \omega+2\right)^{2}$ yet $\omega_{1} \rightarrow\left(\omega_{1},(\omega: 2)\right)^{2}$.
Proof. Let V be a model of ZFC+GCH. We are going to construct a finite support iteration of length $\omega_{2},\left(P_{\alpha}, Q_{\alpha}: \alpha<\omega_{2}\right)$. Q_{0} will give a counterexample to $\omega_{1} \rightarrow\left(\omega_{1}, \omega+2\right)^{2}$, for $0<\alpha<\omega_{2}$ we select a graph Y_{α} on ω_{1} with no subgraph of type $(\omega: 2)$ and Q_{α} will be a forcing which adds an uncountable independent set.

We define Q_{0} as follows. $q=(s, g, f) \in Q_{0}$ iff $s \in\left[\omega_{1}\right]^{<\omega}, g \subseteq[s]^{2}$, $f: g \rightarrow \omega$ with the property that if $a \cup\{x, y\}$ is a complete subgraph of (s, g), i.e., $[a \cup\{x, y\}]^{2} \subseteq g$, and $a<x<y$ then $|a| \leq f(x, y) .\left(s^{\prime}, g^{\prime}, f^{\prime}\right) \leq(s, g, f)$ iff $s^{\prime} \supseteq s, f=f^{\prime} \cap[s]^{2}, f^{\prime} \supseteq f$. It is clear that Q_{0} adds a graph X on ω_{1} with no complete subgraph of type $\omega+2$.

If $0<\alpha<\omega_{2}$ and the iteration P_{α} is given assume that $Y_{\alpha} \in V^{P_{\alpha}}$ is a graph on ω_{1} with no subgraph of type ($\omega: 2$). We set $q \in Q_{\alpha}$ iff $q \in\left[\omega_{1}\right]^{<\omega}$ is an indepedent set of $Y_{\alpha} . q^{\prime} \leq q$ iff $q^{\prime} \supseteq q$. It is well known that Q_{α} is ccc. This implies that there is a $\delta<\omega_{1}$ such that if $q \in Q_{\alpha}$ has $q \cap \delta=\emptyset$ then q has extensions to arbitrarily large ordinals. We assume that every q is as described, or, better, by removing the part of Y_{α} below δ we can make $\delta=0$. With this, Q_{α} will really add an uncountable independent subset of Y_{α}.

The results of [4] show that Q_{0} is ccc and as all the other factors are ccc this way we get a ccc forcing $P_{\omega_{2}}$. (Indeed, we will prove stronger statements soon.) This makes it possible that with a bookkeeping every appropriate graph on ω_{1} can be some Y_{α} and so we prove the result if we show that X remains a graph in $V^{P_{\alpha}}$ which contains no uncountable independent sets.

For $p \in P_{\alpha}\left(1 \leq \alpha \leq \omega_{2}\right)$ we denote by $\operatorname{supp}(p)$ the support of p, which is a finite subset of α. If $\beta<\alpha$, then $p \mid \beta$ is the restriction of p to β. A condition $p \in P_{\alpha}$ is nice if for every $0<\beta<\alpha$ the condition $p \mid \beta$ determines the finite set $p(\beta)$, that is, it is not only a name of it, but an actual set.

Lemma 1. For $\alpha \leq \omega_{2}$ the nice conditions form a dense subset of P_{α}.

Proof (by induction on α). The statement is obvious for $\alpha=1$. As every support is finite, there is nothing to prove for α limit. If $p \in P_{\alpha+1}$ pick a $p^{\prime} \in P_{\alpha}, p^{\prime} \leq p \mid \alpha$ determining $p(\alpha)$. Extend p^{\prime} to a nice $p^{\prime \prime} \leq p^{\prime}$. Now ($p^{\prime \prime}, p(\alpha)$) is as required.

From now on we will mostly work with nice conditions.
Assume that $0<\alpha \leq \omega_{2}, p_{0}, p_{1} \in P_{\alpha}, p_{i}(0)=\left(s \cup s_{i}, g_{i}, f_{i}\right)$ for $i<$ 2 with s, s_{0}, s_{1} disjoint. We call an extension $q \leq p_{0}, p_{1}$ edgeless if for $q(0)=\left(s^{*}, g^{*}, f^{*}\right)$ the graph g^{*} contains no edge between s_{0} and s_{1}. We will frequently use the obvious fact that if $p_{i}^{\prime} \leq p_{i}$ for $i<2$ then every edgeless extension of $p_{0}^{\prime}, p_{1}^{\prime}$ is an edgeless extension of p_{0}, p_{1}.

Lemma 2. If $\alpha \leq \omega_{2}, k<\omega$, and \aleph_{1} conditions are given in P_{α} then some k of them have an edgeless common extension.

Proof (by induction on α). Let $p_{\xi} \in P_{\alpha}$ be given. We can assume outright that $p_{\xi}(0)=\left(s \cup s_{\xi}, g_{\xi}, f_{\xi}\right)$ with $\left\{s, s_{\xi}: \xi<\omega_{1}\right\}$ disjoint, and these conditions are compatible. We can also suppose that the supports of the conditions form a Δ-system.

The statement is obvious if $\alpha=1$.
Assume now that α is limit. If $\operatorname{cf}(\alpha) \neq \omega_{1}$ then there is a $\beta<\alpha$ such that P_{β} contains an uncountable subfamily of $\left\{p_{\xi}: \xi<\omega_{1}\right\}$ and we are done by the inductive hypothesis. If $\operatorname{cf}(\alpha)=\omega_{1}$ then there is a $\beta<\alpha$ such that the supports are pairwise disjoint beyond β. This follows from the fact that they form a Δ-system. These arguments give the result for limit α.

It suffices, therefore, to show the lemma for $\alpha+1$, assuming that it holds for α. Next we argue that it is enough to show it for $k=2$. This will be done by remarking that if it is true for some $k \geq 2$ then it is true for $2 k$. Indeed, if the conditions $\left\{p_{\xi}: \xi<\omega_{1}\right\}$ are given and we know the lemma for k then we can inductively choose $\left\{q_{\xi}: \xi<\omega_{1}\right\}$ such that q_{ξ} is an edgeless extension of $\left\{p_{\xi}: \xi \in s_{\tau}\right\}$ where the s_{τ} 's are disjoint k-element subsets of ω_{1}. If now $q_{\tau_{0}}$ and $q_{\tau_{1}}$ admit an edgeless extension r then r is an edgeless extension of $\left\{p_{\xi}: \xi \in s_{\tau_{0}} \cup s_{\tau_{1}}\right\}$ and so our claim is proved.

Assume therefore that $\left(p_{\xi}, q_{\xi}\right)$ are nice conditions in $P_{\alpha+1}$. We can as well assume that the sets $\left\{q_{\xi}: \xi<\omega_{1}\right\}$ form a Δ-system and $q_{\xi}=W \cup U_{\xi}$ holds for $\xi<\omega_{1}$ where $\left|U_{\xi}\right|=n$ for some $n<\omega$. We will ignore W as it will play no role in finding an appropriate extension. As the sets $\left\{U_{\xi}: \xi<\omega_{1}\right\}$ are disjoint, $\min \left(U_{\xi}\right) \geq \xi$ for almost every (closed unboundedly many) ξ.

Using the lemma itself for α we can find (by some re-indexing) a stationary set $S \subseteq \omega_{1}$ and conditions which are edgeless extensions

$$
\bar{p}_{\xi} \leq p_{\omega \xi}, p_{\omega \xi+1}, \ldots, p_{\omega \xi+n} \quad(\xi \in S)
$$

with $\xi \leq U_{\omega \xi}<U_{\omega \xi+1}<\ldots<U_{\omega \xi+n}$ and we can even assume that \bar{p}_{ξ} determines a bound $\tau(\xi)<\omega \xi$ for those points $\gamma<\omega \xi$ which are joined
to two or more points in $U_{\omega \xi} \cup \ldots \cup U_{\omega \xi+n}$. This bound exists as there are only finitely many ordinals γ as described above (by the condition that Y_{α} has no subgraph of type $(\omega: 2)$). By the pressing-down lemma there is a stationary subset $S^{\prime} \subseteq S$ on which the function $\tau(\xi)$ is constant, $\tau(\xi)=\tau$. Using the lemma for α there are $\tau<\xi_{0}<\xi_{1}$ with an edgeless extension $r \leq \bar{p}_{\xi_{0}}, \bar{p}_{\xi_{1}}$. Now observe that r forces that any of the n points in $U_{\omega \xi_{0}}$ is joined to at most one point in $U_{\omega \xi_{1}} \cup \ldots \cup U_{\omega \xi_{1}+n}$. Again, we can assume that r determines these points. As there are only n elements in $U_{\omega \xi_{0}}$ and $n+1$ sets $U_{\omega \xi_{1}}, \ldots, U_{\omega \xi_{1}+n}$ there is some $0 \leq i \leq n$ with no edge between $U_{\omega \xi_{0}}$ and $U_{\omega \xi_{1}+i}$. This means that ($r, q_{\omega \xi_{0}} \cup q_{\omega \xi_{1}+i}$) is an edgeless extension of ($p_{\omega \xi_{0}}, q_{\omega \xi_{0}}$) and ($p_{\omega \xi_{1}+i}, q_{\omega \xi_{1}+i}$).

Lemma 3. If $1 \leq \alpha \leq \omega_{2}, p_{\xi} \in P_{\alpha}$ for $\xi<\omega_{1}, p_{\xi}(0)=\left(s \cup s_{\xi}, g_{\xi}, f_{\xi}\right)$ with the sets $\left\{s, s_{\xi}: \xi<\omega_{1}\right\}$ disjoint, $x_{\xi} \in s_{\xi}$ and $t_{\xi} \subseteq s_{\xi}$ is independent in g_{ξ}, then there are $\xi<\xi^{\prime}$ with a common extension r with $r(0)=\left(s^{*}, g^{*}, f^{*}\right)$ such that $\left\{x_{\xi}\right\} \times t_{\xi^{\prime}} \subseteq g^{*}$.

Proof (by induction on α). Assume first that $\alpha=1$. We can assume that we are given $p_{0}=\left(s \cup s_{0}, g_{0}, f_{0}\right), p_{1}=\left(s \cup s_{1}, g_{1}, f_{1}\right), s_{0}<s_{1}, x_{0} \in s_{0}$, $t_{1} \subseteq s_{1}$ with $g_{0} \cap[s]^{2}=g_{1} \cap[s]^{2}, f_{0}\left|\left(g_{0} \cap g_{1}\right)=f_{1}\right|\left(g_{0} \cap g_{1}\right), t_{1}$ independent in g_{1}. We try to extend p_{0}, p_{1} to $r=\left(s^{*}, g^{*}, f^{*}\right)$ where $s^{*}=s \cup s_{0} \cup s_{1}$, $g^{*}=g_{0} \cup g_{1} \cup\left(\left\{x_{0}\right\} \times t_{1}\right), f^{*} \supseteq f_{0}, f_{1}$ satisfying $f^{*}\left(x_{0}, y\right)=|s|$ for $y \in t_{1}$. We only have to show that r is a condition. Assume that $a<y<z$ form a complete subgraph of g^{*} yet $|a|>f^{*}(y, z)$. A moment's reflection shows that the only problematic case is if $y, z \in s_{1}$. A "new" point joined to them can only be x_{0} but this is excluded by our assumption that t_{1} be independent. We therefore proved the case $\alpha=1$.

The case when α is limit can be treated exactly as in Lemma 2.
Assume now that we are given the nice conditions $\left(p_{\xi}, q_{\xi}\right) \in P_{\alpha+1}$ with $p_{\xi}(0)=\left(s \cup s_{\xi}, g_{\xi}, f_{\xi}\right)$ where the sets $\left\{s, s_{\xi}: \xi<\omega_{1}\right\}$ are disjoint, and we are also given $x_{\xi} \in s_{\xi}$, and the independent $t_{\xi} \subseteq s_{\xi}$. We will call x_{ξ} the distinguished element of p_{ξ} and t_{ξ} the distinguished subset of p_{ξ}. Again, as in Lemma 2 we assume that the sets $\left\{q_{\xi}: \xi<\omega_{1}\right\}$ form a Δ-system, and $q_{\xi}=W \cup U_{\xi}$ holds for $\xi<\omega_{1}$ where $\left|U_{\xi}\right|=n$ for some $n<\omega$. Using Lemma $2 \aleph_{1}$ times we can create the edgeless extensions

$$
\bar{p}_{\xi} \leq p_{\omega \xi}, p_{\omega \xi+1}, \ldots, p_{\omega \xi+n} \quad(\xi \in S)
$$

for a stationary $S \subseteq \omega_{1}$ with $\omega \xi \leq U_{\omega \xi}<\ldots<U_{\omega \xi+n}$. We let $x_{\omega \xi}$ be the distinguished element and $t_{\omega \xi} \cup \ldots \cup t_{\omega \xi+n}$ the distinguished subset of \bar{p}_{ξ}. This is possible, as we made an edgeless extension, so the above set is independent. As in Lemma 2, we assume that \bar{p}_{ξ} forces a bound $\tau(\xi)<\omega \xi$ for those points below $\omega \xi$ which are joined to two or more vertices in $U_{\omega \xi} \cup \ldots \cup U_{\omega \xi+n}$. On a stationary set, $\tau(\xi)=\tau$. Pick two elements of
it, $\tau<\xi<\xi^{\prime}$, for which the inductive hypothesis applies, that is, there is a condition $r \leq \bar{p}_{\xi}, \bar{p}_{\xi^{\prime}}$ in which $x_{\omega \xi}$ is joined to $t_{\omega \xi} \cup \ldots \cup t_{\omega \xi+n}$ and also determining the edges between $U_{\omega \xi}$ and $U_{\omega \xi^{\prime}} \cup \ldots \cup U_{\omega \xi^{\prime}+n}$. As every point of $U_{\omega \xi}$ is joined to at most one point in $U_{\omega \xi^{\prime}} \cup \ldots \cup U_{\omega \xi^{\prime}+n}$, there is a $0 \leq i \leq n$ such that $r \Vdash U_{\omega \xi} \cup U_{\omega \xi^{\prime}+i}$ is independent. Now $\left(r, q_{\omega \xi} \cup q_{\omega \xi^{\prime}+i}\right)$ is an extension of $\left(p_{\omega \xi}, q_{\omega \xi}\right),\left(p_{\omega \xi^{\prime}+i}, q_{\omega \xi^{\prime}+i}\right)$ as required.

With Lemma 3 we can conclude the proof of the Theorem. Assume that $p \in P_{\omega_{2}}$ forces that A is an uncountable independent subset of X in $V^{P_{\omega_{2}}}$. There exist, for $\xi<\omega_{1}$, conditions $p_{\xi} \leq p$, and distinct ordinals x_{ξ}, such that $p_{\xi} \Vdash x_{\xi} \in A$. We assume that $p_{\xi}(0)=\left(s \cup s_{\xi}, g_{\xi}, f_{\xi}\right)$ with $x_{\xi} \in s_{\xi}$. Let x_{ξ} be the distinguished element and $\left\{x_{\xi}\right\}$ the distinguished subset of p_{ξ}. By Lemma 3 we can find $\xi<\xi^{\prime}$ with a common extension of p_{ξ}, $p_{\xi^{\prime}}$ which adds the edge $\left\{x_{\xi}, x_{\xi^{\prime}}\right\}$ to X, and therefore forces a contradiction.

References

[1] J. E. Baumgartner and A. Hajnal, A proof (involving Martin's axiom) of a partition relation, Fund. Math. 78 (1973), 193-203.
[2] W. W. Comfort and S. Negrepontis, Chain Conditions in Topology, Cambridge Univ. Press, 1982.
[3] B. Dushnik and E. W. Miller, Partially ordered sets, Amer. J. Math. 63 (1941), 600-610.
[4] P. Erdős and R. Rado, A partition calculus in set theory, Bull. Amer. Math. Soc. 62 (1956), 427-489.
[5] A. Hajnal, Some results and problems on set theory, Acta Math. Acad. Sci. Hungar. 11 (1960), 277-298.
[6] S. Todorčević, Forcing positive partition relations, Trans. Amer. Math. Soc. 280 (1983), 703-720.

Department of Computer Science
Eötvös University
Múzeum krt. 6-8
Budapest 1088, Hungary
E-mail: kope@cs.elte.hu

[^0]: 1991 Mathematics Subject Classification: 03E05, 03E35, 04A20.
 Research of the author was partially supported by the Hungarian National Science Research Grant No. T 016391.

