Distinguishing two partition properties of ω_1

by

Péter Komjáth (Budapest)

Abstract. It is consistent that $\omega_1 \to (\omega_1, (\omega : 2))^2$ but $\omega_1 \not\to (\omega_1, \omega + 2)^2$.

One of the classic results in combinatorial set theory is the Dushnik-Miller theorem [3] which states that $\omega_1 \to (\omega_1, \omega)^2$ holds and so gives the first transfinite variant of Ramsey's theorem. Later Erdős and Rado [4] extended this to $\omega_1 \to (\omega_1, \omega + 1)^2$ and for a long period it was open if the even stronger $\omega_1 \to (\omega_1, \omega + 2)^2$ holds. This was finally answered by A. Hajnal, who in [5] showed that if the continuum hypothesis is true then $\omega_1 \not\rightarrow (\omega_1, \omega + 2)^2$ holds. Actually, Hajnal gave a stronger example, he produced a graph witnessing $\omega_1 \not\rightarrow (\omega_1, (\omega : 2))^2$. (See [2] for applications of his method to topology.) The consistency of the positive partition relation $\omega_1 \to (\omega_1, (\omega : 2))^2$ was then given by J. Baumgartner and A. Hajnal in [1], in fact they deduced this from MA_{\aleph_1} . Only much later did Todorčević prove the consistency of the relation $\omega_1 \to (\omega_1, \omega + 2)^2$ and even that of $\omega_1 \to (\omega_1, \alpha)^2$ for any countable ordinal α (see [6]). In an unpublished work he also showed that MA_{\aleph_1} alone implies $\omega_1 \to (\omega_1, \omega^2)^2$ but at present it seems unsolved if the full positive result follows from Martin's axiom. Here we show that the two variants of the Hajnal partition theorem are indeed different; it is consistent that $\omega_1 \to (\omega_1, (\omega : 2))^2$ holds yet $\omega_1 \not\to (\omega_1, \omega + 2)^2$.

NOTATION. DEFINITIONS. If (A, <) is an ordered set and $A, B \subseteq V$ then A < B denotes that x < y holds whenever $x \in A, y \in B$. $A < \{a\}$ is denoted by A < a, etc. If S is a set and κ is a cardinal, then $[S]^{\kappa} = \{X \subseteq S : |X| = \kappa\}$ and $[S]^{<\kappa} = \{X \subseteq S : |X| < \kappa\}$. A graph is an ordered pair (V, X) where V is some set (the set of vertices) and $X \subseteq [V]^2$ (the set of edges). In some cases we identify the graph and X. If (V, X) is a graph, a set $A \subset V$ is a

¹⁹⁹¹ Mathematics Subject Classification: 03E05, 03E35, 04A20.

Research of the author was partially supported by the Hungarian National Science Research Grant No. T016391.

^[95]

complete subgraph if $[A]^2 \subseteq X$, and it is an independent set if $[A]^2 \cap X = \emptyset$. If X is a graph on some ordered set (V, <) and β , γ are ordinals, then a subgraph of type $(\beta : \gamma)$ is a subset $B \times C \subseteq X$ where the types of B, C are β , γ , respectively, and B < C.

If α , β , γ are ordinals, then the partition relation $\alpha \to (\beta, \gamma)^2$ denotes that the following statement is true: every graph on a vertex set of type α has either an independent set of type β or a complete subgraph of type γ . The negation of this statement is denoted, of course, by $\alpha \neq (\beta, \gamma)^2$. Similarly, $\alpha \to (\beta, (\gamma : \delta))^2$ denotes that in a graph on α if there is no independent set of type β then there is a complete bipartite graph of type $(\gamma : \delta)$. Again, the negation is obtained by crossing the arrow.

THEOREM. It is consistent that $\omega_1 \not\rightarrow (\omega_1, \omega + 2)^2$ yet $\omega_1 \rightarrow (\omega_1, (\omega : 2))^2$.

Proof. Let V be a model of ZFC+GCH. We are going to construct a finite support iteration of length ω_2 , $(P_{\alpha}, Q_{\alpha} : \alpha < \omega_2)$. Q_0 will give a counterexample to $\omega_1 \rightarrow (\omega_1, \omega + 2)^2$, for $0 < \alpha < \omega_2$ we select a graph Y_{α} on ω_1 with no subgraph of type ($\omega : 2$) and Q_{α} will be a forcing which adds an uncountable independent set.

We define Q_0 as follows. $q = (s, g, f) \in Q_0$ iff $s \in [\omega_1]^{<\omega}$, $g \subseteq [s]^2$, $f: g \to \omega$ with the property that if $a \cup \{x, y\}$ is a complete subgraph of (s, g), i.e., $[a \cup \{x, y\}]^2 \subseteq g$, and a < x < y then $|a| \leq f(x, y)$. $(s', g', f') \leq (s, g, f)$ iff $s' \supseteq s$, $f = f' \cap [s]^2$, $f' \supseteq f$. It is clear that Q_0 adds a graph X on ω_1 with no complete subgraph of type $\omega + 2$.

If $0 < \alpha < \omega_2$ and the iteration P_{α} is given assume that $Y_{\alpha} \in V^{P_{\alpha}}$ is a graph on ω_1 with no subgraph of type ($\omega : 2$). We set $q \in Q_{\alpha}$ iff $q \in [\omega_1]^{<\omega}$ is an indepedent set of Y_{α} . $q' \leq q$ iff $q' \supseteq q$. It is well known that Q_{α} is ccc. This implies that there is a $\delta < \omega_1$ such that if $q \in Q_{\alpha}$ has $q \cap \delta = \emptyset$ then q has extensions to arbitrarily large ordinals. We assume that every q is as described, or, better, by removing the part of Y_{α} below δ we can make $\delta = 0$. With this, Q_{α} will really add an uncountable independent subset of Y_{α} .

The results of [4] show that Q_0 is ccc and as all the other factors are ccc this way we get a ccc forcing P_{ω_2} . (Indeed, we will prove stronger statements soon.) This makes it possible that with a bookkeeping every appropriate graph on ω_1 can be some Y_{α} and so we prove the result if we show that Xremains a graph in $V^{P_{\alpha}}$ which contains no uncountable independent sets.

For $p \in P_{\alpha}$ $(1 \leq \alpha \leq \omega_2)$ we denote by $\operatorname{supp}(p)$ the support of p, which is a finite subset of α . If $\beta < \alpha$, then $p|\beta$ is the restriction of p to β . A condition $p \in P_{\alpha}$ is *nice* if for every $0 < \beta < \alpha$ the condition $p|\beta$ determines the finite set $p(\beta)$, that is, it is not only a name of it, but an actual set.

LEMMA 1. For $\alpha \leq \omega_2$ the nice conditions form a dense subset of P_{α} .

Proof (by induction on α). The statement is obvious for $\alpha = 1$. As every support is finite, there is nothing to prove for α limit. If $p \in P_{\alpha+1}$ pick a $p' \in P_{\alpha}, p' \leq p | \alpha$ determining $p(\alpha)$. Extend p' to a nice $p'' \leq p'$. Now $(p'', p(\alpha))$ is as required.

From now on we will mostly work with nice conditions.

Assume that $0 < \alpha \leq \omega_2, p_0, p_1 \in P_\alpha, p_i(0) = (s \cup s_i, g_i, f_i)$ for i < 2 with s, s_0, s_1 disjoint. We call an extension $q \leq p_0, p_1$ edgeless if for $q(0) = (s^*, g^*, f^*)$ the graph g^* contains no edge between s_0 and s_1 . We will frequently use the obvious fact that if $p'_i \leq p_i$ for i < 2 then every edgeless extension of p'_0, p'_1 is an edgeless extension of p_0, p_1 .

LEMMA 2. If $\alpha \leq \omega_2$, $k < \omega$, and \aleph_1 conditions are given in P_{α} then some k of them have an edgeless common extension.

Proof (by induction on α). Let $p_{\xi} \in P_{\alpha}$ be given. We can assume outright that $p_{\xi}(0) = (s \cup s_{\xi}, g_{\xi}, f_{\xi})$ with $\{s, s_{\xi} : \xi < \omega_1\}$ disjoint, and these conditions are compatible. We can also suppose that the supports of the conditions form a Δ -system.

The statement is obvious if $\alpha = 1$.

Assume now that α is limit. If $\operatorname{cf}(\alpha) \neq \omega_1$ then there is a $\beta < \alpha$ such that P_β contains an uncountable subfamily of $\{p_\xi : \xi < \omega_1\}$ and we are done by the inductive hypothesis. If $\operatorname{cf}(\alpha) = \omega_1$ then there is a $\beta < \alpha$ such that the supports are pairwise disjoint beyond β . This follows from the fact that they form a Δ -system. These arguments give the result for limit α .

It suffices, therefore, to show the lemma for $\alpha + 1$, assuming that it holds for α . Next we argue that it is enough to show it for k = 2. This will be done by remarking that if it is true for some $k \ge 2$ then it is true for 2k. Indeed, if the conditions $\{p_{\xi} : \xi < \omega_1\}$ are given and we know the lemma for k then we can inductively choose $\{q_{\xi} : \xi < \omega_1\}$ such that q_{ξ} is an edgeless extension of $\{p_{\xi} : \xi \in s_{\tau}\}$ where the s_{τ} 's are disjoint k-element subsets of ω_1 . If now q_{τ_0} and q_{τ_1} admit an edgeless extension r then r is an edgeless extension of $\{p_{\xi} : \xi \in s_{\tau_0} \cup s_{\tau_1}\}$ and so our claim is proved.

Assume therefore that (p_{ξ}, q_{ξ}) are nice conditions in $P_{\alpha+1}$. We can as well assume that the sets $\{q_{\xi} : \xi < \omega_1\}$ form a Δ -system and $q_{\xi} = W \cup U_{\xi}$ holds for $\xi < \omega_1$ where $|U_{\xi}| = n$ for some $n < \omega$. We will ignore W as it will play no role in finding an appropriate extension. As the sets $\{U_{\xi} : \xi < \omega_1\}$ are disjoint, $\min(U_{\xi}) \geq \xi$ for almost every (closed unboundedly many) ξ .

Using the lemma itself for α we can find (by some re-indexing) a stationary set $S \subseteq \omega_1$ and conditions which are edgeless extensions

$$\overline{p}_{\xi} \le p_{\omega\xi}, p_{\omega\xi+1}, \dots, p_{\omega\xi+n} \quad (\xi \in S)$$

with $\xi \leq U_{\omega\xi} < U_{\omega\xi+1} < \ldots < U_{\omega\xi+n}$ and we can even assume that \overline{p}_{ξ} determines a bound $\tau(\xi) < \omega\xi$ for those points $\gamma < \omega\xi$ which are joined

to two or more points in $U_{\omega\xi} \cup \ldots \cup U_{\omega\xi+n}$. This bound exists as there are only finitely many ordinals γ as described above (by the condition that Y_{α} has no subgraph of type $(\omega : 2)$). By the pressing-down lemma there is a stationary subset $S' \subseteq S$ on which the function $\tau(\xi)$ is constant, $\tau(\xi) = \tau$. Using the lemma for α there are $\tau < \xi_0 < \xi_1$ with an edgeless extension $r \leq \overline{p}_{\xi_0}, \overline{p}_{\xi_1}$. Now observe that r forces that any of the n points in $U_{\omega\xi_0}$ is joined to at most one point in $U_{\omega\xi_1} \cup \ldots \cup U_{\omega\xi_1+n}$. Again, we can assume that r determines these points. As there are only n elements in $U_{\omega\xi_0}$ and n+1 sets $U_{\omega\xi_1,\ldots,}, U_{\omega\xi_1+n}$ there is some $0 \leq i \leq n$ with no edge between $U_{\omega\xi_0}$ and $U_{\omega\xi_1+i}$. This means that $(r, q_{\omega\xi_0} \cup q_{\omega\xi_1+i})$ is an edgeless extension of $(p_{\omega\xi_0}, q_{\omega\xi_0})$ and $(p_{\omega\xi_1+i}, q_{\omega\xi_1+i})$.

LEMMA 3. If $1 \leq \alpha \leq \omega_2$, $p_{\xi} \in P_{\alpha}$ for $\xi < \omega_1$, $p_{\xi}(0) = (s \cup s_{\xi}, g_{\xi}, f_{\xi})$ with the sets $\{s, s_{\xi} : \xi < \omega_1\}$ disjoint, $x_{\xi} \in s_{\xi}$ and $t_{\xi} \subseteq s_{\xi}$ is independent in g_{ξ} , then there are $\xi < \xi'$ with a common extension r with $r(0) = (s^*, g^*, f^*)$ such that $\{x_{\xi}\} \times t_{\xi'} \subseteq g^*$.

Proof (by induction on α). Assume first that $\alpha = 1$. We can assume that we are given $p_0 = (s \cup s_0, g_0, f_0)$, $p_1 = (s \cup s_1, g_1, f_1)$, $s_0 < s_1, x_0 \in s_0$, $t_1 \subseteq s_1$ with $g_0 \cap [s]^2 = g_1 \cap [s]^2$, $f_0|(g_0 \cap g_1) = f_1|(g_0 \cap g_1)$, t_1 independent in g_1 . We try to extend p_0 , p_1 to $r = (s^*, g^*, f^*)$ where $s^* = s \cup s_0 \cup s_1$, $g^* = g_0 \cup g_1 \cup (\{x_0\} \times t_1), f^* \supseteq f_0, f_1$ satisfying $f^*(x_0, y) = |s|$ for $y \in t_1$. We only have to show that r is a condition. Assume that a < y < z form a complete subgraph of g^* yet $|a| > f^*(y, z)$. A moment's reflection shows that the only problematic case is if $y, z \in s_1$. A "new" point joined to them can only be x_0 but this is excluded by our assumption that t_1 be independent. We therefore proved the case $\alpha = 1$.

The case when α is limit can be treated exactly as in Lemma 2.

Assume now that we are given the nice conditions $(p_{\xi}, q_{\xi}) \in P_{\alpha+1}$ with $p_{\xi}(0) = (s \cup s_{\xi}, g_{\xi}, f_{\xi})$ where the sets $\{s, s_{\xi} : \xi < \omega_1\}$ are disjoint, and we are also given $x_{\xi} \in s_{\xi}$, and the independent $t_{\xi} \subseteq s_{\xi}$. We will call x_{ξ} the distinguished element of p_{ξ} and t_{ξ} the distinguished subset of p_{ξ} . Again, as in Lemma 2 we assume that the sets $\{q_{\xi} : \xi < \omega_1\}$ form a Δ -system, and $q_{\xi} = W \cup U_{\xi}$ holds for $\xi < \omega_1$ where $|U_{\xi}| = n$ for some $n < \omega$. Using Lemma 2 \aleph_1 times we can create the edgeless extensions

$$\overline{p}_{\xi} \le p_{\omega\xi}, p_{\omega\xi+1}, \dots, p_{\omega\xi+n} \quad (\xi \in S)$$

for a stationary $S \subseteq \omega_1$ with $\omega \xi \leq U_{\omega\xi} < \ldots < U_{\omega\xi+n}$. We let $x_{\omega\xi}$ be the distinguished element and $t_{\omega\xi} \cup \ldots \cup t_{\omega\xi+n}$ the distinguished subset of \overline{p}_{ξ} . This is possible, as we made an edgeless extension, so the above set is independent. As in Lemma 2, we assume that \overline{p}_{ξ} forces a bound $\tau(\xi) < \omega \xi$ for those points below $\omega\xi$ which are joined to two or more vertices in $U_{\omega\xi} \cup \ldots \cup U_{\omega\xi+n}$. On a stationary set, $\tau(\xi) = \tau$. Pick two elements of

it, $\tau < \xi < \xi'$, for which the inductive hypothesis applies, that is, there is a condition $r \leq \overline{p}_{\xi}, \overline{p}_{\xi'}$ in which $x_{\omega\xi}$ is joined to $t_{\omega\xi} \cup \ldots \cup t_{\omega\xi+n}$ and also determining the edges between $U_{\omega\xi}$ and $U_{\omega\xi'} \cup \ldots \cup U_{\omega\xi'+n}$. As every point of $U_{\omega\xi}$ is joined to at most one point in $U_{\omega\xi'} \cup \ldots \cup U_{\omega\xi'+n}$, there is a $0 \leq i \leq n$ such that $r \Vdash U_{\omega\xi} \cup U_{\omega\xi'+i}$ is independent. Now $(r, q_{\omega\xi} \cup q_{\omega\xi'+i})$ is an extension of $(p_{\omega\xi}, q_{\omega\xi}), (p_{\omega\xi'+i}, q_{\omega\xi'+i})$ as required. \blacksquare

With Lemma 3 we can conclude the proof of the Theorem. Assume that $p \in P_{\omega_2}$ forces that A is an uncountable independent subset of X in $V^{P_{\omega_2}}$. There exist, for $\xi < \omega_1$, conditions $p_{\xi} \leq p$, and distinct ordinals x_{ξ} , such that $p_{\xi} \Vdash x_{\xi} \in A$. We assume that $p_{\xi}(0) = (s \cup s_{\xi}, g_{\xi}, f_{\xi})$ with $x_{\xi} \in s_{\xi}$. Let x_{ξ} be the distinguished element and $\{x_{\xi}\}$ the distinguished subset of p_{ξ} . By Lemma 3 we can find $\xi < \xi'$ with a common extension of $p_{\xi}, p_{\xi'}$ which adds the edge $\{x_{\xi}, x_{\xi'}\}$ to X, and therefore forces a contradiction.

References

- J. E. Baumgartner and A. Hajnal, A proof (involving Martin's axiom) of a partition relation, Fund. Math. 78 (1973), 193-203.
- [2] W. W. Comfort and S. Negrepontis, *Chain Conditions in Topology*, Cambridge Univ. Press, 1982.
- [3] B. Dushnik and E. W. Miller, Partially ordered sets, Amer. J. Math. 63 (1941), 600-610.
- P. Erdős and R. Rado, A partition calculus in set theory, Bull. Amer. Math. Soc. 62 (1956), 427–489.
- [5] A. Hajnal, Some results and problems on set theory, Acta Math. Acad. Sci. Hungar. 11 (1960), 277–298.
- S. Todorčević, Forcing positive partition relations, Trans. Amer. Math. Soc. 280 (1983), 703-720.

Department of Computer Science Eötvös University Múzeum krt. 6–8 Budapest 1088, Hungary E-mail: kope@cs.elte.hu

> Received 21 May 1997; in revised form 8 July 1997