
FUNDAMENTA
MATHEMATICAE

155 (1998)

Distinguishing two partition properties of ω1

by

Péter K o m j á t h (Budapest)

Abstract. It is consistent that ω1 → (ω1, (ω : 2))2 but ω1 6→ (ω1, ω + 2)2.

One of the classic results in combinatorial set theory is the Dushnik–
Miller theorem [3] which states that ω1 → (ω1, ω)2 holds and so gives the first
transfinite variant of Ramsey’s theorem. Later Erdős and Rado [4] extended
this to ω1 → (ω1, ω+1)2 and for a long period it was open if the even stronger
ω1 → (ω1, ω+ 2)2 holds. This was finally answered by A. Hajnal, who in [5]
showed that if the continuum hypothesis is true then ω1 6→ (ω1, ω+2)2 holds.
Actually, Hajnal gave a stronger example, he produced a graph witnessing
ω1 6→ (ω1, (ω : 2))2. (See [2] for applications of his method to topology.)
The consistency of the positive partition relation ω1 → (ω1, (ω : 2))2 was
then given by J. Baumgartner and A. Hajnal in [1], in fact they deduced
this from MAℵ1 . Only much later did Todorčević prove the consistency of
the relation ω1 → (ω1, ω + 2)2 and even that of ω1 → (ω1, α)2 for any
countable ordinal α (see [6]). In an unpublished work he also showed that
MAℵ1 alone implies ω1 → (ω1, ω

2)2 but at present it seems unsolved if the
full positive result follows from Martin’s axiom. Here we show that the two
variants of the Hajnal partition theorem are indeed different; it is consistent
that ω1 → (ω1, (ω : 2))2 holds yet ω1 6→ (ω1, ω + 2)2.

Notation. Definitions. If (A,<) is an ordered set and A,B ⊆ V then
A < B denotes that x < y holds whenever x ∈ A, y ∈ B. A < {a} is denoted
by A < a, etc. If S is a set and κ is a cardinal, then [S]κ = {X ⊆ S : |X| = κ}
and [S]<κ = {X ⊆ S : |X| < κ}. A graph is an ordered pair (V,X) where
V is some set (the set of vertices) and X ⊆ [V ]2 (the set of edges). In some
cases we identify the graph and X. If (V,X) is a graph, a set A ⊆ V is a
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complete subgraph if [A]2 ⊆ X, and it is an independent set if [A]2 ∩X = ∅.
If X is a graph on some ordered set (V,<) and β, γ are ordinals, then a
subgraph of type (β : γ) is a subset B ×C ⊆ X where the types of B, C are
β, γ, respectively, and B < C.

If α, β, γ are ordinals, then the partition relation α → (β, γ)2 denotes
that the following statement is true: every graph on a vertex set of type
α has either an independent set of type β or a complete subgraph of type
γ. The negation of this statement is denoted, of course, by α 6→ (β, γ)2.
Similarly, α → (β, (γ : δ))2 denotes that in a graph on α if there is no
independent set of type β then there is a complete bipartite graph of type
(γ : δ). Again, the negation is obtained by crossing the arrow.

Theorem. It is consistent that ω1 6→ (ω1, ω+2)2 yet ω1 → (ω1, (ω : 2))2.

P r o o f. Let V be a model of ZFC+GCH. We are going to construct
a finite support iteration of length ω2, (Pα, Qα : α < ω2). Q0 will give a
counterexample to ω1 → (ω1, ω + 2)2, for 0 < α < ω2 we select a graph Yα
on ω1 with no subgraph of type (ω : 2) and Qα will be a forcing which adds
an uncountable independent set.

We define Q0 as follows. q = (s, g, f) ∈ Q0 iff s ∈ [ω1]<ω, g ⊆ [s]2,
f : g → ω with the property that if a∪{x, y} is a complete subgraph of (s, g),
i.e., [a∪ {x, y}]2 ⊆ g, and a < x < y then |a| ≤ f(x, y). (s′, g′, f ′) ≤ (s, g, f)
iff s′ ⊇ s, f = f ′ ∩ [s]2, f ′ ⊇ f . It is clear that Q0 adds a graph X on ω1

with no complete subgraph of type ω + 2.
If 0 < α < ω2 and the iteration Pα is given assume that Yα ∈ V Pα is a

graph on ω1 with no subgraph of type (ω : 2). We set q ∈ Qα iff q ∈ [ω1]<ω

is an indepedent set of Yα. q′ ≤ q iff q′ ⊇ q. It is well known that Qα is ccc.
This implies that there is a δ < ω1 such that if q ∈ Qα has q ∩ δ = ∅ then
q has extensions to arbitrarily large ordinals. We assume that every q is as
described, or, better, by removing the part of Yα below δ we can make δ = 0.
With this, Qα will really add an uncountable independent subset of Yα.

The results of [4] show that Q0 is ccc and as all the other factors are ccc
this way we get a ccc forcing Pω2 . (Indeed, we will prove stronger statements
soon.) This makes it possible that with a bookkeeping every appropriate
graph on ω1 can be some Yα and so we prove the result if we show that X
remains a graph in V Pα which contains no uncountable independent sets.

For p ∈ Pα (1 ≤ α ≤ ω2) we denote by supp(p) the support of p, which
is a finite subset of α. If β < α, then p|β is the restriction of p to β. A
condition p ∈ Pα is nice if for every 0 < β < α the condition p|β determines
the finite set p(β), that is, it is not only a name of it, but an actual set.

Lemma 1. For α ≤ ω2 the nice conditions form a dense subset of Pα.
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P r o o f (by induction on α). The statement is obvious for α = 1. As
every support is finite, there is nothing to prove for α limit. If p ∈ Pα+1

pick a p′ ∈ Pα, p′ ≤ p|α determining p(α). Extend p′ to a nice p′′ ≤ p′. Now
(p′′, p(α)) is as required.

From now on we will mostly work with nice conditions.
Assume that 0 < α ≤ ω2, p0, p1 ∈ Pα, pi(0) = (s ∪ si, gi, fi) for i <

2 with s, s0, s1 disjoint. We call an extension q ≤ p0, p1 edgeless if for
q(0) = (s∗, g∗, f∗) the graph g∗ contains no edge between s0 and s1. We will
frequently use the obvious fact that if p′i ≤ pi for i < 2 then every edgeless
extension of p′0, p′1 is an edgeless extension of p0, p1.

Lemma 2. If α ≤ ω2, k < ω, and ℵ1 conditions are given in Pα then
some k of them have an edgeless common extension.

P r o o f (by induction on α). Let pξ ∈ Pα be given. We can assume
outright that pξ(0) = (s∪ sξ, gξ, fξ) with {s, sξ : ξ < ω1} disjoint, and these
conditions are compatible. We can also suppose that the supports of the
conditions form a ∆-system.

The statement is obvious if α = 1.
Assume now that α is limit. If cf(α) 6= ω1 then there is a β < α such

that Pβ contains an uncountable subfamily of {pξ : ξ < ω1} and we are done
by the inductive hypothesis. If cf(α) = ω1 then there is a β < α such that
the supports are pairwise disjoint beyond β. This follows from the fact that
they form a ∆-system. These arguments give the result for limit α.

It suffices, therefore, to show the lemma for α+1, assuming that it holds
for α. Next we argue that it is enough to show it for k = 2. This will be
done by remarking that if it is true for some k ≥ 2 then it is true for 2k.
Indeed, if the conditions {pξ : ξ < ω1} are given and we know the lemma for
k then we can inductively choose {qξ : ξ < ω1} such that qξ is an edgeless
extension of {pξ : ξ ∈ sτ} where the sτ ’s are disjoint k-element subsets of
ω1. If now qτ0 and qτ1 admit an edgeless extension r then r is an edgeless
extension of {pξ : ξ ∈ sτ0 ∪ sτ1} and so our claim is proved.

Assume therefore that (pξ, qξ) are nice conditions in Pα+1. We can as
well assume that the sets {qξ : ξ < ω1} form a ∆-system and qξ = W ∪ Uξ
holds for ξ < ω1 where |Uξ| = n for some n < ω. We will ignore W as it will
play no role in finding an appropriate extension. As the sets {Uξ : ξ < ω1}
are disjoint, min(Uξ) ≥ ξ for almost every (closed unboundedly many) ξ.

Using the lemma itself for α we can find (by some re-indexing) a sta-
tionary set S ⊆ ω1 and conditions which are edgeless extensions

pξ ≤ pωξ, pωξ+1, . . . , pωξ+n (ξ ∈ S)

with ξ ≤ Uωξ < Uωξ+1 < . . . < Uωξ+n and we can even assume that pξ
determines a bound τ(ξ) < ωξ for those points γ < ωξ which are joined
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to two or more points in Uωξ ∪ . . . ∪ Uωξ+n. This bound exists as there are
only finitely many ordinals γ as described above (by the condition that Yα
has no subgraph of type (ω : 2)). By the pressing-down lemma there is a
stationary subset S′ ⊆ S on which the function τ(ξ) is constant, τ(ξ) = τ .
Using the lemma for α there are τ < ξ0 < ξ1 with an edgeless extension
r ≤ pξ0 , pξ1 . Now observe that r forces that any of the n points in Uωξ0 is
joined to at most one point in Uωξ1 ∪ . . . ∪ Uωξ1+n. Again, we can assume
that r determines these points. As there are only n elements in Uωξ0 and
n + 1 sets Uωξ1 , . . . , Uωξ1+n there is some 0 ≤ i ≤ n with no edge between
Uωξ0 and Uωξ1+i. This means that (r, qωξ0 ∪ qωξ1+i) is an edgeless extension
of (pωξ0 , qωξ0) and (pωξ1+i, qωξ1+i).

Lemma 3. If 1 ≤ α ≤ ω2, pξ ∈ Pα for ξ < ω1, pξ(0) = (s ∪ sξ, gξ, fξ)
with the sets {s, sξ : ξ < ω1} disjoint , xξ ∈ sξ and tξ ⊆ sξ is independent in
gξ, then there are ξ < ξ′ with a common extension r with r(0) = (s∗, g∗, f∗)
such that {xξ} × tξ′ ⊆ g∗.

P r o o f (by induction on α). Assume first that α = 1. We can assume
that we are given p0 = (s ∪ s0, g0, f0), p1 = (s ∪ s1, g1, f1), s0 < s1, x0 ∈ s0,
t1 ⊆ s1 with g0 ∩ [s]2 = g1 ∩ [s]2, f0|(g0 ∩ g1) = f1|(g0 ∩ g1), t1 independent
in g1. We try to extend p0, p1 to r = (s∗, g∗, f∗) where s∗ = s ∪ s0 ∪ s1,
g∗ = g0 ∪ g1 ∪ ({x0} × t1), f∗ ⊇ f0, f1 satisfying f∗(x0, y) = |s| for y ∈ t1.
We only have to show that r is a condition. Assume that a < y < z form a
complete subgraph of g∗ yet |a| > f∗(y, z). A moment’s reflection shows that
the only problematic case is if y, z ∈ s1. A “new” point joined to them can
only be x0 but this is excluded by our assumption that t1 be independent.
We therefore proved the case α = 1.

The case when α is limit can be treated exactly as in Lemma 2.
Assume now that we are given the nice conditions (pξ, qξ) ∈ Pα+1 with

pξ(0) = (s ∪ sξ, gξ, fξ) where the sets {s, sξ : ξ < ω1} are disjoint, and we
are also given xξ ∈ sξ, and the independent tξ ⊆ sξ. We will call xξ the
distinguished element of pξ and tξ the distinguished subset of pξ. Again, as
in Lemma 2 we assume that the sets {qξ : ξ < ω1} form a ∆-system, and
qξ = W ∪ Uξ holds for ξ < ω1 where |Uξ| = n for some n < ω. Using
Lemma 2 ℵ1 times we can create the edgeless extensions

pξ ≤ pωξ, pωξ+1, . . . , pωξ+n (ξ ∈ S)

for a stationary S ⊆ ω1 with ωξ ≤ Uωξ < . . . < Uωξ+n. We let xωξ be the
distinguished element and tωξ ∪ . . . ∪ tωξ+n the distinguished subset of pξ.
This is possible, as we made an edgeless extension, so the above set is inde-
pendent. As in Lemma 2, we assume that pξ forces a bound τ(ξ) < ωξ
for those points below ωξ which are joined to two or more vertices in
Uωξ ∪ . . . ∪ Uωξ+n. On a stationary set, τ(ξ) = τ . Pick two elements of



Two partition properties of ω1 99

it, τ < ξ < ξ′, for which the inductive hypothesis applies, that is, there
is a condition r ≤ pξ, pξ′ in which xωξ is joined to tωξ ∪ . . . ∪ tωξ+n and
also determining the edges between Uωξ and Uωξ′ ∪ . . . ∪ Uωξ′+n. As every
point of Uωξ is joined to at most one point in Uωξ′ ∪ . . .∪Uωξ′+n, there is a
0 ≤ i ≤ n such that r ° Uωξ ∪ Uωξ′+i is independent. Now (r, qωξ ∪ qωξ′+i)
is an extension of (pωξ, qωξ), (pωξ′+i, qωξ′+i) as required.

With Lemma 3 we can conclude the proof of the Theorem. Assume that
p ∈ Pω2 forces that A is an uncountable independent subset of X in V Pω2 .
There exist, for ξ < ω1, conditions pξ ≤ p, and distinct ordinals xξ, such
that pξ ° xξ ∈ A. We assume that pξ(0) = (s ∪ sξ, gξ, fξ) with xξ ∈ sξ. Let
xξ be the distinguished element and {xξ} the distinguished subset of pξ. By
Lemma 3 we can find ξ < ξ′ with a common extension of pξ, pξ′ which adds
the edge {xξ, xξ′} to X, and therefore forces a contradiction.
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