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Abstract. We deal with some problems posed by Monk [Mo 1], [Mo 3] and related to
cardinal invariants of ultraproducts of Boolean algebras. We also introduce and investigate
several new cardinal invariants.

0. Introduction. In the present paper we deal with cardinal invariants
of Boolean algebras and ultraproducts. Several questions in this area were
posed by Monk ([Mo 1], [Mo 2], [Mo 3]) and we address some of them. A
general schema of these problems can be presented in the following fashion.
Let inv be a cardinal function on Boolean algebras. Suppose that Bi are
Boolean algebras (for i < κ) and that D is an ultrafilter on the cardinal κ.
We ask what is the relation between inv(

∏
i<κBi/D) and

∏
i<κ inv(Bi)/D.

For each invariant inv we may consider two questions:

Is inv
(∏

i<κ

Bi/D
)
<
∏

i<κ

inv(Bi)/D possible?(<)inv

Is inv
(∏

i<κ

Bi/D
)
>
∏

i<κ

inv(Bi)/D possible?(>)inv

We deal with these questions for several cardinal invariants. We find it help-
ful to introduce “finite” versions invn of the invariants. This helps us in
some problems as inv+(

∏
i<κBi/D) ≥ ∏i<κ inv+

f(i)(Bi)/D for each func-
tion f : κ→ ω such that limD f = ω.

In Section 1 we will give a general setting of the subject. These results
were known much earlier (at least to the second author). We present them

1991 Mathematics Subject Classification: Primary 03G05, 03E05; Secondary 06E15,
03E35.

The research of the second author was partially supported by DFG grant Ko 490/7-1.
This is publication number 534 of the second author.

[101]



102 A. Rosłanowski and S. Shelah

here to establish a uniform approach to the invariants and show how the
Łoś theorem applies. In the last part of this section we present a simple
method which uses the main result of [MgSh 433] to show the consistency
of the inequality inv(

∏
i<κBi/D) <

∏
i<κ inv(Bi)/D for several invariants

inv. These problems will be fully studied and presented in [MgSh 433].
Section 2 is devoted to the (topological) density of Boolean algebras.

We show here that, in ZFC, the answer to the question (<)d is “yes”. This
improves Theorem A of [KoSh 415] (a consistency result) and answers (neg-
atively) Problem J of [Mo 3]. It should be remarked here that the answer to
(>)d is “no” (see [Mo 2]).

In the third section we introduce strong λ-systems which are one of
tools for our constructions. Then we apply them to build Boolean algebras
which (under some set-theoretical assumptions) show that the inequalities
(>)h-cof and (>)inc are possible (a consistency). These results seem to be
new, the second one can be considered as a partial answer to Problem X of
[Mo 3]. We get similar constructions for spread, hereditary Lindelöf degree
and hereditary density. However, they are not sufficient to give in ZFC
positive answers to the corresponding questions (>)inv. These investigations
are continued in [Sh 620], where the relevant Boolean algebras are built in
ZFC. The consistencies of the reverse inequalities will be presented in [MgSh
433].

The fourth section deals with the independence number and the tight-
ness. It has been known that both questions (>)ind and (>)t have the answer
“yes”. In the forthcoming paper [MgSh 433] it will be shown that (<)ind,
(<)t may be answered positively (a consistency result; see also Section 1).
Our results here were inspired by other sections of this paper and [Sh 503].
We introduce and study “finite” versions of the independence number get-
ting a surprising asymmetry between odd and even cases. A completely new
cardinal invariant appears naturally here. It has some reflection in what we
can show for the tightness. Finally, we re-present and re-formulate the main
result of [Sh 503] (on products of interval Boolean algebras) putting it in
our general schema and showing explicitly its heart.

History . A regular study of cardinal invariants of Boolean algebras was
initiated in [Mo 1], where several problems were posed. Those problems
stimulated and directed the work in the area. Some of the problems were
naturally related to the behaviour of the invariants in ultraproducts and that
found a reflection in papers coming later. Several bounds, constructions and
consistency results were proved in [Pe], [Sh 345], [KoSh 415], [MgSh 433],
[Sh 479], [Sh 503]. New techniques of constructions of Boolean algebras were
developed in [Sh 462] (though the relevance of the methods for ultraproducts
was not stated explicitly there).
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This paper is, in a sense, a development of the notes “F99: Notes on
cardinal invariants. . . ” which the second author wrote in January 1993. A
part of these notes is incorporated here, other results will be presented in
[MgSh 433] and [RoSh 599].

The methods and tools for building Boolean algebras which we present
here will be applied in a forthcoming paper to deal with the problems of
attainment in different representations of cardinal invariants.

Notation. Our notation is rather standard. All cardinals are assumed to
be infinite and usually they are denoted by λ, κ, θ, Θ (with possible indices).

We say that a family {〈sα0 , . . . , sαm−1〉 : α < λ} of finite sequences forms
a ∆-system with the root {0, . . . ,m∗ − 1} (for some m∗ ≤ m) if the sets
{sαm∗ , . . . , sαm−1} (for α < λ) are pairwise disjoint and

(∀α < λ)(∀l < m∗)(sαl = s0
l ).

In Boolean algebras we use ∨ (and
∨

), ∧ (and
∧

) and − for the Boolean
operations. If B is a Boolean algebra and x ∈ B then x0 = x and x1 = −x.

The sign ~ stands for the operation of the free product of Boolean al-
gebras (see [Ko], Def. 11.1) and

∏w denotes the weak product of Boolean
algebras (as defined in [Ko], p. 112).

All Boolean algebras we consider are assumed to be infinite (and we
will not repeat this assumption). Similarly whenever we consider a cardinal
invariant inv(B) we assume that it is infinite.

Acknowledgments. We would like to thank Professor Donald Monk
for his very helpful comments at various stages of preparation of the paper
as well as for many corrections and improvements.

1. Invariants and ultraproducts

1.1. Definable cardinal invariants. In this section we try to systematize
the definition of cardinal invariants and we define what is a def.car. invariant
(definable cardinal invariant) of Boolean algebras. Then we get immediate
consequences of this approach for ultraproducts. Actually, Boolean algebras
are irrelevant in this section and can be replaced by any structures.

Definition 1.1. (1) For a (not necessarily first order) theory T in the lan-
guage of Boolean algebras plus one distinguished predicate P = P0 (unary if
not said otherwise) plus, possibly, some others P1, P2, . . . we define cardinal
invariants invT and inv+

T of Boolean algebras by (for a Boolean algebra B)
invT (B) := sup{‖P‖ : (B,Pn)n is a model of T},
inv+

T (B) := sup{‖P‖+ : (B,Pn)n is a model of T},
InvT (B) := {‖P‖ : (B,Pn)n is a model of T}.

We call inv(+)
T a def.car. invariant (definable cardinal invariant).
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(2) If in (1), T is first order, we call such a cardinal invariant a def.f.o.car.
invariant (definable first order cardinal invariant).

(3) A theory T is n-universal in (P0, P1) if all sentences φ ∈ T are of the
form

(∀x1, . . . , xn ∈ P0)(ψ(x̄)),

where all occurrences of x1, . . . , xn in ψ are free and P0 does not appear
there and any appearance of P1 in ψ is of the form P1(xi0 , . . . , xik) with no
more complicated terms.

If we allow all n then T is said to be universal in (P0, P1).
Note: quantifiers can still occur in ψ(x̄) on other variables.
(4) If in (1), T is universal in (P0, P1), first order except the demand that

P1 is a well ordering of P0 we call such a cardinal invariant a def.u.w.o.car.
invariant (definable universal well ordered cardinal invariant).

(5) If in (1), P1 is a linear order on P (i.e. T says so) and in the defi-
nition of invT (B) and inv+(B) we replace ‖P‖ by the cofinality of (P, P1)
then we call those cardinal invariants def.cof. invariants (definable cofinality
invariants, cf-invT ); we can have the f.o. and the u.w.o. versions. We define
similarly cf-InvT (B) as the set of such cofinalities. To use cf-inv we can put
it in + (we may omit “cf-” if the context allows it). We can use order type
instead of cofinality and cardinality writing ot-inv. For cardinality we may
use car-inv.

(6) For a theory T as in (2), the minimal definable first order cardinal
invariant of B (determined by T ) is min InvT (B).

To avoid a long sequence of definitions we refer the reader to [Mo 1],
[Mo 2] for the definitions of the cardinal functions below. Those invariants
which are studied in this paper are defined in the respective sections.

Proposition 1.2. (1) The following cardinal invariants of Boolean al-
gebras are def.f.o.car. invariants (of course each has two versions: inv and
inv+): c (cellularity), Length, irr (irredundance), cardinality , ind (indepen-
dence), s (spread), Inc (incomparability).

(2) The following cardinal invariants of Boolean algebras are def.f.o.cof.
invariants: hL (hereditary Lindelöf ), hd (hereditary density).

(3) The following cardinal invariants of Boolean algebras are def.u.w.o.-
car. invariants: Depth, t (tightness), h-cof (hereditary cofinality), hL, hd.

(4) π (algebraic density) and d (topological density) are minimal def.f.o.-
card. invariants.

P r o o f. All unclear cases are presented in the next sections.

Proposition 1.3. (1) If inv+
T (B) is a limit cardinal then the sup in the

definition of invT (B) is not attained and invT (B) = inv+
T (B).
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(2) If inv+
T (B) is not a limit cardinal then it is (invT (B))+ and the sup

in the definition of invT (B) is attained.

Definition 1.4. A linear order (I,<) is Θ-like if

‖I‖ = Θ and (∀a ∈ I)(‖{b ∈ I : b < a}‖ < Θ).

Proposition 1.5. Assume that inv(+)
T is a definable first order cardinal

invariant. Assume further that D is an ultrafilter on a cardinal κ, Bi is a
Boolean algebra (for i < κ) and B :=

∏
i<κBi/D. Then:

(a) if λi < inv+
T (Bi) for i < κ then

∏
i<κ λi/D < inv+

T (B),
(b)

∏
i<κ inv+

T (Bi)/D ≤ inv+
T (B),

(c) if invT (B) <
∏
i<κ invT (Bi)/D then for the D-majority of i < κ,

λi := invT (Bi) is a limit cardinal and the linear order
∏
i<κ(λi, <)/D is

(invT (B))+-like; hence for the D-majority of i < κ, λi is a regular limit
cardinal (i.e. weakly inaccessible),

(d) min InvT (B) ≤∏i<κ min InvT (Bi)/D.

P r o o f. (a) This is an immediate consequence of the Łoś theorem.
(b) For i < κ define λi = inv+

T (Bi). Suppose that λ <
∏
i<κ λi/D. As∏

i<κ(λi, <)/D is a linear order of cardinality > λ we find f ∈∏i<κ λi with
∥∥∥
{
g/D ∈

∏

i<κ

λi/D : g/D < f/D
}∥∥∥ ≥ λ.

Since f(i) < inv+
T (Bi) (for i < κ) we may apply (a) to conclude that

λ ≤
∥∥∥
∏

i<κ

f(i)/D
∥∥∥ < inv+

T (B).

(c) Let λ=invT (B) and λi=invT (Bi), and assume that λ <
∏
i<κ λi/D.

By part (b) we conclude that then

(∗) λ+ =
∏

i<κ

inv+
T (Bi)/D =

∏

i<κ

invT (Bi)/D = inv+
T (B).

Let A = {i < κ : invT (Bi) < inv+
T (Bi)}. Note that A 6∈ D: if not then

we may assume A = κ and for each i < κ we have λi < inv+
T (Bi). By

part (a) and (∗) above we get λ+ =
∏
i<κ λi/D < inv+

T (B), a contradiction.
Consequently, we may assume that A = ∅. Thus for each i < κ we have
λi = invT (Bi) = inv+

T (Bi) and λi is a limit cardinal, λi = sup InvT (Bi) 6∈
InvT (Bi) (by 1.3).

The linear order
∏
i<κ(λi, <)/D is of cardinality λ+ (by (∗)). Suppose

f ∈∏i<κ λi and choose µi ∈ InvT (Bi) such that f(i) ≤ µi for i < κ. Then
∥∥∥
∏

i<κ

f(i)/D
∥∥∥ ≤

∏

i<κ

µi/D ∈ InvT
(∏

i<κ

Bi/D
)
⊆ λ+.

Hence the order
∏
i<κ(λi, <)/D is λ+-like.
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Finally, assume that A = {i < κ : λi is singular} ∈ D, so without loss
of generality A = κ. Choose cofinal subsets Qi of λi such that Qi ⊆ λi =
supQi, ‖Qi‖ = cf(λi) (for i < κ) and let Mi = (λi, <,Qi, . . .). Take the
ultrapower M =

∏
i<κMi/D and note that M |= “QM is unbounded in

<M”. As earlier, ‖QM‖ =
∏
i<κ ‖Qi‖/D ≤ λ so cf(

∏
i<κ(λi, <)/D) ≤ λ,

which contradicts the λ+-likeness of the product order.
(d) This follows from (a).

Definition 1.6. Let (I,<) be a partial order.

(1) The depth Depth(I) of the order I is the supremum of the cardinal-
ities of well ordered (by <) subsets of I.

(2) I is Θ-Depth-like if I is a linear ordering which contains a well ordered
cofinal subset of length Θ but Depth+({b ∈ I : b < a}, <) ≤ Θ for each
a ∈ I.

Lemma 1.7. Let D be an ultrafilter on a cardinal κ, and λi (for i < κ)
be cardinals. Then:

(1) if
∏
i<κ(λ+

i , <)/D contains a <D-increasing sequence 〈fα/D :
α ≤ µ0〉 where µ0 is a cardinal then µ0 < Depth+(

∏
i<κ(λi, <)/D),

(2) Depth(
∏
i<κ(λ+

i , <)/D) ≤ Depth+(
∏
i<κ(λi, <)/D) and hence

Depth+(
∏
i<κ(λ+

i , <)/D) ≤ (Depth+(
∏
i<κ(λi, <)/D))+.

P r o o f. (1) Define µ1 = cf(
∏
i<κ(λi, <)/D), so that we have µ1 <

Depth+(
∏
i<κ(λi, <)/D). If µ0 ≤ µ1 then we are done, so assume that

µ0 > µ1 and consider two cases.

Case A: cf(µ0) 6= µ1. Let 〈gβ/D : β < µ1〉 be an increasing sequence
cofinal in

∏
i<κ(λi, <)/D. For each i < κ choose an increasing sequence

〈Aiξ : ξ < λi〉 of subsets of fµ0(i) such that fµ0(i) =
⋃
ξ<λi

Aiξ and ‖Aiξ‖ < λi.
Then

(∀α < µ0)(∃β < µ1)({i < κ : fα(i) ∈ Aigβ(i)} ∈ D)

and, passing to a subsequence of 〈fα/D : α < µ0〉 if necessary, we may
assume that for some β0 < µ1 and all α < µ0,

{i < κ : fα(i) ∈ Aigβ0 (i)} ∈ D
(this is the place where we use the additional assumption cf(µ0) 6= µ1). Each
set Aigβ0 (i) is order-isomorphic to some ordinal g(i) < λi (as ‖Aigβ0 (i)‖ < λi).
These isomorphisms give us a “copy” of the sequence 〈fα/D : α < µ0〉 below
some g/D ∈∏i<κ λi/D, witnessing µ0 < Depth+(

∏
i<κ(λi, <)/D).

Case B: cf(µ0) = µ1 < µ0. For each regular cardinal µ ∈ (cf(µ0), µ0)
we may apply Case A to µ and the sequence 〈fα/D : α ≤ µ〉 and conclude
that µ < Depth+(

∏
i<κ(λi, <)/D). Hence µ0 ≤ Depth+(

∏
i<κ(λi, <)/D).
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Let 〈µξ : ξ < cf(µ0)〉 ⊆ (cf(µ0), µ0) be an increasing sequence of regu-
lar cardinals cofinal in µ0. Note that for each ξ < cf(µ0) and a function
f ∈ ∏

i<κ λi we can find a <D-increasing sequence 〈h∗α : α < µξ〉 ⊆∏
i<κ λi such that f <D h∗0. Using this fact we construct inductively a

<D-increasing sequence 〈hα/D : α < µ0〉 ⊆
∏
i<κ λi/D (which will show

that µ0 < Depth+(
∏
i<κ(λi, <)/D)):

Suppose we have defined hα for α < µξ (for some ξ < cf(µ0)). Since
µξ is regular and µξ 6= µ1 the sequence 〈hα/D : α < µξ〉 cannot be cofinal
in
∏
i<κ(λi, <)/D. Take f/D ∈∏i<κ λi/D which <D-bounds the sequence.

By the previous remark we find a <D-increasing sequence 〈hα/D : µξ ≤ α <
µξ+1〉 ⊆ ∏i<κ λi/D such that f <D hµξ . So the sequence 〈hα : α < µξ+1〉
is increasing.

Now suppose that we have defined hα/D for α < supξ<ξ0 µ
ξ for some

limit ordinal ξ0 < cf(µ0). The cofinality of the sequence 〈hα/D : α <
supξ<ξ0 µ

ξ〉 is cf(ξ0) < µ1. Therefore, the sequence is bounded in
∏
i<κ λi/D

and we may proceed as in the successor case and define hα/D for α ∈
[supξ<ξ0 µ

ξ, µξ0).
(2) follows immediately from (1).

Proposition 1.8. Assume that inv(+)
T is a definable universal well or-

dered cardinal invariant. Assume further that D is an ultrafilter on a cardinal
κ, Bi is a Boolean algebra (for i < κ) and B :=

∏
i<κBi/D. Then:

(a) if λi < inv+
T (Bi) for i < κ then Depth+(

∏
i<κ(λi, <)/D) ≤ inv+

T (B),
(b) Depth(

∏
i<κ(inv+

T (Bi), <)/D) ≤ inv+
T (B),

(c) if invT (B) < Depth(
∏
i<κ(invT (Bi), <)/D) then for the D-majority

of i < κ, λi := invT (Bi) is a limit cardinal and , moreover , the linear order∏
i<κ(λi, <)/D is (invT (B))+-Depth-like; hence for the D-majority of i < κ,

λi is a regular limit cardinal , i.e. weakly inaccessible.

P r o o f. (a) Suppose µ < Depth+(
∏
i<κ(λi, <)/D). As λi < inv+

T (Bi) we
find P i0, P

i
1, . . . such that Mi := (Bi, P i0, P

i
1, . . .) |= T , ‖P i0‖ ≥ λi. Look at

M :=
∏
i<κMi/D. Note that (PM0 , PM1 ) is a linear ordering such that

Depth+((PM0 , PM1 )) ≥ Depth+
(∏

i<κ

(λi, <)/D
)
.

Thus we find P ∗0 ⊆ PM0 such that ‖P ∗0 ‖ = µ and (P ∗0 , P
M
1 ) is a well ordering.

As formulas of T are universal in (P0, P1), first order except the demand
that P1 is a well order on P0 we conclude that M∗ := (B,P ∗0 , P

M
1 , . . .) |= T .

Hence µ = ‖P ∗0 ‖ < inv+
T (B).

(b) We consider two cases here.

Case 1: For the D-majority of i < κ we have invT (Bi) < inv+
T (Bi).
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Then we may assume that for each i < κ,

λi := invT (Bi) < inv+
T (Bi) = λ+

i .

By Lemma 1.7(2) we have

Depth
(∏

i<κ

(λ+
i , <)/D

)
≤ Depth+

(∏

i<κ

(λi, <)/D
)
.

On the other hand, it follows from (a) that

Depth+
(∏

i<κ

(λi, <)/D
)
≤ inv+

T (B)

and consequently we are done (in this case).

Case 2: For the D-majority of i < κ we have invT (Bi) = inv+
T (Bi). So

suppose that invT (Bi) = inv+
T (Bi) for each i < κ. Suppose that

ḡ = 〈gα/D : α < µ〉 ⊆
∏

i<κ

inv+
T (Bi)/D

is a <D-increasing sequence.
If ḡ is bounded then we apply (a) to conclude that µ < inv+

T (B). If ḡ is
unbounded (so cofinal) then there are two possibilities: either µ is a limit
cardinal or it is a successor. In the first case we apply the previous argument
to initial segments of ḡ and we conclude that µ ≤ inv+

T (B). In the second
case we necessarily have µ = cf(

∏
i<κ(inv+

T (Bi), <)/D) = µ+
0 (for some µ0)

and µ0 < inv+
T (B). Thus µ ≤ inv+

T (B).
Consequently, if there is an increasing (well ordered) sequence of length

µ in
∏
i<κ(inv+

T (Bi), <)/D then µ ≤ inv+
T (B) and Case 2 is done too.

(c) Assume that λ := invT (B) < Depth(
∏
i<κ(invT (Bi), <)/D). By (b)

we then get

λ+ = Depth
(∏

i<κ

(invT (Bi), <)/D
)

= Depth
(∏

i<κ

(inv+
T (Bi), <)/D

)
(∗∗)

= inv+
T (B).

Suppose that {i < κ : invT (Bi) < inv+
T (Bi)} ∈ D. Then by (a) we have

Depth+
(∏

i<κ

(invT (Bi), <)/D
)
≤ inv+

T (B),

but (by (∗∗) and 1.3) we know that

Depth+
(∏

i<κ

(invT (Bi), <)/D
)

= λ++ > inv+
T (B),

a contradiction. Consequently, for the D-majority of i < κ we have λi =
invT (Bi) = inv+

T (Bi) and λi is a limit cardinal.
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Note that if f ∈ ∏i<κ invT (Bi) then Depth+(
∏
i<κ(f(i), <)/D) ≤ λ+

(because of the previous remark, (∗∗) and (a)). Moreover, (∗∗) implies that
there is an increasing sequence 〈fα/D : α < λ+〉 ⊆ ∏i<κ(invT (Bi), <)/D.
By what we noted earlier the sequence has to be unbounded (so cofinal).
Consequently, the linear order

∏
i<κ(invT (Bi), <)/D is λ+-Depth-like. Now

assume that A = {i < κ : λi is singular} ∈ D. Let Qi ⊆ λi be a cofinal
subset of λi of size cf(λi) (for i < κ). Then Depth+(

∏
i<κ(Qi, <)/D) ≤ λ+

but
∏
i<κQi/D is cofinal in

∏
i<κ invT (Bi)/D—a contradiction, as the last

order has cofinality λ+.

Proposition 1.9. Assume that inv(+)
T is a definable first order cofinality

invariant. Assume further that D is an ultrafilter on a cardinal κ, Bi is a
Boolean algebra (for i < κ) and B :=

∏
i<κBi/D. Then:

(a) if λi ∈ InvT (Bi) for i < κ and λ = cf(
∏
i<κ(λi, <)/D) then λ ∈

InvT (B),
(b) if inv+

T (B) ≤ cf(
∏
i<κ invT (Bi)/D) then for the D-majority of i <

κ, invT (Bi) is a limit cardinal.

P r o o f. Should be clear.

Proposition 1.10. Suppose that T is a finite n-universal (in (P0, P1))
theory in the language of Boolean algebras plus two predicates P0, P1 and the
theory says that P1 is a linear ordering on P0. Let inv(+)

T be the corresponding
cardinality invariant. Assume further that D is an ultrafilter on a cardinal
κ, Bi is a Boolean algebra (for i < κ) and B :=

∏
i<κBi/D. Lastly , assume

λ → (µ)nκ, n ≥ 2 and λ ∈ Inv(B). Then for the D-majority of i < κ,
µ < inv+

T (Bi).

P r o o f. We may assume that T = {ψ0, ψ}, where the sentence ψ0 says
“P1 is a linear ordering of P0” (and we denote this ordering by <) and

ψ = (∀x0 < . . . < xn−1)(φ(x̄))

where φ is a formula in the language of Boolean algebras. Note that a formula

(∀x0, . . . , xn−1 ∈ P0)(φ(x̄))

as in 1.1(3) is equivalent to the formula
∧

f∈nn
(∀x0, . . . , xn−1 ∈ P0)

([ ∧

f(k)=f(l)

xk = xl &
∧

f(k)<f(l)

xk < xl

]
⇒ φf0 (x̄)

)
,

where, for any f : n → n, the formula φf0 is obtained from φ by replacing
appearances of P1(xi, xj) by either xi = xi or xi 6= xi. Consequently, the
above assumption is easily justified.

Let A = {i < κ : µ < inv+
T (Bi)}. Assume that A 6∈ D. As λ ∈ InvT (B)

we find P0, P1 such that ‖P0‖ = λ and P1 = < is a linear ordering of P0
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and (B,P0, P1) |= ψ. For each element of
∏
i<κBi/D we fix a representative

of this equivalence class (so we will freely pass from f/D to f with no
additional comments). Now, we define a colouring F : [P0]n → κ by

F (f0/D, . . . , fn−1/D) = the first i ∈ κ \A such that
if f0/D < . . . < fn−1/D
then f0(i), . . . , fn−1(i) are pairwise distinct and
Bi |= φ[f0(i), . . . , fn−1(i)].

The i exists since A 6∈ D and

B |= “f0/D, . . . , fn−1/D are distinct and φ[f0/D, . . . , fn−1/D]”.

By the assumption λ → (µ)nκ we find W ∈ [P0]µ which is homogeneous for
F . Let i be the constant value of F on W and put P i0 = {f(i) : f/D ∈ W}
(recall that we fixed representatives of the equivalence classes). Now we may
introduce P i1 as the linear ordering of P i0 induced by P1.

Note that f(i) 6= f ′(i) we have for distinct f/D, f ′/D ∈ W and if
f0(i), . . . , fn−1(i) ∈ P i0 and f0(i) <P i1 f1(i) <P i1 . . . <P i1 fn−1(i) then
f0/D < . . . < fn−1/D and hence

Bi |= φ[f0(i), . . . , fn−1(i)].

As ‖P i0‖ = µ and (Bi, P i0, P
i
1) |= ψ ∧ ψ0 we conclude that µ < inv+

T (Bi),
which contradicts i 6∈ A.

One of the tools in studying the invariants are their “finite” versions (for
invariants determined by infinite theories). Suppose T = {φn : n < ω} and
if T is supposed to describe a def.u.w.o.car. invariant then φ0 already says
that P1 is a well ordering of P0. Let Tn = {φm : m < n} for n < ω.

Conclusion 1.11. Suppose that D is a uniform ultrafilter on κ and
f : κ → ω is such that limD f = ω. Let Bi (for i < κ) be Boolean algebras
and B =

∏
i<κBi/D.

(1) If T is first order then:

(a) if λi ∈ InvT f(i)(Bi) (for i < κ) then
∏
i<κ λi/D ∈ InvT (B),

(b)
∏
i<κ inv+

T f(i)(Bi)/D ≤ inv+
T (B).

(2) If T is u.w.o. then:

(a) if λi ∈ InvT f(i)(Bi) (for i < κ) and λ < Depth+∏
i<κ(λi, <)/D

then λ ∈ InvT (B),
(b) Depth(

∏
i<κ(inv+

T f(i)(Bi), <)/D) ≤ inv+
T (B).

P r o o f. Like 1.5 and 1.8.

1.2. An example concerning the question (<)inv. Now we are going to
show how the main result of [MgSh 433] may be used to give affirmative
answers to the questions (<)inv for several cardinal invariants.
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Proposition 1.12. Suppose that D is an ℵ1-complete ultrafilter on κ
and Bi,α are Boolean algebras (for α < λi and i < κ). Let C :

∏
i<κ λi/D →∏

i<κ λi be a choice function (so C(x) ∈ x for each equivalence class x ∈∏
i<κ λi/D).

(1) If Bi = ~α<λiBi,α then
∏

i<κ

Bi/D ' ~
{∏

i<κ

Bi,C(x)(i)/D : x ∈
∏

i<κ

λi/D
}
.

(2) If Bi =
∏w
α<λi

Bi,α then

∏

i<κ

Bi/D '
w∏{∏

i<κ

Bi,C(x)(i)/D : x ∈
∏

i<κ

λi/D
}
.

Definition 1.13. Let O be an operation on Boolean algebras.

(1) For a theory T we define the property ¤T
O:

¤T
O if µ is a cardinal and Bi are Boolean algebras for i < µ+ then

sup
i<µ

invT (Bi) ≤ invT ( O
i<µ

Bi), invT ( O
i<µ+

Bi) ≤ µ+ sup
i<µ+

invT (Bi).

(2) Of course we may define the corresponding property for any cardi-
nal invariant (not necessarily of the form invT ). But then we additionally
demand that τ(B) ≤ ‖B‖ (where τ is the invariant considered).

Proposition 1.14. Suppose that a def.car. invariant invT (or just an
invariant τ) satisfies either ¤T

~ or ¤T∏w and suppose that for each cardinal
χ there is a Boolean algebra B such that χ ≤ invT (B) and there is no weakly
inaccessible cardinal in the interval (χ, ‖B‖]. Assume further that

(�) 〈λi : i < κ〉 is a sequence of weakly inaccessible cardinals, λi > κ+,
D is an ℵ1-complete ultrafilter on κ and

∏
i<κ(λi, <)/D is µ+-like

(for some cardinal µ).

Then there exist Boolean algebras Bi for i < κ such that invT (Bi) = λi (for
i < κ) and invT (

∏
i<κBi/D) ≤ µ. So we have

∏

i<κ

invT (Bi)/D = µ+ > invT
(∏

i<κ

Bi/D
)
.

P r o o f. Assume that invT satisfies ¤T
~. For i < κ and α < λi fix an

algebra Bi,α such that

‖α‖ ≤ invT (Bi,α) ≤ ‖Bi,α‖ < λi

(possible by our assumptions on invT ) and let Bi = ~α<λiBi,α. By 1.12 we
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have ∏

i<κ

Bi/D = ~
{∏

i<κ

Bi,C(x)(i)/D : x ∈
∏

i<κ

λi/D
}
,

where C :
∏
i<κ λi/D →

∏
i<κ λi is a choice function. So by ¤T

~ (the second
inequality),

invT
(∏

i<κ

Bi/D
)
≤ µ+ sup

{
invT

(∏

i<κ

Bi,C(x)(i)/D
)

: x ∈
∏

i<κ

λi/D
}
.

Since ‖Bi,α‖ < λi and
∏
i<κ(λi, <)/D is µ+-like, for each x ∈ ∏i<κ λi/D

we have
invT

(∏

i<κ

Bi,C(x)(i)/D
)
≤
∏

i<κ

‖Bi,C(x)(i)‖/D ≤ µ.

Moreover, by the first inequality of ¤T
~, for each α < λi,

‖α‖ ≤ invT (Bi,α) ≤ invT (Bi) ≤ ‖Bi‖ = λi

and thus invT (Bi) = λi.

Remark. 1. The consistency of (�) is the main result of [MgSh 433],
where several variants of it and their applications are presented.

2. If invT is either a def.f.o.car. invariant or a def.u.w.o.car. invariant
then we may apply 1.5(c) or 1.8(c) respectively to conclude that for the
D-majority of i < κ we have inv(Bi) = inv+(Bi). Consequently, in these
cases we may slightly modify the construction in 1.14 to get additionally
inv(Bi) = inv+(Bi) for each i < κ.

3. Proposition 1.14 applies to several cardinal invariants. For example
the condition ¤T∏w is satisfied by: Depth (see §4 of [Mo 2]), Length (§7 of
[Mo 2]), Ind (§10 of [Mo 2]), π-character (§11 of [Mo 2]) and the tightness t
(§12 of [Mo 2]).

Moreover, 1.14 can be applied to the topological density d, since this
cardinal invariant satisfies the corresponding condition ¤d

~. [Note that
d(~i<µ+Bi) = max{λ, supi<µ+ d(Bi)}, where λ is the first cardinal such that
µ+ ≤ 2λ, so λ ≤ µ; see §5 of [Mo 2].]

2. Topological density. The topological density of a Boolean algebra
B (i.e. the density of its Stone space UltB) equals min{κ : B is κ-centred}.
To describe it as a minimal definable first order cardinality invariant we use
the theory defined below.

Definition 2.1. (1) For n < ω define the formulas φdn by

φd0 = (∀x)(∃y ∈ P0)(x 6= 0⇒ P1(y, x)) & (∀x)(∀y ∈ P0)(P1(y, x)⇒ x 6= 0)

and for n > 0,

φdn = (∀x0, . . . , xn)(∀y ∈ P0)(P1(y, x0) & . . .& P1(y, xn)⇒ x0∧. . .∧xn 6= 0).
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(2) For n ≤ ω let Tnd = {φk : k < n}.
(3) For a Boolean algebra B and n ≤ ω we put dn(B) = min InvTnd (B).
(4) For 1 ≤ n < ω, a subset X of a Boolean algebra B has the n-

intersection property provided that the meet of any n elements of X is
nonzero; if X has the n-intersection property for all n, then X is centred ,
or has the finite intersection property .

Note that dω(B) is the topological density d(B) of B. Since T 0
d = ∅,

the invariant d0(B) is just 0. The theory Tn+1
d says that for each y ∈ P0

the set Xy := {x : P1(y, x)} has the (n + 1)-intersection property and⋃
y∈P0

Xy = B \ {0}. Thus, for 1 ≤ n < ω, dn(B) is the smallest cardinal κ
such that B \ {0} is the union of κ sets having the n-intersection property.

We easily get (like 1.11):

Fact 2.2. (1) For a Boolean algebra B, the sequence 〈dn(B) : 1 ≤ n ≤ ω〉
is increasing and d(B) ≤∏1≤n<ω dn(B).

(2) If D is an ultrafilter on a cardinal κ, f : κ→ ω is a function such that
limD f = ω and Bi (for i < κ) are Boolean algebras then d(

∏
i<κBi/D) ≤∏

i<κ df(i)(Bi)/D.

Fact 2.3. (1) If 1 ≤ n < ω and X is a dense subset of B \ {0}, then
dn(B) is the least cardinal κ such that X can be written as a union of κ sets
each with the n-intersection property.

(2) If X is a dense subset of B \ {0}, then dω(B) is the least cardinal
κ such that X can be written as a union of κ sets each with the finite
intersection property.

(3) If B is an interval Boolean algebra then d2(B) = d(B).

P r o o f. Suppose X ⊆ B \ {0} is dense and 1 ≤ n < ω. Obviously
X can be written as a union of dn(B) sets each with the n-intersection
property. If X =

⋃
i<κ Yi, where the Yi have the n-intersection property,

let Zi := {b ∈ B : (∃y ∈ Yi)(y ≤ b)}. Then each Zi has the n-intersection
property and B \ {0} =

⋃
i<κ Zi. This proves condition (1); condition (2)

is proved similarly. Condition (3) follows since for an interval algebra B
intervals are dense in B and if a1, . . . , ak are intervals such that ai ∧ aj 6= 0
then

∧k
i=1 ai 6= 0.

A natural question that arises here is if we can distinguish the invariants
dn. The positive answer is given by the examples below.

Example 2.4. Let κ be an infinite cardinal and n > 2. There is a Boolean
algebra B such that dn(B) > κ and dn−1(B) ≤ 2<κ.

P r o o f. Let B be the Boolean algebra generated freely by {xη : η ∈ κn}
except that if ν ∈ κ>n and ν∧〈l〉 ⊆ ηl ∈ κn (for l < n) then xη0 ∧ . . .∧xηn−1

= 0.
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Suppose that B+ =
⋃
i<κDi. For η ∈ κn let i(η) < κ be such that

xη ∈ Di(η). Now we inductively try to define η∗ ∈ κn:
Assume that we have defined η∗¹i (i < κ) and we want to choose η∗(i).

If there is l < n such that i(η) 6= i for each η ⊇ η∗¹i∧〈l〉 then we choose one
such l and put η∗(i) = l. If there is no such l then we stop our construction.

If the construction was stopped at stage i < κ (i.e. we were not able
to choose η∗(i)) then for each l < n we have a sequence ηl ∈ κn such
that η∗¹i∧〈l〉 ⊆ ηl and i(ηl) = i. Thus xη0 , . . . , xηn−1 ∈ Di and xη0 ∧ . . . ∧
xηn−1 = 0, so that Di does not satisfy the n-intersection property. If we
could carry out our construction up to κ then we would get η∗ ∈ κn such
that xη∗ 6∈

⋃
i<κDi. Consequently, the procedure had to stop and we have

proved that dn(B) > κ.
Now we are going to show that dn−1(B) ≤ 2<κ. Let X be the set of all

nonzero elements of B of the form

xη0 ∧ . . . ∧ xηl ∧ (−xηl+1) ∧ . . . ∧ (−xηk)

in which the sequences η0, . . . , ηk ∈ κn are pairwise distinct and 0 < l <
k < ω. Clearly X is dense in B. We are going to apply Fact 2.3(1). To this
end, if 0 < l < k, α < κ, and 〈ν0, . . . , νk〉 is a sequence of distinct members
of αn, let Dl,k,α

〈ν0,...,νk〉 be the set

{xη0∧. . .∧xηl∧(−xηl+1)∧. . .∧(−xηk) : ν0 ⊆ η0 ∈ κn, . . . , νk ⊆ ηk ∈ κn}\{0}.
Note that X is the union of all these sets. There are 2<κ possibilities for the
parameters, so it suffices to show that each of the sets Dl,k,α

〈ν0,...,νk〉 has the
(n− 1)-intersection property.

Note first that if η0, . . . , ηk ∈ κn are such that ηi 6= ηj when i ≤ l < j ≤ k
and

B |= xη0 ∧ . . . ∧ xηl ∧ (−xηl+1) ∧ . . . ∧ (−xηk) = 0,
then necessarily there is ν ∈ <κn such that

(∀m < n)(∃i ≤ l)(ν∧〈m〉 ⊆ ηl).
Now we check that Dl,k,α

〈ν0,...,νk〉 has the (n−1)-intersection property, where
0 < l < k < ω, α < κ, and ν0, . . . , νk are pairwise distinct elements of αn.
Thus suppose that

xηj0
∧ . . . ∧ xηjl ∧ (−xηjl+1

) ∧ . . . ∧ (−xηjk)

are members of Dl,k,α
〈ν0,...,νk〉 for each j < n− 1; and suppose that

B |=
∧

j<n−1

xηj0
∧ . . . ∧

∧

j<n−1

xηjl
∧

∧

j<n−1

(−xηjl+1
) ∧ . . . ∧

∧

j<n−1

(−xηjk) = 0.

By the above remark, choose ν ∈ <κn such that for all m < n there exist
an i(m) ≤ l and a j(m) < n − 1 such that ν∧〈m〉 ⊆ η

j(m)
i(m) (note that if
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j0, j1 < n − 1, i0 ≤ l and l + 1 ≤ i1 ≤ k then ηj0i0 6= ηj1i1 as ν0, . . . , νk are
pairwise distinct).

Case 1: νi ⊆ ν for some i ≤ k. Then for each m < n we have νi ⊆ ν ⊆
ν∧〈m〉 ⊆ η

j(m)
i(m) and consequently i(m) = i (for m < n). As j(m) < n − 1

for m < n we find m0 < m1 < n − 1 such that j(m0) = j(m1) = j. Then
ν∧〈m0〉 ⊆ ηji and ν∧〈m1〉 ⊆ ηji give a contradiction.

Case 2: νi 6⊆ ν for all i ≤ k. Note that for all m < n the sequences ν∧〈m〉
and νi(m) are compatible. By the case we are in, it follows that ν is shorter
than νi(m). So ν∧〈m〉 ⊆ νi(m) and i(m) < l. But then by construction,
Dl,k,α
〈ν0,...νk〉 is empty, a contradiction.

Example 2.5. Let λi be cardinals (for i < κ) such that 2κ <
∏
i<κ λi,

and 2 < n < ω. Then there is a Boolean algebra B such that

dn−1(B) ≤
∑
α<κ

∏

i<α

λi and dn(B) = ‖B‖ =
∏

i<κ

λi.

In particular , if λ is a strong limit cardinal with cf(λ) < λ and 2 < n <
ω then there is a Boolean algebra B such that dn(B) = ‖B‖ = 2λ and
dn−1(B) ≤ λ.

P r o o f. Let B be the Boolean algebra generated freely by {xη : η ∈∏
i<κ λi} except that if α < κ, v ∈∏i<α λi, v ⊆ ηl ∈

∏
i<κ λi and ‖{ηl(α) :

l < n}‖ = n then xη0 ∧ . . . ∧ xηn−1 = 0.
The same arguments as in the previous example show that

dn−1(B) ≤
∑
α<κ

∏

i<α

λi.

Suppose now that
∏
i<κ λi =

⋃{Dj : j < θ}, θ <
∏
i<κ λi and if

η0, . . . , ηn−1 ∈ Dj (for some j < θ) then xη0 ∧ . . .∧xηn−1 6= 0. Thus the trees
Tj = {η¹α : α < κ, η ∈ Dj} have no splitting into more than n − 1 points
and hence ‖Dj‖ ≤ nκ <

∏
i<κ λi for all j < θ and we get a contradiction,

proving dn(B) =
∏
i<κ λi.

Corollary 2.6. Let λ be a strong limit cardinal with κ < cf(λ) < λ.
Suppose that D is an ultrafilter on κ which is not ℵ1-complete. Then there
exist Boolean algebras Bi (for i < κ) such that

d
(∏

i<κ

Bi/D
)
≤ λ < 2λ =

∏

i<κ

d(Bi)/D.

P r o o f. As D is not ℵ1-complete we find a function f : κ → ω \ 2
such that limD f = ω. Let Bi be such that ‖Bi‖ = df(i)+1(Bi) = 2λ and
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df(i)(Bi) ≤ λ (see 2.5). Then, by 2.2, we have

d
(∏

i<κ

Bi/D
)
≤
∏

i<κ

df(i)(Bi)/D ≤ λκ = λ.

As d(Bi) = df(i)+1(Bi) = 2λ we have
∏
i<κ d(Bi)/D = 2λ.

Remark. 1. Corollary 2.6 applied e.g. to λ = iω1 and κ = ω gives a
negative answer to Problem J of [Mo 3].

2. The algebras Bi in 2.6 are of a quite large size: ‖Bi‖ = 2λ, with λ
strong limit of cofinality > κ. Moreover, the cardinal λ had to be singular.
The natural question if these are real limitations is answered by the theorem
below. This example, though more complicated than the previous ones, has
several nice properties. E.g. it produces algebras of size 2(2ℵ0 )+

already.

Theorem 2.7. Assume that θ = cf(θ) and θκ = θ. Then there are
Boolean algebras Bγ for γ < κ such that d(Bγ) = d2(Bγ) = θ+ and
d(
∏
γ<κBγ/D) ≤ θ for every nonprincipal ultrafilter D on κ.

P r o o f. Let λ = 2θ. Choose ηα,i ∈ θθ for α < λ and i < θ+ such that:

(1) if ηα1,i1 = ηα2,i2 then (α1, i1) = (α2, i2),
(2) for each f ∈ θθ and i < θ+ the set {α < λ : (∀ε < θ)(f(ε) ≤ ηα,i(ε))}

is of size λ.

(The choice is possible as there are 2θ = λ pairs (f, i) to take care of and
for each such pair we have 2θ candidates for ηα,i.)

For two functions f, g ∈ θθ we write f <∗ g if and only if

‖{ε < θ : f(ε) ≥ g(ε)}‖ < θ.

We say that a set A ⊆ λ × θ+ is i-large (for i < θ+) if for every f ∈ θθ we
have ‖{α < λ : (α, i) ∈ A & f <∗ ηα,i}‖ = λ, and we say that A is large if
sup{i < θ+ : A is i-large} = θ+.

Claim 2.7.1. The union of at most θ sets which are not large is not large.

P r o o f. Should be clear as cf(θ) = θ < cf(λ).

Now we are going to describe the construction of the Boolean algebras
we need. First suppose that S ⊆ {j < θ+ : cf(j) = θ} is a stationary set and
let S+ = {(α, j) ∈ λ× θ+ : j ∈ S}. Now choose a sequence F̄ = 〈Fε : ε < θ〉
such that:

(3) Fε is a function with domain dom(Fε) = S+,
(4) if i ∈ S and α < λ then Fε(α, i) = (Fε,1(α, i), Fε,2(α, i)) ∈ λ× i,
(5) if i ∈ S and α < λ then the sequence 〈Fε,2(α, i) : ε < θ〉 is strictly

increasing with limit i,
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(6) if 〈Aε : ε < θ〉 is a sequence of large subsets of λ× θ+ then for some
stationary set S′ ⊆ S for each i ∈ S′ and f ∈ θθ we have

‖{α < λ : f <∗ ηα,i & (∀ε < θ)(Fε(α, i) ∈ Aε)}‖ = λ,

(7) if ε < ζ < θ then ηFε(α,i) <
∗ ηFζ(α,i).

To construct the sequence F̄ fix i ∈ S. Let {(fα, gα, j̄α) : α < λ} enumer-
ate with λ-repetitions all triples (f, g, j̄) such that f ∈ θθ, j̄ = 〈jε : ε < θ〉
is an increasing cofinal sequence in i and g ∈ θλ is such that

(∗) ε < ζ < θ ⇒ ηg(ε),jε <
∗ ηg(ζ),jζ

(recall that cf(i) = θ and λ = 2θ). Now we inductively choose 〈βα : α < λ〉
⊆ λ such that βα 6∈ {βδ : δ < α} and fα <

∗ ηβα,i (this is possible by (2)).
Finally, for α < λ and ε < θ define Fε(α, i) by:

• if α = βδ for some δ < λ then Fε(α, i) = (gδ(ε), jδε ),
• if α 6∈ {βδ : δ < λ} then Fε(α, i) = (gα(ε), jαε )

(where j̄δ = 〈jδε : ε < θ〉). Conditions (3)–(5) and (7) are easily shown to be
satisfied. To check clause (6) suppose that 〈Aε : ε < θ〉 is a sequence of large
sets and let S′ be the set of all i ∈ S such that there exists an increasing
cofinal sequence 〈jε : ε < θ〉 ⊆ i such that Aε is jε-large (for each ε < θ).
The set S′ is stationary. [Why? For ε < θ let Cε be the set of all points in
θ+ which are limits of increasing sequences from {j < θ+ : Aε is j-large}.
Clearly each Cε is a club of θ+ and thus

⋂
ε<θ Cε is a club of θ+. Now one

easily checks that S ∩⋂ε<θ Cε ⊆ S′.]
We are going to show that S′ works for 〈Aε : ε < θ〉. Take i ∈ S′ and

suppose that f ∈ θθ. Let j̄ = 〈jε : ε < θ〉 ⊆ i be an increasing cofinal
sequence witnessing i ∈ S′. Take g ∈ θλ such that

ε < ζ < θ ⇒ [ηg(ε),jε <
∗ ηg(ζ),jζ & (g(ε), jε) ∈ Aε]

(possible by the jε-largeness of Aε and the regularity of θ). When we defined
Fε(α, i) (for ε < θ and α < λ), the triple (f, g, j̄) appeared λ times in the
enumeration {(fα, gα, j̄α) : α < λ}. Whenever (f, g, j̄) = (fα, gα, j̄α) we had
Fε(βα, i) = (gα(ε), jαε ) = (g(ε), jε) ∈ Aε and f = fα <

∗ ηβα,i. Consequently,
if i ∈ S′ and f ∈ θθ then

‖{α < λ : f <∗ ηα,i & (∀ε < θ)(Fε(α, i) ∈ Aε)}‖ = λ

and condition (6) holds.
For the sequence F̄ we define a Boolean algebra BF̄ : it is freely generated

by {xα,i : α < λ, i < θ+} except that if Fε(α1, i1) = (α2, i2) for some ε < θ
then xα1,i1 ∧ xα2,i2 = 0.

Now fix a sequence 〈Sγ : γ < κ〉 of pairwise disjoint stationary subsets
of {j ∈ θ+ : cf(j) = θ} and for each γ < κ fix a sequence F̄γ = 〈F γε : ε < θ〉
satisfying conditions (3)–(7) above (for Sγ).
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Claim 2.7.2. For each γ < κ, d2(BF̄γ ) > θ.

P r o o f. Let F̄ = F̄γ and suppose that B+
F̄

=
⋃
ε<θDε. Let Aε = {(α, i) :

xα,i ∈ Dε} and let A′ε = Aε if Aε is large and A′ε = λ × θ+ otherwise. So
the sets A′ε are large (for ε < θ) and by condition (6) so is the set

A := {(α, i) ∈ λ× θ+ : (∀ε < θ)(Fε(α, i) ∈ A′ε)}.
Since Aε 6= A′ε implies that Aε is not large we see (by 2.7.1) that

A \
⋃
{Aε : Aε 6= A′ε & ε < θ} 6= ∅.

So take (α, i) ∈ A \ ⋃{Aε : Aε 6= A′ε & ε < θ}. We find ε < θ such that
xα,i ∈ Dε (so (α, i) ∈ Aε). Then Aε = A′ε and we get Fε(α, i) ∈ Aε. Hence
xα,i, xFε(α,i) ∈ Dε and xα,i ∧ xFε(α,i) = 0.

Claim 2.7.3. Let D be a nonprincipal ultrafilter on κ. Then

d
( ∏
γ<κ

BF̄γ/D
)
≤ θ.

P r o o f. Fix functions h : θ+ × θ+ → θ and h∗ : θ+ × θ → θ+ such that
for i ∈ (θ, θ+) and ζ ∈ θ,

j1 < j2 < i⇒ h(i, j1) 6= h(i, j2), h∗(i, ζ) < i,

j < i⇒ h∗(i, h(i, j)) = j.

For γ < κ let Zγ ⊆ BF̄γ be the set of all meets xa0 ∧ . . . ∧ xan−1 ∧ (−xb0) ∧
. . . ∧ (−xbm−1) such that a0, . . . , an−1, b0, . . . , bm−1 ∈ λ × θ+ are with no
repetition, and for all k, l < n, r < m and all ε < θ,

F γε (ak) 6= al, F γε (br) 6= al, F γε (al) 6= br.

Clearly Zγ is dense in BF̄γ and Z :=
∏
γ<κ Zγ/D is dense in

∏
γ<κBF̄γ/D.

For e ∈∏γ<κ Zγ and γ < κ let:

• e(γ) =
∧
l<n(e,γ) xa(e,l,γ) ∧

∧
l<m(e,γ)−xb(e,l,γ),

• a(e, l, γ) = (α(e, l, γ), i(e, l, γ)),
• b(e, l, γ) = (β(e, l, γ), j(e, l, γ)),
• baseγ(e) = {a(e, l, γ) : l < n(e, γ)} ∪ {b(e, l, γ) : l < m(e, γ)},
• base(e) =

⋃
γ<κ baseγ(e),

• u0(e) = {i < θ+ : (∃α < λ)((α, i) ∈ base(e))},
• u1(e) be the (topological) closure of u0(e),
• u2(e) be the closure of u1(e) under the functions h, h∗,
• ζ(e) be the first ε < θ such that

(∀γ < κ)(∀(α, i) ∈ base(e) ∩ dom(F γε ))(sup(u1(e) ∩ i) < F γε,2(α, i)).

[Note that ‖base(e)‖ ≤ κ < cf(θ) = θ, so ‖u0(e)‖, ‖u1(e)‖, ‖u2(e)‖ ≤ κ;
looking at the definition of ζ(e) remember that (α, i) ∈ dom(F γε ) implies
cf(i) = θ.]
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Next for each γ < κ, (α, i) ∈ S+
γ and ζ0 < θ choose εγζ0(α, i) < θ such that

the sequence 〈ηFγζ (α,i)(ε
γ
ζ0

(α, i)) : ζ ≤ ζ0〉 is strictly increasing (it is enough
to take εγζ0(α, i) sufficiently large—apply condition (7) for F̄γ remembering
ζ0 < θ). Further, for (α, i), (β, j) ∈ λ × θ+, γ < κ and ζ0 < θ such that
(β, j) 6∈ {F γε (α, i) : ε ≤ ζ0} choose εγζ0((α, i), (β, j)) < θ such that for every
ζ ≤ ζ0, either

• ηFγζ (α,i)(ε
γ
ζ0

((α, i), (β, j))) 6= ηβ,j(ε
γ
ζ0

((α, i), (β, j))), or

• ηFγζ (α,i)(ε
γ
ζ0

(α, i)) 6= ηβ,j(ε
γ
ζ0

(α, i))

(this is possible as the second condition may fail for at most one ζ ≤ ζ0: the
sequence 〈ηFγζ (α,i)(ε

γ
ζ (α, i)) : ζ ≤ ζ0〉 is strictly increasing). Next, for each

e ∈∏γ<κ Zγ and γ < κ choose a finite set Xγ(e) ⊆ θ such that:

(8) if a, b ∈ baseγ(e) are distinct then ηa¹Xγ(e) 6= ηb¹Xγ(e),
(9) if a ∈ baseγ(e) ∩ S+

γ then εγζ(e)(a) ∈ Xγ(e),

(10) if a, b ∈ baseγ(e) then εγζ(e)(a, b) ∈ Xγ(e) (if defined),

(recall that baseγ(e) is finite). Finally, we define a function H on
∏
γ<κ Zγ

such that for e ∈ ∏γ<κ Zγ the value H(e) is the sequence consisting of the
following objects:

(11) 〈n(e, γ) : γ < κ〉,
(12) 〈m(e, γ) : γ < κ〉,
(13) ζ(e),
(14) 〈Xγ(e) : γ < κ〉,
(15) 〈(γ, l, ηa(e,l,γ)¹Xγ(e)) : γ < κ, l < n(e, γ)〉,
(16) 〈(γ, l, ηb(e,l,γ)¹Xγ(e)) : γ < κ, l < m(e, γ)〉,
(17) u2(e) ∩ θ,
(18) {(otp(i ∩ u2(e)), otp(i ∩ u1(e))) : i ∈ u2(e)}.

Since θκ = θ we easily check that ‖rng(H)‖ ≤ θ. For Υ ∈ rng(H) let

ZΥ :=
{
e ∈

∏
γ<κ

Zγ : H(e) = Υ
}
, Z∗Υ := {e/D : e ∈ ZΥ } ⊆ Z.

The claim will be proved if we show that

for each Υ ∈ rng(H) the set Z∗Υ is centred.

First note that if e, e′ ∈ ZΥ then u2(e) ∩ u2(e′) is an initial segment
of both u2(e) and u2(e′). Why? Suppose that j < i ∈ u2(e) ∩ u2(e′) and
j ∈ u2(e). If j < θ then j ∈ u2(e′) since u2(e)∩ θ = u2(e′)∩ θ. Suppose that
θ ≤ j < θ+. Then h(i, j) ∈ u2(e) ∩ θ = u2(e′) ∩ θ and so j = h∗(i, h(i, j)) ∈
u2(e′). This shows that u2(e)∩u2(e′) is an initial segment of u2(e). Similarly
for u2(e′).
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Applying to this fact condition (18) we may conclude that u1(e)∩u1(e′)
is an initial segment of both u1(e) and u1(e′) for e, e′ ∈ ZΥ . [Why? Assume
not. Let i < θ+ be the first such that there is j ∈ u1(e)∩ u1(e′) above i but

i ∈ (u1(e) \ u1(e′)) ∪ (u1(e′) \ u1(e)).

By symmetry we may assume that i ∈ u1(e) \ u1(e′). Let i∗ be the first
element of u2(e) above i. Then necessarily i∗ ≤ j (as j ∈ u1(e) ∩ u1(e′) ⊆
u2(e) ∩ u2(e′)) and hence i∗ ∈ u2(e′) (and i∗ is the first element of u2(e′)
above i). By the choice of i, i∗ we have

i, i∗ ∈ u2(e) ∩ u2(e′), i ∩ u1(e) = i ∩ u1(e′), i∗ ∩ u2(e) = i∗ ∩ u2(e′).

But now we may apply condition (18) to conclude that

(otp(i∗ ∩ u2(e)), otp(i∗ ∩ u1(e))) = (otp(i∗ ∩ u2(e′)), otp(i∗ ∩ u1(e′)))

and therefore

otp(i∗ ∩ u1(e′)) = otp(i∗ ∩ u1(e)) = otp(i ∩ u1(e)) + 1 = otp(i ∩ u1(e′)) + 1.

As there is no point of u1(e′) in the interval [i, i∗) (remember u1(e′) ⊆ u2(e′))
we get a contradiction.]

For e ∈ ZΥ we have n(e, γ) = n(γ), m(e, γ) = m(γ), ζ(e) = ζ∗ and
Xγ(e) = Xγ . Let e0, . . . , ek−1 ∈ ZΥ . We are going to show that

∏
γ<κ

BF̄γ/D |= e0/D ∧ . . . ∧ ek−1/D 6= 0

and for this we have to prove that

Ie0,...,ek−1 :=
{
γ < κ : BF̄γ |=

∧

j<k

[ ∧

l<n(γ)

xa(ej ,l,γ) ∧
∧

l<m(γ)

−xb(ej ,l,γ)

]
6= 0
}

∈ D.
First let us ask what can be the reasons for∧

j<k

[ ∧

l<n(γ)

xa(ej ,l,γ) ∧
∧

l<m(γ)

−xb(ej ,l,γ)

]
= 0.

There are essentially two cases here: either xa ∧ (−xa) appears on the left-
hand side of the above equality or xa ∧ xFγζ (a) (for some ζ < θ) appears
there. Suppose that the first case happens. Then we have distinct j1, j2 < k
such that a(ej1 , l1, γ) = b(ej2 , l2, γ) for some l1, l2. By (15) (and the defi-
nition of ZΥ ) we have ηa(ej1 ,l1,γ)¹Xγ = ηa(ej2 ,l1,γ)¹Xγ and by (8) we have
ηa(ej2 ,l1,γ)¹Xγ 6= ηb(ej2 ,l2,γ)¹Xγ . Therefore, ηa(ej1 ,l1,γ)¹Xγ 6= ηb(ej2 ,l2,γ)¹Xγ ,
a contradiction. Consider now the second case and suppose additionally
that ζ ≤ ζ∗. Thus we assume that for some ζ ≤ ζ∗, for some distinct
j1, j2 < k and some l1, l2 < n(γ) we have F γζ (a(ej1 , l1, γ)) = a(ej2 , l2, γ).
Then by (15) we get ηa(ej2 ,l2,γ)¹Xγ = ηa(ej1 ,l2,γ)¹Xγ . As ζ ≤ ζ∗ we have
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[by the choice of εγζ∗(a(ej1 , l1, γ), a(ej1 , l2, γ)), εγζ∗(a(ej1 , l1, γ))—note that
F γε (a(ej1 , l1, γ)) 6= a(ej1 , l2, γ) for all ε ≤ ζ∗], either

• ηFγζ (a(ej1 ,l1,γ))(ε
γ
ζ∗(a(ej1 , l1, γ), a(ej1 , l2, γ)))

6= ηa(ej1 ,l2,γ)(ε
γ
ζ∗(a(ej1 , l1, γ), a(ej1 , l2, γ))), or

• ηFγζ (a(ej1 ,l1,γ))(ε
γ
ζ∗(a(ej1 , l1, γ))) 6= ηa(ej1 ,l2,γ)(ε

γ
ζ∗(a(ej1 , l1, γ)))

and εγζ∗(a(ej1 , l1, γ), a(ej1 , l2, γ)), εγζ∗(a(ej1 , l1, γ)) ∈ Xγ (by (9), (10); note
that in the definition of εγζ (a, b) we allowed a = b so no problem appears if
l1 = l2). Hence ηFγζ (a(ej1 ,l1,γ))¹Xγ 6= ηa(ej1 ,l2,γ)¹Xγ and so ηFγζ (a(ej1 ,l1,γ))¹Xγ
6= ηa(ej2 ,l2,γ)¹Xγ , a contradiction. Consequently, the equality considered may
hold only if xa ∧ xFγζ (a) appears there for some ζ > ζ∗.

Asume now that Ie0,...,ek−1 6∈ D. From the above considerations we
know that for each γ ∈ κ \ Ie0,...,ek−1 we find distinct j1(γ), j2(γ) < k and
l1(γ), l2(γ) < n(γ) and ζγ ∈ (ζ∗, θ) such that

(∗∗) F γζγ (a(ej1(γ), l1(γ), γ)) = a(ej2(γ), l2(γ), γ)

(note that (∗∗) implies a(ej1(γ), l1(γ), γ)∈dom(F γζγ ), i(ej1(γ), l1(γ), γ)∈Sγ).
We have assumed that κ \ Ie0,...,ek−1 ∈ D so we find j1, j2 < k such that

J := {γ ∈ κ \ Ie0,...,ek−1 : j1(γ) = j1, j2(γ) = j2} ∈ D.
As we have remarked after (∗∗), i(ej1 , l1(γ), γ) ∈ Sγ (for γ ∈ J) and con-
sequently there are no repetitions in the sequence 〈i(ej1 , l1(γ), γ) : γ ∈ J〉
(and J is infinite). Choose γn ∈ J (for n ∈ ω) such that the sequence
〈i(ej1 , l1(γn), γn) : n ∈ ω〉 is strictly increasing (so i(ej1 , l1(γn), γn) ∈
u1(ej1) ∩ i(ej1 , l1(γn+1), γn+1)) and let i = limn i(ej1 , l1(γn), γn). By the
definition of ζ(e), ζ∗ and the fact that ζγ > ζ∗ for all γ ∈ J (and by (5)) we
have for γ ∈ J ,

i(ej2 , l2(γ), γ) = F γζγ ,2(a(ej1 , l1(γ), γ))

∈ i(ej1 , l1(γ), γ) \ sup(u1(ej1) ∩ i(ej1 , l1(γ), γ)).

Applying this for γn+1 we conclude that

i(ej1 , l1(γn), γn) < i(ej2 , l2(γn+1), γn+1) < i(ej1 , l1(γn+1), γn+1)

and i = limn i(ej2 , l2(γn), γn). Since u1(ej1) and u1(ej2) are closed we con-
clude that i ∈ u1(ej1) ∩ u1(ej2). From the remark after the definition of ZΥ
we know that the last set is an initial segment of both u1(ej1) and u1(ej2).
But this gives a contradiction: i(ej2 , l2(γn+1), γn+1) ∈ u1(ej2) \ u1(ej1) and
it is below i ∈ u1(ej1) ∩ u1(ej2). The claim is proved.

Similarly to Claim 2.7.3 (but much easier) one can prove that really
d(BF̄γ ) = θ+.
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We want to finish this section with posing two questions motivated by
2.5 and 2.7:

Problem 2.8. Are the following theories consistent?

(1) ZFC + there is a cardinal κ such that for each Boolean algebra B,

dn(B) ≤ κ⇒ dn+1(B) < 2κ.

(2) ZFC + there is a cardinal θ such that θℵ0 = θ and for each Boolean
algebra B and a nonprincipal ultrafilter D on ω,

d(B) ≤ θ ⇒ d(Bω/D) < 2θ.

3. Hereditary cofinality and spread

3.1. The invariants. The hereditary cofinality of a Boolean algebra B is
the cardinal

h-cof(B) = min{κ : (∀X ⊆ B)(∃C ⊆ X)(‖C‖ ≤ κ & C is cofinal in X)}.
It can be represented as a def.u.w.o.car. invariant if we use the following
description of it (see [Mo 1]):

(⊗h-cof) h-cof(B) = sup{‖X‖ : X ⊆ B & (X,<B) is well-founded}.
Let the theory Th-cof introduce predicates P0, P1 on which it says that:

• P1 is a well ordering of P0,
• (∀x0, x1 ∈ P0)(x0 < x1 ⇒ P1(x0, x1))

(in the above < stands for the relation of the Boolean algebra). Clearly
Th-cof determines a def.u.w.o.car. invariant and

InvTh-cof (B) = {‖X‖ : X ⊆ B & (X,<) is well-founded}.
The spread s(B) of a Boolean algebra B is

s(B) = sup{‖S‖ : S ⊆ UltB & S is discrete in the relative topology}.
It can be easily described as a def.f.o.car. invariant: the suitable theory
Ts introduces predicates P0, P1 and it says that for each x ∈ P0 the set
{y : P1(x, y)} is an ultrafilter and the ultrafilters form a discrete set (in
the relative topology). Sometimes it is useful to remember the following
characterization of s(B) (see [Mo 1]):

(⊗s) s(B) = sup{‖X‖ : X ⊆ B is ideal-independent}.
Using this characterization we can write s(B) = sω(B), where

Definition 3.1. (1) φsn is the formula saying that no member of P0 can
be covered by the union of n+ 1 other elements of P0.

(2) For 0 < n ≤ ω let Tns = {φsk : k < n}.
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(3) For a Boolean algebra B and 0 < n ≤ ω, s(+)
n (B) = inv(+)

Tns
(B) (so sn

are def.f.o.car. invariants).

The hereditary density of a Boolean algebra B is the cardinal

hd(B) = sup{dS : S ⊆ UltB}
where dS is the (topological) density of the space S. The following charac-
terization of hd(B) is important for our purposes (see [Mo 1]):

(⊗hd) hd(B) = sup{‖κ‖ : there is a strictly decreasing sequence of ideals

(in B) of length κ}.
We should remark here that on both sides of the equality we have sup but
the attainment does not have to be the same. If the sup of the left-hand side
(hd(B)) is attained then so is the sup of the other side. If the right-hand
side sup is attained AND hd(B) is regular then the sup of hd(B) is realized.
An open problem is what can happen if hd(B) is singular.

The hereditary Lindelöf degree of a Boolean algebra B is

hL(B) = sup{LS : S ⊆ UltB},
where for a topological space S, LS is the minimal κ such that every open
cover of S has a subcover of size ≤ κ. The following characterization of
hL(B) is crucial for us (see [Mo 1]):

(⊗hL) hL(B) = sup{‖κ‖ : there is a strictly increasing sequence of ideals

(in B) of length κ}.
Note: we may have here differences in the attainment, like in the case of hd.

Definition 3.2. (1) Let the formula ψ say that P1 is a well ordering of
P0 (denoted by <1).

(2) For n < ω let φhd
n and φhL

n be the following formulas:

φhd
n ≡ ψ & (∀x0, . . . , xn+1 ∈ P0)(x0 <1 . . . <1 xn+1

⇒ x0 6≤ x1 ∨ . . . ∨ xn+1),

φhL
n ≡ ψ & (∀x0, . . . , xn+1 ∈ P0)(xn+1 <1 . . . <1 x0

⇒ x0 6≤ x1 ∨ . . . ∨ xn+1).

(3) For 0 < n ≤ ω we let Tnhd = {φhd
k : k < n} and TnhL = {φhL

k : k < n}.
(4) For a Boolean algebra B and 0 < n ≤ ω,

hd(+)
n (B) = inv(+)

Tnhd
(B), hL(+)

n (B) = inv(+)
TnhL

(B).

So hdn, hLn are def.u.w.o.car. invariants and hdω = hd, hLω = hL (the
sets InvTωhd

(B), InvTωhL
(B) agree with the sets on the right-hand sides of

(⊗hd), (⊗hL), respectively).
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3.2. Constructions from strong λ-systems. One of our tools for construct-
ing examples of Boolean algebras is an object taken from pcf theory.

Definition 3.3. (1) A weak λ-system (for a regular cardinal λ) is a
sequence S = 〈δ, λ̄, f̄〉 such that:

(a) δ is a limit ordinal, ‖δ‖ < λ,
(b) λ̄ = 〈λi : i < δ〉 is a strictly increasing sequence of regular

cardinals,
(c) f̄ = 〈fα : α < λ〉 ⊆ ∏i<δ λi is a sequence of pairwise distinct

functions,
(d) for every i < δ, ‖{fα¹i : α < λ}‖ ≤ supi<δ λi.

(2) A λ-system is a sequence S = 〈δ, λ̄, f̄ , J〉 such that S0 = 〈δ, λ̄, f̄〉 is
a weak λ-system and

(e) J is an ideal on δ extending the ideal Jbd
δ of bounded subsets

of δ,
(f) f̄ is a <J -increasing sequence cofinal in

∏
i<δ(λi, <)/J ,

(g) for every i < δ, ‖{fα¹i : α < λ}‖ < λi.

In this situation we say that the system S extends the weak system S0.
(3) S = 〈δ, λ̄, f̄ , J, (Aζ : ζ < κ)〉 is a strong λ-system for κ if 〈δ, λ̄, f̄ , J〉

is a λ-system and

(h) cf(δ) ≤ κ and supi<δ λi ≤ 2κ,
(i) Aζ ⊆ δ, and Aζ 6∈ J (for ζ < κ) are pairwise disjoint.

In ZFC, there is a class of cardinals λ for which there are (weak, strong)
λ-systems. We can even demand that, for (weak) λ-systems, λ is the succes-
sor of a cardinal λ0 satisfying λω0 = λ0 (which is relevant for ultraproducts,
see below). More precisely:

Fact 3.4. (1) If µ<κ < µκ = λ then there is a weak λ-system S = 〈δ, λ̄, f̄〉
such that supi<δ λi ≤ µ and δ = κ.

(2) If κ = cf(κ) and

(∗) κ > ℵ0, µ = µ<κ < λ, cf(λ) ≤ µκ
or even

cf(µ) = κ,(∗)−
(∀θ)(∃µθ < µ)(∀χ)(µθ < χ < µ & cf(χ) = θ ⇒ ppθ(χ) < µ)

then there is a λ-system S = 〈δ, λ̄, f̄ , J〉 such that µ = supi<δ λi and δ = κ
(see [Sh 371]).

(3) If κ = ℵ0, cf(µ) = ℵ0 < µ and either

• λ∗ = cov(µ, µ,ℵ1, 2), or
• λ∗ = λℵ0 & (∀χ < µ)(χℵ0 < µ)
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then for many regular λ ∈ (µ, λ∗) there are λ-systems (λ = µ+
0 really) (see

[Sh 430]).
(4) There is a class of cardinals λ for which there are strong λ-systems

(for some infinite κ), even if we additionally demand that λ is a successor
cardinal (see [Sh 400], [Sh 410] or the proof of 4.4 of [Sh 462]).

Theorem 3.5. Assume that there exists a strong λ-system for κ, with λ
a regular cardinal. Let θ be an infinite cardinal ≤ κ. Then there are Boolean
algebras Bε (for ε < θ) such that inv+

Th-cof
(Bε) ≤ λ and for any ultrafilter D

on θ containing all co-bounded sets we have s+
ω (
∏
ε<θ Bε/D) > λ.

P r o o f. The algebras Bε’s are modifications of the algebra constructed
in Lemma 4.2 of [Sh 462]. Let 〈δ, λ̄, f̄ , J, (Aζ : ζ < κ)〉 be a strong λ-system
for κ. For distinct α, β < λ let %(α, β) = min{i < δ : fα(i) 6= fβ(i)}.

Take a decreasing sequence 〈wε : ε < θ〉 of subsets of κ such that ‖wε‖ =
κ and

⋂
ε<θ wε = ∅.

Fix ε < θ. For i < δ choose a family {Fi,ζ : ζ < κ} of subsets of
{fα¹i : α < λ} such that if X1, X2 ∈ [{fα¹i : α < λ}]<ω then for some ζ < κ
we have X1 = Fi,ζ ∩ (X1 ∪X2) (possible as 2κ ≥ λi). Next take a sequence
〈(ji, ζi) : i < δ〉 such that ji ≤ i, ζi < κ and the set

{j < δ : (∀ζ < κ)(∃ξ ∈ wε)(Aξ ⊆J {i < δ : ji = j & ζi = ζ})}
is unbounded in δ (possible as cf(δ) ≤ κ and ‖wε‖ = κ).

Now we define a partial order ≺ε on λ:

α ≺ε β if and only if i = %(α, β) ∈
⋃

ξ∈wε
Aξ and

fα¹ji ∈ Fji,ζi ⇔ fα(i) < fβ(i).

The algebra Bε is the Boolean algebra generated by the partial order ≺ε. It is
the algebra of subsets of λ generated by the sets Zα = {β < λ : β ≺ε α}∪{α}
(for α < λ).

Claim 3.5.1. (a) If %(α, β) < %(β, γ) where α, β, γ < λ then β ≺ε α ⇔
γ ≺ε α and α ≺ε β ⇔ α ≺ε γ.

(b) If τ(x0, . . . , xn−1) is a Boolean term, αlk < λ for k < n are pair-
wise distinct (l < 2), and i < δ is such that %(α0

k, α
1
k) ≥ i (for k < n)

but %(αlk, α
l
k′) < i (for l < 2 and k < k′ < n) then on setting Xl =

τ(Zαl0 , . . . , Zαln−1
) we have:

(1) X0 ∩ {α < λ : (∀k < n)(fα¹i 6= fα0
k
¹i)}

= X1 ∩ {α < λ : (∀k < n)(fα¹i 6= fα0
k
¹i)},

(2) for each k < n, either

• Xl ⊇ {α < λ : fα¹i = fα0
k
¹i} for l < 2, or
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• Xl ∩ {α < λ : fα¹i = fα0
k
¹i} = Zαlk ∩ {α < λ : fα¹i = fα0

k
¹i}

for l < 2, or
• Xl ∩ {α < λ : fα¹i = fα0

k
¹i} = {α < λ : fα¹i = fα0

k
¹i} \ Zαlk

for l < 2, or
• Xl ∩ {α < λ : fα¹i = fα0

k
¹i} = ∅ for l < 2.

Claim 3.5.2. Suppose that 〈aα : α < λ〉 are distinct members of Bε.
Then there exist α < β < λ such that aα ≥ aβ.

P r o o f. First we may assume that for some integers n < m < ω, a
Boolean term τ(x0, . . . , xn−1, . . . , xm−1), ordinals αn, . . . , αm−1<λ, an or-
dinal i∗<δ and a function ᾱ : λ× n→ λ \ {αn, . . . , αm−1} for all β < λ we
have

aβ = τ(Zᾱ(β,0), . . . , Zᾱ(β,n−1), Zαn , . . . , Zαm−1),

and if β′ < λ, k, k′ < n, (β, k) 6= (β′, k′) then ᾱ(β, k) 6= ᾱ(β′, k′), and
{fᾱ(β,k)¹i∗, fαk′ ¹i∗ : k < n, n ≤ k′ < m} are pairwise distinct.

As we may enlarge i∗ we may additionally assume that

(∀ζ < κ)(∃ξ ∈ wε)(Aξ ⊆J {i < δ : ji = i∗ & ζi = ζ}).
Furthermore, we may assume that fᾱ(β,k)¹i∗ = fᾱ(0,k)¹i∗ for all β < λ and
k < n (remember that ‖{fα¹i∗ : α < λ}‖ < λ). Let B be the set of all i < δ
such that

(∀ζ < λi)(∃λβ < λ)(∀k < n)(ζ < fᾱ(β,k)(i)).

Then the set B is in the dual filter Jc of J (if not clear see Claim 3.1.1 of
[Sh 462]). Now apply the choice of Fi∗,ζ ’s to find ζ < κ such that for k < n,
if

a0 ∩ {α < λ : fᾱ(0,k)¹i∗ = fα¹i∗} = Zᾱ(0,k) ∩ {α < λ : fᾱ(0,k)¹i∗ = fα¹i∗}
then fᾱ(0,k)¹i∗ 6∈ Fi∗,ζ , and if

a0 ∩ {α < λ : fᾱ(0,k)¹i∗ = fα¹i∗} = {α < λ : fᾱ(0,k)¹i∗ = fα¹i∗} \ Zᾱ(0,k)

then fᾱ(0,k)¹i∗ ∈ Fi∗,ζ .
Note that by Claim 3.5.1 we can replace 0 in the above by any β < λ.

Take ξ ∈ wε such that Aξ ⊆J {i < δ : ji = i∗ & ζi = ζ} and choose
i ∈ Aξ ∩ B such that ji = i∗ and ζi = ζ. Since ‖{fα¹i : α < λ}‖ < λi and
i ∈ B we find β0 < β1 < λ such that

(∀k < n)(%(ᾱ(β0, k), ᾱ(β1, k)) = i) & max
k<n

fᾱ(β0,k)(i) < min
k<n

fᾱ(β1,k)(i).

Now by the choice of ζ, Claim 3.5.1 and the property of β0, β1 we deduce
that aβ1 ⊆ aβ0 .

Claim 3.5.3. inv+
Th-cof

(Bε) ≤ λ.

P r o o f. Directly from Claim 3.5.2 noting that λ→ (λ, ω)2.



Cardinal invariants of ultraproducts 127

Claim 3.5.4. Suppose that α0, . . . , αn < λ are pairwise ≺ε-incomparable.
Then Zα0 6⊆ Zα1 ∪ . . . ∪ Zαn .

Suppose now that D is an ultrafilter on θ containing all co-bounded sets.

Claim 3.5.5. s+
ω (
∏
ε<θ Bε/D) > λ.

P r o o f. We need to find an ideal-independent subset of
∏
ε<θ Bε/D of

size λ. But this is easy: for α < λ let xα ∈
∏
ε<θ Bε/D be such that xα(ε) =

{β < λ : β �ε α}. The set {xα : α < λ} is ideal-independent since if
α0, . . . , αn < λ are distinct and ε is such that α0, . . . , αn are pairwise ≺ε-
incomparable then

Bε |= xα0(ε) 6≤ xα1(ε) ∨ . . . ∨ xαn(ε)

(by Claim 3.5.4). Now note that if ε0 < θ is such that
⋃

ξ∈wε0
Aξ ∩ {%(αl, αm) : l < m < n} = ∅

then for all ε ≥ ε0 we deduce that α0, . . . , αn are pairwise ≺ε-incomparable.
Now by the Łoś theorem we conclude that

∏

ε<θ

Bε/D |= xα0 6≤ xα1 ∨ . . . ∨ xαn .

Remark. 1. For λ such that there exists a strong λ-system and λ is a
successor (and for the corresponding θ, κ’s) we have algebras Bε (for ε < θ)
such that invT (Bε) < λ and for the corresponding ultrafilters D on κ we
have invT (

∏
ε<θ Bε/D) ≥ λ, where T is one of the following: Th-cof , Tωs , Tωhd,

TωhL or Tinc.
2. We do not know if (in ZFC) we can demand λ = λ+

0 and λω0 = λ0;
consistently yes.

Theorem 3.6. Assume that there exists a strong λ-system for κ and 0 <
n < ω. Then there is a Boolean algebra B such that s+

n (B) = ‖B‖+ = λ+

(so hd+
n (B) = hL+

n (B) = λ+) but s+
ω (B), hd+(B),hL+(B) ≤ λ.

P r o o f. The construction is slightly similar to the one of 3.5.
Let 〈δ, λ̄, f̄ , J, (Aζ : ζ < κ)〉 be a strong λ-system for κ, let %(α, β) =

min{i < δ : fα(i) 6= fβ(i)} (for distinct α, β < λ) and let Fi,ζ ⊆ {fα¹i :
α < λ} (for i < δ and ζ < κ) be such that if X1, X2 ∈ [{fα¹i : α < λ}]<ω
then there is ζ < κ with X1 = Fi,ζ ∩ (X1 ∪X2). As before, fix a sequence
〈(ji, ζi) : i < δ〉 such that ji ≤ i, ζi < κ and the set

{j < δ : (∀ζ < κ)(∃ξ < κ)(Aξ ⊆J {i < δ : ji = j & ζi = ζ})}
is unbounded in δ.
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Let B be the Boolean algebra generated freely by {xα : α < λ} except
that:

(α) if α0, . . . , αn+2 < λ, i < δ, f0¹i = . . . = fαn+2¹i, fα0(i) < fα1(i) <
. . . < fαn+2(i) and fα0¹ji ∈ Fji,ζi then xα0 ≤ xα1 ∨ . . . ∨ xαn+2 ,

(β) if α0, . . . , αn+2 < λ, i < δ, f0¹i = . . . = fαn+2¹i, fα0(i) < fα1(i) <
. . . < fαn+2(i) and fα0¹ji 6∈ Fji,ζi then xα1 ∧ . . . ∧ xαn+2 ≤ xα0 .

Claim 3.6.1. If α0, . . . , αn < λ are pairwise distinct then

B |= xα0 6≤ xα1 ∨ . . . ∨ xαn .
Consequently , s+

n (B) = hd+
n (B) = hL+

n (B) = ‖B‖+ = λ+.

P r o o f. Let h : λ→ 2 be such that h(α0) = 1 and for α ∈ λ \ {α0},

h(α) =

{ 0 if fα¹ji 6∈ Fji,ζi or
fα¹ji ∈ Fji,ζi and fα¹(i+ 1) ∈ {fαl¹(i+ 1) : l = 1, . . . , n},

1 otherwise,

where i = %(α0, α). We are going to show that the function h preserves
the inequalities imposed on B in (α), (β) above. To deal with (α) suppose
that β0, . . . , βn+2 < λ, fβ0¹i = . . . = fβn+2¹i, fβ0(i) < . . . < fβn+2(i) and
fβ0¹ji ∈ Fji,ζi . If h(β0) = 0 then there are no problems, so assume that
h(β0) = 1. Since fβk¹(i + 1) (for k = 1, . . . , n + 2) are pairwise distinct we
find k0 ∈ {1, . . . , n+ 2} such that

fβk0
¹(i+ 1) 6∈ {fαl¹(i+ 1) : l ≤ n}.

It is easy to check that then h(βk0) = 1, so we are done. Suppose now
that β0, . . . , βn+2 < λ, fβ0¹i = . . . = fβn+2¹i, fβ0(i) < . . . < fβn+2(i) but
fβ0¹ji 6∈ Fji,ζi , and suppose h(β0) = 0 (otherwise trivial). If %(α0, β0) < i
then clearly h(βk) = h(β0) = 0 for all k ≤ n + 2. If %(α0, β0) ≥ i then
for some k0 ∈ {1, . . . , n + 2} we have α0 6= βk0 , %(α0, βk0) = i and clearly
h(βk0) = 0.

Claim 3.6.2. hd+(B),hL+(B) ≤ λ.

P r o o f. Suppose that 〈aβ : β < λ〉 ⊆ B. After the standard cleaning we
may assume that for some Boolean term τ , integers m0 < m < ω, a function
ᾱ : λ×m→ λ, and an ordinal i0 < δ, for all β < λ we have:

(∗)1 aβ = τ(xᾱ(β,0), . . . , xᾱ(β,m−1)),
(∗)2 〈fᾱ(β,l)¹i0 : l < m〉 are pairwise distinct and fᾱ(β,l)¹i0 = fᾱ(0,l)¹i0

(for l < m),
(∗)3 {〈ᾱ(β, 0), . . . , ᾱ(β,m − 1)〉 : β < λ} forms a ∆-system of sequences

with the root {0, . . . ,m0 − 1}.
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Moreover, as we are dealing with hd, hL, we may assume that the term τ is
of the form

τ(x0, . . . , xm−1) =
∧

l<m

x
t(l)
l ,

where t : m→ 2. Let ζ < κ be such that for each l < m,

fᾱ(0,l)¹i0 ∈ Fi0,ζ ⇔ t(l) = 0.

Take i1 > i0 such that ji1 = i0, ζi1 = ζ and

(∀ζ < λi1)(∃λβ < λ)(∀l ∈ [m0,m))(ζ < fᾱ(β,l)(i1))

(as in the proof of Claim 3.5.2). Now, as ‖{fα¹i1 : α < λ}‖ < λi1 , we may
choose distinct β0, . . . , βm·(n+2) < λ such that for k ≤ m · (n+2) and l < m,

fᾱ(β0,l)¹i1 = fᾱ(βk,l)¹i1 =: νl

and for each l ∈ [m0,m),

fᾱ(β0,l)(i1) < fᾱ(β1,l)(i1) < . . . < fᾱ(βm·(n+2),l)(i1).

Note that we can demand any order between β0, . . . , βm·(n+2) we wish, which
allows us to deal with both hd and hL. We are going to show that aβ0 ≤∨m·(n+2)
k=1 aβk . Suppose l ∈ [m0,m) and 1 ≤ k1 < . . . < kn+2 ≤ m · (n + 2).

If t(l) = 0 then by the choice of ζ and i1 we may apply clause (α) of the
definition of B and conclude that

xᾱ(β0,l) ≤ xᾱ(βk1 ,l)
∨ . . . ∨ xᾱ(βkn+2 ,l)

.

Similarly, if t(l) = 1 then

xᾱ(βk1 ,l)
∧ . . . ∧ xᾱ(βkn+2 ,l)

≤ xᾱ(β0,l).

Hence, for any distinct k1, . . . , kn+2 ∈ {1, . . . ,m · (n + 2)} and l < m we
have

x
t(l)
ᾱ(β0,l)

≤ xt(l)ᾱ(βk1 ,l)
∨ . . . ∨ xt(l)ᾱ(βkn+2 ,l)

,

and therefore
∧

l<m

x
t(l)
ᾱ(β0,l)

≤
m·(n+2)∨

k=1

∧

l<m

x
t(l)
ᾱ(βk,l)

.

Remark. Theorem 3.6 is applicable to ultraproducts, of course, but we
do not know if we can demand (in ZFC) that λ = λ+

0 and λω0 = λ.
ZFC constructions (using λ-systems) parallel to 3.6 will be presented

in a forthcoming paper [Sh 620]. Some related consistency results will be
contained in [RoSh 599].

Problem 3.7. For each 0 < n < ω find (in ZFC ) a Boolean algebra B
such that sn(B) > sn+1(B). Similarly for hL, hd.
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3.3. Forcing an example

Theorem 3.8. Assume that ℵ0 ≤ κ < µ < λ = µ+ = 2µ. Then
there is a forcing notion P which is (< λ)-complete of size λ+ and satis-
fies the λ+-cc (so it preserves cardinalities, cofinalities and cardinal arith-
metic) and such that , in VP, there exist Boolean algebras Bξ (for ξ < κ)
such that hd(Bξ), hL(Bξ) ≤ λ (so s(Bξ) ≤ λ) but for each ultrafilter D on
κ containing co-bounded subsets of κ we have ind(

∏
ξ<κBξ/D) ≥ λ+ (so

λ+ ≤ hd(
∏
ξ<κBξ/D),hL(

∏
ξ<κBξ/D), s(

∏
ξ<κBξ/D)).

P r o o f. By Theorem 2.5(3) of [Sh 462] there is a suitable forcing notion
P such that, in VP, there is a sequence 〈ηi : i < λ+〉 ⊆ λλ with no repetition
and functions c, d such that:

(a) c : λ>λ→ λ,
(b) the domain dom(d) of the function d consists of all pairs (x̄, h) such

that h : ζ → λ×λ×λ for some ζ < µ, and x̄ : µ→ αλ is one-to-one, α < λ,
(c) for (x̄, h) ∈ dom(d), d(x̄, h) is a function from

{ā ∈ µ(λ+) : ā is increasing and (∀i < µ)(xi C ηai)}
to λ such that d(x̄, h)(ā) = d(x̄, h)(b̄) implies sup ā 6= sup b̄ and defining
ti = ηai ∧ ηbi for some i∗ < µ we have:

(α) level(ti) = level(ti∗) for i > i∗,
(β) (∀ε < µ)(∃µi < µ)(c(ti) = ε),
(γ) for µ ordinals i < µ divisible by ζ, either there are ξ0 < ξ1 < λ

such that

(∀ε < ζ)(ζ · ξ0 ≤ ηb̄i+ε(level(ti+ε)) < ζ · ξ1 ≤ ηāi+ε(level(ti+ε))),

h = 〈(c(ti+ε), ηb̄i+ε(level(ti+ε))− ζ · ξ0,
ηāi+ε(level(ti+ε))− ζ · ξ1) : ε < ζ〉,

or a symmetrical condition holds with ā and b̄ interchanged.

From now on we are working in the universe VP using the objects listed
above.

For distinct i, j < λ+ let %(i, j) = min{ξ < λ : ηi(ξ) 6= ηj(ξ)}. For
ε0, ε1 < κ we put

Rκε0,ε1 = {(i, j) ∈ λ+ × λ+ : i 6= j and ηi(%(i, j)) = ε0 mod κ and

ηj(%(i, j)) = ε1 mod κ},
and now we define Boolean algebras Bκ,ε̄ for ε̄ = 〈ε0, ε1, ε2, ε3〉 satisfying
ε0 < ε1 < ε2 < ε3 < κ. Bκ,ε̄ is the Boolean algebra freely generated by
{xi : i < λ+} except that:

• if (i, j) ∈ Rκε0,ε1 then xi ≤ xj ,
• if (i, j) ∈ Rκε2,ε3 then xj ≤ xi.
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Claim 3.8.1. If i, j < λ+, (i, j) 6∈ Rκε0,ε1 and (j, i) 6∈ Rκε2,ε3 then Bκ,ε̄ |=
xi 6≤ xj. In particular , if i < j < λ+ then Bκ,ε̄ |= xi 6= xj and ‖Bκ,ε̄‖ = λ+.

P r o o f. Fix i < λ+. A function f : {xj : j < λ+} → P(2) (where P(2) is
the Boolean algebra of subsets of {0, 1}) is defined by f(xi) = {0} and for
j ∈ λ+ \ {i}:
• if (i, j) ∈ Rκε0,ε1 or (j, i) ∈ Rκε2,ε3 then f(xj) = {0, 1},
• if (i, j) ∈ Rκε2,ε3 or (j, i) ∈ Rκε0,ε1 then f(xj) = ∅,
• otherwise f(xj) = {1}.

We are going to show that f respects all the inequalities we impose on xj ’s
in Bκ,ε̄. So suppose that (j1, j2) ∈ Rκε0,ε1 . If f(xj1) = ∅ then there are no
problems, so assume that both (i, j1) 6∈ Rκε2,ε3 and (j1, i) 6∈ Rκε0,ε1 . Similarly,
we may assume that f(xj2) 6= {0, 1}, i.e. that both (i, j2) 6∈ Rκε0,ε1 and
(j2, i) 6∈ Rκε2,ε3 . Note that these two assumptions imply j1 6= i 6= j2. Now we
consider three cases:

• if %(j1, j2) > %(i, j1) = %(i, j2) then f(xj1) = f(xj2),
• if %(j1, j2) = %(i, j1) = %(i, j2) then f(xj1) = {1} = f(xj2) (remember

(j1, j2) ∈ Rκε0,ε1 , (i, j2), (j1, i) 6∈ Rκε0,ε1),
• if %(j1, j2) < max{%(j1, i), %(j2, i)} then either %(j1, j2) = %(i, j2) <

%(i, j1) and (i, j2) ∈ Rκε0,ε1 (which is excluded already) or %(j1, j2) = %(i, j1)
< %(i, j2) and (j1, i) ∈ Rκε0,ε1 (which is also against our assumption).

This shows that f(xj1) ≤ f(xj2) whenever (j1, j2) ∈ Rκε0,ε1 . Similarly
one shows that (j1, j2) ∈ Rκε2,ε3 implies f(xj2) ≤ f(xj1). Consequently, the
function f respects all the inequalities in the definition of Bκ,ε̄. Hence it
extends to a homomorphism f̄ : Bκ,ε̄ → P(2). But for each j < λ+,

((i, j) 6∈ Rκε0,ε1 & (j, i) 6∈ Rκε2,ε3)⇒ (f(xj) ∈ {∅, {1}} & f(xi) = {0}).
Claim 3.8.2. Suppose ī : λ+ × n→ λ+ and t̄ : n→ 2 for n < ω are such

that (∀α < λ+)(∀l1 < l2 < n)(̄i(α, l1) < ī(α, l2)). Then

(∃α < β < λ+)
(
Bκ,ε̄ |=

∧

l<n

(xī(α,l))
t̄(l) ≤

∧

l<n

(xī(β,l))
t̄(l)
)
,(⊕1)

(∃α < β < λ+)
(
Bκ,ε̄ |=

∧

l<n

(xī(α,l))
t̄(l) ≥

∧

l<n

(xī(β,l))
t̄(l)
)
.(⊕2)

P r o o f. To prove (⊕1) and (⊕2) it is enough to show the following:

(∃α < β < λ+)(∀l < n)(Bκ,ε̄ |= (xī(α,l))
t̄(l) ≤ (xī(β,l))

t̄(l)),(⊕∗1)

(∃α < β < λ+)(∀l < n)(Bκ,ε̄ |= (xī(α,l))
t̄(l) ≥ (xī(β,l))

t̄(l)).(⊕∗2)

By the definition of Bκ,ε̄ for (⊕∗1) it is enough to have
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(⊕∗∗1 ) there are α < β < λ+ such that

l < n & t̄(l) = 0⇒ (̄i(α, l), ī(β, l)) ∈ Rκε0,ε1 or ī(α, l) = ī(β, l),

l < n & t̄(l) = 1⇒ (̄i(α, l), ī(β, l)) ∈ Rκε2,ε3 or ī(α, l) = ī(β, l),

and similarly for (⊕∗2).
We will show how to get (⊕∗∗1 ) from the properties of 〈ηi : i < λ+〉. For

this we start with a cleaning procedure in which we pass from the sequence
〈〈̄i(α, l) : l < n〉 : α < λ+〉 to its subsequence 〈〈̄i(α, l) : l < n〉 : α ∈ A〉 for
some A ⊆ λ+ of size λ+ (so we will assume A = λ+). First note that if i is
repeated λ+ times in 〈̄i(α, l) : α < λ+, l < n〉 then for some l < n we have
‖{α : ī(α, l) = i}‖ = λ+ and we may assume that for all α < λ+, ī(α, l) = i.
Therefore, (⊕∗∗1 ) holds trivially for this l (and every α < β < λ+). Thus we
may assume that each value appears at most λ times in 〈̄i(α, l) : α < λ+,
l < n〉 and hence we may assume that the sets {̄i(α, l) : l < n} are disjoint
for α < λ+ (so there are no repetitions in 〈̄i(α, l) : α < λ+, l < n〉). Further,
we may assume that

α < β < λ+ ⇒ ī(α, 0) < . . . < ī(α, n− 1) < ī(β, 0) < . . . < ī(β, n− 1).

For l < n and α < λ+ let anα+l = ī(α, l). We find ξ < λ such that for λ+

ordinals β < λ+ divisible by µ the sequence 〈ηaβ+ε¹ξ : ε < µ〉 is with no
repetitions and does not depend on β (for these β). Since λ = µ+ = 2µ there
are ξ < λ and a one-to-one sequence x̄ : µ→ ξλ such that the set

B = {β < λ+ : β is divisible by µ and (∀ε < µ)(ηaβ+ε¹ξ = xε)}
is of size λ+. Let h : κ→ λ3 be such that for l < 2n,

h(l) =





(0, ε0, ε1) if t̄(l) = 0, l < n,
(0, ε1, ε0) if t̄(l − n) = 0, n ≤ l < 2n,
(0, ε2, ε3) if t̄(l) = 1, l < n,
(0, ε3, ε2) if t̄(l − n) = 1, n ≤ l < 2n.

Consider the function d(x̄, h). There are distinct β0, β1 ∈ B such that
d(x̄, h)(〈aβ0+ε : ε < µ〉) = d(x̄, h)(〈aβ1+ε : ε < µ〉). This implies that
we find δ < µ divisible by κ such that (possibly interchanging β0, β1) there
are ξ0 < ξ1 < λ such that for some γ < λ and every ε < κ,

%(aβ0+δ+ε, aβ1+δ+ε) = γ,

κ · ξ0 ≤ ηaβ0+δ+ε(γ) < κ · ξ1 ≤ ηaβ1+δ+ε(γ),

h = 〈(c(ηaβ0+δ+ε¹γ), ηaβ0+δ+ε(γ)− κ · ξ0, ηaβ1+δ+ε − κ · ξ1) : ε < κ〉.
Suppose that β0 < β1 and look at the values ηaβ0+δ+l(γ) and ηaβ1+δ+l(γ) for
l < n. By the definition of h we have:

• if t(l) = 0 then ηaβ0+δ+l(γ) = ε0 mod κ and ηaβ1+δ+l(γ) = ε1 mod κ (so
(aβ0+δ+l, aβ1+δ+l) ∈ Rκε0,ε1), and
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• if t(l) = 1 then ηaβ0+δ+l(γ) = ε2 mod κ and ηaβ1+δ+l(γ) = ε3 mod κ (so
(aβ0+δ+l, aβ1+δ+l) ∈ Rκε2,ε3).

Consequently, β0 + δ < β1 + δ < λ+ are as required in (⊕∗∗1 ). If β1 < β0

then we look at the values ηaβ0+δ+n+l(γ) and ηaβ1+δ+n+l(γ) (for l < n) and
similarly we conclude that β1 + δ + n < β0 + δ + n < λ+ witness (⊕∗∗1 ).

Similarly one can get ⊕∗2.

Claim 3.8.3. hd(Bκ,ε̄) ≤ λ and hL(Bκ,ε̄) ≤ λ.

P r o o f. Suppose that hL(Bκ,ε̄) ≥ λ+ (or hd(Bκ,ε̄) ≥ λ+). Then there is
a sequence 〈yα : α < λ+〉 ⊆ Bκ,ε̄ such that for each α < λ+ the element yα
is not in the ideal generated by {yβ : β < α} ({yβ : β > α}, respectively).
Moreover, we can demand that each yα is of the form

∧
l<n(α)(xī(α,i))

t̄(α,l)

with ī(α, l1) < ī(α, l2) for l1 < l2 < n(α). Next, we may assume that
n(α) = n, t̄(α, l) = t̄(l) for α < λ+, l < n and apply (⊕1) ((⊕2), respectively)
of Claim 3.8.2 to get a contradiction.

Now, for ξ < κ let Bξ = Bκ,〈4ξ,4ξ+1,4ξ+2,4ξ+3〉 and B =
∏
ξ<κBξ/D,

where D is an ultrafilter on κ such that no member of it is bounded in κ.

Claim 3.8.4. ind(B) ≥ λ+.

P r o o f. Let fi ∈
∏
ξ<κBξ (for i < λ+) be the constant sequence fi(ξ) =

xi. Suppose i0 < i1 < . . . < in−1 < λ+ and look at the set

X = {ξ < κ : (∃j < 4)(∃m < k < n)(ηim(%(im, ik)) = 4ξ + j mod κ

or ηik(%(im, ik)) = 4ξ + j mod κ)}.
Obviously, the set X is bounded in κ. By Claim 3.8.1 (or actually by a
stronger version of it, but with a similar proof) we see that for ξ ∈ κ \ X ,

Bξ |= “fi0(ξ), . . . , fin−1(ξ) are independent elements”.

Therefore, we conclude that B |= “fi0 , . . . , fin−1 are independent”.

4. Independence number and tightness

4.1. Independence. In this section we are interested in the cardinal in-
variants related to the independence number.

Definition 4.1. (1) φind
n is the formula which says that any nontrivial

Boolean combination of n+ 1 elements of P0 is nonzero (i.e. φind
n says that

if x0, . . . , xn ∈ P0 are distinct then
∧
l≤n x

t(l)
l 6= 0 for each t ∈ n+12).

(2) For 0 < n ≤ ω let Tnind = {φind
k : k < n}.

(3) For a Boolean algebra B and 0 < n ≤ ω we define indn(B) =
invTnind

(B) and ind+
n (B) = inv+

Tnind
(B). We will also denote ind(+)

ω by ind(+).
(4) A subset X of a Boolean algebra B is n-independent if and only if

any nontrivial Boolean combination of n elements of X is nonzero.
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Remark. 1. Note that the theory Tn+1
ind consists of formulas φind

0 , . . .
. . . , φind

n and thus it says that the set P0 is (n+1)-independent. Consequently,
for each n < ω,

ind(+)
n+1(B) = sup{‖X‖(+) : X ⊆ B is (n+ 1)-independent}.

2. The cardinal invariants indn (the n-independence number) were first
introduced and studied by Monk in [Mo 4].

Proposition 4.2. Suppose that λ is an infinite cardinal and n is an
integer greater than 1. Then there is a Boolean algebra B such that

indn(B) = λ = ‖B‖, indn+1(B) = ℵ0.

P r o o f. Surprisingly the example we give depends on the parity of n.

Case 1: n = 2k, k ≥ 1. Let X = {x ∈ λ2 : ‖x−1[{1}]‖ ≤ k} and for
α < λ let Zα = {x ∈ X : x(α) = 1}. Let Bk0 (λ) be the Boolean algebra of
subsets of X generated by {Zα : α < λ}.

Claim 4.2.1. indn(Bk0 (λ)) = λ.

P r o o f. For α > 0 put Yα = Z0 M Zα (M stands for the symmetric
difference). We are going to show that the set {Yα : 0 < α < λ} is n-
independent. For this suppose that t ∈ n2 and 0 < α0 < . . . < αn−1 < λ.
Choose x ∈ X such that:

• if ‖t−1[{0}]‖ ≤ k then x(0) = 0 and x(αl) = 1− t(l) for l < n,
• if ‖t−1[{0}]‖ > k then x(0) = 1 and x(αl) = t(l) for l < n.

Then clearly x ∈ ⋂l<n Y t(l)αl .

Claim 4.2.2. indn+1(Bk0 (λ)) = ℵ0.

P r o o f. It should be clear that ind(Bk0 (λ)) ≥ ℵ0, so what we have to
show is indn+1(Bk0 (λ)) < ℵ1. Suppose that 〈Yα : α < ω1〉 ⊆ Bk0 (λ). We may
assume that:

• Yα = τ(Zī(α,0), . . . , Zī(α,m−1)), where m < ω, τ is a Boolean term and
ī : ω1 ×m→ λ is such that ī(α, 0), . . . , ī(α,m− 1) are pairwise distinct,
• {〈̄i(α, 0), . . . , ī(α,m − 1)〉 : α < ω1} forms a ∆-system of sequences

with the root {0, . . . ,m∗ − 1} (for some m∗ ≤ m).

Further, we may assume that τ(x0, . . . , xm−1) =
∨
t∈A

∧
i<m x

t(i)
i for

some A ⊆ m2. If m = m∗ (i.e. all the Yα’s are the same) then the sequence
is not (n + 1)-independent. If m∗ = 0 (i.e. the sets {̄i(α, l) : l < m} are
disjoint for α < ω1) then either Y0 ∧ . . .∧Yn = 0 or (−Y0)∧ . . .∧ (−Yn) = 0
(e.g. the first holds if 1∧ . . .∧ 1 = 1̄ 6∈ A and otherwise the second equality
is true). So we may assume that 0 < m∗ < m.
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Suppose that 1̄ ∈ A. We claim that then (−Y0)∧ . . .∧(−Yk)∧Yk+1∧ . . .∧
Y2k = 0. If not then we find x ∈ ⋂k<j<2k+1 Yj \

⋃
j<k+1 Yj . For j < 2k + 1

let tj ∈ m2 be defined by tj(l) = 1−x(̄i(j, l)). Thus tj ∈ A for k < j < 2k+1
and tj 6∈ A for j < k + 1. As ‖x−1[{1}]‖ ≤ k for some j0 ≤ k we necessarily
have (∀l ∈ [m∗,m))(tj0(l) = 1). Since 1 ∈ A and tj0 6∈ A, necessarily for
some l0 < m∗ we have tj0(l0) = 0. Now look at tj for j ∈ [k + 1, 2k]. Since
tj¹m∗ = tj0¹m∗ and tj0 6∈ A (and tj ∈ A, remember k + 1 ≤ j ≤ 2k) we
have

(∀j ∈ [k + 1, 2k])(∃lj ∈ [m∗,m))(tj(lj) = 0).

This implies that x(̄i(j, lj)) = 1 for j ∈ [k + 1, 2k] and together with
x(̄i(j0, l0)) = 1 we get a contradiction to ‖x−1[{1}]‖ ≤ k.

Suppose now that 1̄ 6∈ A. Symmetrically to the previous case we show
that then Y0 ∧ . . . ∧ Yk ∧ (−Yk+1) ∧ . . . ∧ (−Y2k) = 0. The claim is proved.

Case 2: n = 2k + 1, k ≥ 1. In this case we consider

X ′ = {x ∈ λ2 : ‖x−1[{1}]‖ ≤ k or ‖x−1[{0}]‖ ≤ k}
and the Boolean algebra Bk1 (λ) of subsets of X ′ generated by the sets Z ′α
= {x ∈ X ′ : x(α) = 1}. Then the sequence 〈Z ′α : α < λ〉 is n-indep-
endent (witnessing indn(Bk1 (λ)) = λ). Similarly to Claim 4.2.2 one can show
that indn+1(Bk1 (λ)) = ℵ0 (after the cleaning consider (−Y0)∧ . . .∧ (−Yk)∧
Yk+1, . . . ∧ Y2k+1).

Remark. Note that

ind(+)
2k+1(Bk0 (λ)×Bk0 (λ)) = λ(+)

as witnessed by the set {(Zα,−Zα) : α < λ}.
Corollary 4.3. Suppose that λ is an infinite cardinal. Then there are

Boolean algebras Bn (for n < ω) such that ind(Bn) = ℵ0 but for every
nonprincipal ultrafilter D on ω, ind(

∏
n<ω Bn/D) = λℵ0 .

A detailed study of the reasons why we did have to consider two cases
in Proposition 4.2 leads to interesting observations concerning the invariant
indn and products of Boolean algebras. First note the following.

Fact 4.4. For any Boolean algebras Bi (i < λ) we have:

(1) ind+
2n(B0 ×B0) ≤ ind+

n (B0) ≤ ind+
n (B0 ×B0),

(2) ind+∑
i<k ni

(B0 × . . .×Bk−1) ≤∑i<k ind+
ni(Bi),

(3) ind+(
∏w
i<λBi) = supi<λ ind+(Bi).

However, there is no immediate bound on indn+1(B×B) in this context.
One can easily show that the algebra Bk1 (λ) from the proof of 4.2 (Case 2)
satisfies

ind2k+2(Bk1 (λ)×Bk1 (λ)) = ℵ0.
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So we get an example proving:

Corollary 4.5. If λ is an infinite cardinal and n is an odd integer > 2
then there is a Boolean algebra B such that indn(B) = λ and indn+1(B×B)
= ℵ0.

The oddity of n in the corollary is crucial. For even n (and λ strong
limit) the situation is different. In the lemmas below µ is a cardinal, k is an
integer ≥ 1 and B is a Boolean algebra.

Definition 4.6. For a cardinal µ and an integer k ∈ ω we define kk(µ)
inductively by (1)

k0(µ) = µ, kk+1(µ) = (2kk(µ))++.

Lemma 4.7. (1) Suppose that

(⊕) ind2k(B) ≥ i2k(µ)+

or at least

(⊕−) there exists a sequence 〈xi : i < i2k(µ)+〉 ⊆ B such that if i0 <
i1 < . . . < i2k−2 < i2k−1 < i2k(µ)+ then

∧
l<k xi2l ∧ (−xi2l+1) 6= 0.

Then

♠B,k
µ+ there is a sequence 〈yj : j < µ+〉 ⊆ B such that for each w ∈ [µ+]k

there is an ultrafilter D ∈ UltB with

(∀j < µ+)(yj ∈ D ⇔ j ∈ w).

(2) If ind2k(B) ≥ kk+1(µ) then we can conclude ♠B,kµ .

[In (2) it is enough to assume a suitable variant of (⊕−): see the proof.]

P r o o f. (1) Assume (⊕−). For each i0 < . . . < i2k−1 < i2k(µ)+ fix
an ultrafilter D{i0,...,i2k−1} ∈ UltB such that

∧
l<k(xi2k ∧ (−xi2l+1)) ∈

D{i0,...,i2k−1}. Let F : [i2k(µ)+]2k+1 → 2k+12 be defined by

F ({i0, . . . , i2k})(l) = 1⇔ xil ∈ D{i0,...,i2k}\{il}
(where l < 2k + 1 and i0 < . . . < i2k < i2k(µ)+). By the Erdős–Rado
theorem we find a set I of size µ+ homogeneous for F . We may assume that
the sequence 〈xi : i < µ+〉 behaves uniformly with respect to F .

Put yj = xω·j ∧ (−xω·j+5) for j < µ+. We claim that the sequence
〈yj : j < µ+〉 has the required property. For this suppose that j0 < . . . <
jk−1 < µ+ and let i2l = ω · jl and i2l+1 = ω · jl + 5 (for l < k). Then
i0 < . . . < i2k−2 < i2k−1 < µ+ so we can take D = D{i0,...,i2k−1}. Thus
yjl = xi2l ∧ (−xi2l+1) ∈ D for l < k. On the other hand, suppose that

(1) Remember that k (daleth) is the second letter after i (beth) in the Hebrew
alphabet.
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j 6∈ {j0, . . . , jk−1} and look at i = ω · j and i′ = ω · j + 5. Note that for each
l < k we have

i < i2l ⇔ i < i2l+1 ⇔ i′ < i2l+1 ⇔ i′ < i2l.

Since F ({i, i0, . . . , i2k−1}) = F ({i′, i0, . . . , i2k−1}) we get

xi ∈ D ⇔ xi′ ∈ D
and hence yj = xi ∧ (−xi′) 6∈ D.

(2) The proof is essentially the same as above but instead of the Erdős–
Rado theorem we use 4.26 which is a special case of the canonization theo-
rems of [Sh 95]. We start with a sequence 〈xα,ξ : α < kk+1(µ), ξ < µ〉 ⊆ B
such that if ξ0, . . . , ξk−1 < µ and α0

l < α1
l < kk+1(µ) (for l < k) then∧

l<k(xα0
l ,ξl
∧ (−xα1

l ,ξl
)) 6= 0. Then we choose the corresponding ultrafilters

D
α0

0α
1
0...α

0
k−1α

1
k−1

ξ0,...,ξk−1
∈ UltB and consider a function F : [kk+1(µ)×µ]2k+1 → 2

such that

F ((α0
0, ξ0), (α1

0, ξ0), . . . , (α0
k−1, ξk−1), (α1

k−1, ξk−1), (α, ξ)) = 1

if and only if xα,ξ ∈ Dα0
0α

1
0...α

0
k−1α

1
k−1

ξ0,...,ξk−1
.

By 4.26(a) we find α0
ξ , α

1
ξ < kk+1(µ) (for ξ < µ) such that for all distinct

ξ0, . . . , ξk ∈ µ,

F ((α0
ξ0 , ξ0), (α1

ξ0 , ξ0), . . . , (α0
ξk−1

, ξk−1), (α1
ξk−1

, ξk−1), (α0
ξk
, ξk))

= F ((α0
ξ0 , ξ0), (α1

ξ0 , ξ0), . . . , (α0
ξk−1

, ξk−1), (α1
ξk−1

, ξk−1), (α1
ξk
, ξk)).

Finally, put yξ = xα0
ξ,ξ
∧ (−xα1

ξ,ξ
).

Lemma 4.8. Suppose that there is a sequence 〈yj : j < µ〉 ⊆ B such that
for every w ∈ [µ]k there is an ultrafilter D ∈ UltB such that

(∀j < µ)(yj ∈ D ⇔ j ∈ w).

Then

ind+
2k+1(B ×B) > µ.

P r o o f. Consider the sequence 〈(yj ,−yj) : j < µ〉 ⊆ B × B. To prove
that it is 2k+1-independent suppose that j0 < . . . < j2k < µ and t ∈ 2k+12.
Let w0 = {jl : t(l) = 0} and w1 = {jl : t(l) = 1}. One of these sets has at
most k elements so we find an ultrafilter D ∈ UltB such that either

• (∀l < 2k + 1)(yjl ∈ D ⇔ t(l) = 0), or
• (∀l < 2k + 1)(yjl ∈ D ⇔ t(l) = 1).

In the first case
∧
l<2k+1 y

t(l)
jl
∈ D, in the second case

∧
l<2k+1(−yjl)t(l)

∈ D. Consequently, (
∧
l<2k+1 y

t(l)
jl
,
∧
l<2k+1(−yjl)t(l)) 6= 0 and the lemma is

proved.
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Theorem 4.9. Let k be an integer ≥ 1, B a Boolean algebra and λ a
cardinal. Then:

(1) ind2k(B) ≥ max{i2k(λ)+,kk+1(λ+)} implies ind2k+1(B×B) ≥ λ+.
(2) If λ is strong limit and ind2k(B) ≥ λ then ind2k+1(B ×B) ≥ λ.
(3) ind2k(

∏w
i<ω B) < iω(ind2k+1(

∏w
i<ω B)).

P r o o f. (1) is an immediate consequence of Lemmas 4.7 and 4.8.
(2) follows from (1).
(3) follows from (2) and the following observation.

Claim 4.9.1. For every integer n > 1 and a Boolean algebra B we have

indn
(∏w

i<ω

B
)

= indn
(∏w

i<ω

B ×
∏w

i<ω

B
)
.

P r o o f. By 4.4(1) we have

indn
(∏w

i<ω

B
)
≤ indn

(∏w

i<ω

B ×
∏w

i<ω

B
)
.

For the other inequality assume that

κ := indn
(∏w

i<ω

B
)
< indn

(∏w

i<ω

B ×
∏w

i<ω

B
)
.

Thus we find an n-independent set X ⊆ ∏w
i<ω B ×

∏w
i<ω B of size κ+. For

x ∈ X let ax, bx ∈
∏w
i<ω B and m(x) < ω be such that

x = (ax, bx) and (∀m ≥ m(x))(ax(m) = ax(m(x)) & bx(m) = bx(m(x))).

Take m0 < ω and Y ∈ [X]κ
+

such that m(x) = m0 for x ∈ Y . For x ∈ Y
let

cx := (ax(0), . . . , ax(m0), bx(0), . . . , bx(m0)) ∈ B2m0+2.

The set Z := {cx : x ∈ Y } is n-independent as ax(m) = ax(m0) and bx(m) =
bx(m0) for m ≥ m0. As ‖Z‖ = κ+ we conclude that κ+ ≤ indn(B2m0+2).
Now note that the algebras

∏w
i<ω B and B2m0+2 ×∏w

i<ω B are isomorphic,
so (by 4.4)

indn(B2m0+2) ≤ indn
(∏w

i<ω

B
)
,

and hence κ+ ≤ indn(
∏w
i<ωB) = κ, a contradiction.

Problem 4.10. (1) Can Lemma 4.7 be improved? Can we (consistently)
weaken the variant of the assumption (⊕−) for (2) to sequences shorter than
kk(µ) (we are interested in the reduction of the steps in the beth hierarchy)?

(2) Describe (in ZFC ) all dependences between indk(Bn) (for n, k < ω)
[note that we may force them distinct ].
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4.2. Tightness. The tightness t(B) of a Boolean algebra B is the minimal
cardinal κ such that if F is an ultrafilter on B, Y ⊆ UltB and F ⊆ ⋃Y
then there is Z ∈ [Y ]≤κ such that F ⊆ ⋃

Z. To represent the tightness
as a def.u.w.o.car. invariant we use the following characterization of it (see
[Mo 1]):

t(B) = sup{‖α‖ : there exists a free sequence of length α in B}
where a sequence 〈xξ : ξ < α〉 ⊆ B is free if

(∀ξ < α)(∀F ∈ [ξ]<ω)(∀G ∈ [α \ ξ]<ω)
[ ∧

η∈F
xη ∧

∧

η∈G
−xη 6= 0

]
.

Now it is easy to represent t(B) as a def.u.w.o.car. invariant. Together with
(finite versions of) the tightness we will define a def.f.o.car. invariant utk
which is inspired by 4.7.

Definition 4.11. (1) Let ψ be the sentence saying that P1 is a well
ordering of P0 (we denote the relevant order by <1). For k, l < ω let φtk,l be
the sentence asserting that for each x0, . . . , xk, y0, . . . , yl ∈ P0,

if x0 <1 . . . <1 xk <1 y0 <1 . . . <1 yl then
∧

i≤k
xi 6≤

∨

i≤l
yi,

and let the sentence φut
k,l say that

for all distinct x0, . . . , xk, y0, . . . , yl ∈ P0 we have
∧

i≤k
xi 6≤

∨

i≤l
yi.

(2) For n,m ≤ ω let Tn,mt = {φtk,l : k < n, l < m} ∪ {ψ} and Tn,mut =
{φut

k,l : k < n, l < m}, and for a Boolean algebra B,

tn,m(B) = invTn,mt
(B), utn,m(B) = invTn,mut

(B).

(3) The unordered k-tightness utk is the def.f.o.car. invariant utk,ω.

Remark. Note that Tn,mt = {ψ} if either n = 0 or m = 0 (and thus
tn,m(B) = ‖B‖ whenever n ·m = 0). The theory Tn+1,m+1

t says that P1 is
a well ordering of P0 and if x0 <1 . . . <1 xn <1 y0 <1 . . . <1 ym then the
meet

∧
i≤n xi is not covered by the union

∨
i≤m yi. The invariant tω,ω(B) is

just the tightness of B. Similarly for Tn,mut .

Corollary 4.12. For a Boolean algebra B and n,m ≤ ω, 0 < k < ω:

(1) ind(+)
n+m(B) ≤ ut(+)

n,m(B) = ut(+)
m,n(B) ≤ t(+)

n,m(B),

(2) ut(+)
k (B) = sup{κ(+) : ♠B,kκ holds true}, where the condition ♠B,kκ is

as defined in Lemma 4.7,
(3) the condition ♠B,kκ is equivalent to: the algebra Bk0 (κ) of 4.2 can be

embedded into a homomorphic image of B,
(4) ut(+)

k (B) ≤ ind(+)
2k (B) and ut(+)

k (B) ≤ ind(+)
2k+1(B ×B).
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P r o o f. (1) and (2) should be clear.
(3) Assume ♠B,kκ and let 〈yj : j < κ〉 ⊆ B be a sequence witnessing it.

Let I be the ideal of B generated by the set

{yj0 ∧ . . . ∧ yjk : j0 < . . . < jk < κ}.
Then the algebra Bk0 (κ) naturally embeds into the quotient algebra B/I.
Moreover, if B′ is a homomorphic image of B and ♠B′,kκ then clearly ♠B,kκ

so the converse implication also holds.
(4) follows from (3), (the proof of) Proposition 4.2 and the remark after

the proof of 4.2.

Remark. Corollary 4.12(3) is specially interesting if you remember that
s+(B) > λ if and only if the finite-cofinite algebra on λ can be embedded
into a homomorphic image of B.

From Lemma 4.7 we can conclude the following:

Corollary 4.13. For k > 0 and an algebra B:

(1) if either utk,k(B) > i2k(µ) or utk,k(B) ≥ kk+1(µ+) then utk(B)
≥ µ+,

(2) if λ is strong limit and utk,k(B) ≥ λ then utk(B) ≥ λ,
(3) utk,k(B) < iω(utk(B)).

Proposition 4.14. Suppose n,m < ω, k = min{n,m} and B is a
Boolean algebra. Then

tn,m(B) ≤ in+m(utk(B) + t(B)).

P r o o f. Let µ = utk(B) + t(B) and assume that tn,m(B) > in+m(µ).
Then we have a sequence 〈aα : α < in+m(µ)+〉 ⊆ B such that

(∀α0 < . . . < αn+m−1 < in+m(µ)+)
[( ∧

l<n

aαl ∧
∧

n≤l<n+m

−aαl
)
6= 0
]
.

For each α0, . . . , αn+m−1 as above fix an ultrafilter D{α0,...,αn+m−1} ∈ UltB
containing the element

∧
l<n aαl ∧

∧
n≤l<n+m−aαl . Look at the function

F : [in+m(µ)+]n+m+1 → n+m+12

defined by

F (α0, . . . , αn+m)(l) = 1⇔ aαl ∈ D{α0,...,αn+m}\{αl}.

By the Erdős–Rado theorem we may assume that µ+ is homogeneous for F
with the constant value c ∈ n+m+12.

If c(l) = 0 for each l ≤ n + m then the sequence 〈aα : α < µ+〉
witnesses µ+ ≤ utn(B), giving a contradiction to the definition of µ (re-
member utk(B) ≥ utn(B)). In fact, given n elements α0 < . . . < αn−1,
choose m additional elements αn−1 < αn < . . . < αn+m−1. Suppose that
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β ∈ µ+ \ {α0, . . . , αn+m−1}. Then by homogeneity −aβ ∈ D{α0,...,αn+m−1},
proving the result.

If c(l) = 1 for each l then the sequence 〈−aα : n ≤ α < µ+〉 exemplifies
µ+ ≤ utm(B), once again a contradiction. In fact, take any m elements
n − 1 < αn < . . . < αn+m−1 and suppose that β ∈ µ+ \ {0, . . . , n − 1,
αn, . . . , αn+m−1} . Then by homogeneity aβ ∈ D{0,...,n−1,αn,...,αn+m−1}, as
desired.

Finally, suppose that there are l0, l1 ≤ n + m such that c(l0) = 0 and
c(l1) = 1.

Case 1: l1 < l0. Let Γ = {β + ω : β < µ+}. We claim that 〈aα : α ∈ Γ 〉
witnesses µ+ ≤ t(B), contradicting µ ≥ t(B). In fact, let α0 < . . . < αp <
. . . < αq−1 be elements of Γ ; we want to show that

∧

l<p

aαl ∧
∧

p≤l<q
−aαl 6= 0.

Say αp = β+ω. Define γl = l for all l < l1, γl1 , . . . , γl0−1 are consecutive val-
ues starting with β+ 1, and γl0 , . . . , γm+n−1 are consecutive values starting
with αq−1 + 1 (none of the latter if l0 = n+m). Then aαl ∈ D{γ0,...,γn+m−1}

for all l < p and −aαl ∈ D{γ0,...,γn+m−1} for all l ≥ p, as desired.

Case 2: l1 ≥ l0. This is similar, using 〈−aα : α ∈ Γ 〉.
Our next proposition is motivated by Theorem 4.9 and the above corol-

laries.

Proposition 4.15. Let B be a Boolean algebra and k a positive integer.
Then:

(1) ind2k(
∏w
i<ω B) ≤ min{i2k−1(indk(B)),i2k−1(utk(B))},

(2) utk+1(
∏w
i<ω B) ≤ ik(ut+

k+1(B)).

P r o o f. (1) Suppose that λ0 = i2k−1(indk(B)) < ind2k(
∏w
i<ω B). Thus

we find a sequence 〈aα : α < λ+
0 〉 ⊆

∏w
i<ω B which is 2k-independent. Let

aα = 〈aα(i) : i < ω〉 (for α < λ+
0 ). Consider the function F : [λ+

0 ]2k → ω
given by

F (α0, . . . , α2k−1)

= min{i ∈ ω : B |= aα0(i) ∧ (−aα1(i)) ∧ . . . ∧ aα2k−2(i) ∧ (−aα2k−1(i)) 6= 0},
where α0 < . . . < α2k−1 < λ+

0 . By the Erdős–Rado theorem we find a set I
of size (indk(B))+ homogeneous for F ; we may assume that I = (indk(B))+.
Let i0 be the constant value of F (on [(indk(B))+]2k). Look at the sequence
〈aα(i0) : α < (indk(B))+ & α limit〉. Any combination of k members of this
sequence can be “extended” to a combination of 2k elements of 〈aα(i0) :
α < (indk(B))+〉 of the type used in the definition of F . A contradiction.
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Now suppose that λ1 := i2k−1(utk(B)) < ind2k(
∏w
i<ωB). As in 4.7, we

take a sequence 〈aα : α < λ+
1 〉 ⊆

∏w
i<ωB such that for some n < ω, for each

α < λ+
1 , aα ∈ Bn (i.e. the support of aα is contained in n) and

(∀α0 < . . . < α2k−1 < λ+
1 )
( ∧

l<k

aα2l ∧ (−aα2l+1) 6= 0
)
,

and for each α0 < . . . < α2k−1 < λ+
1 we choose an ultrafilter D{α0,...,α2k−1} ∈

Ult
∏w
i<ωB such that

∧

l<k

aα2l ∧ (−aα2l+1) ∈ D{α0,...,α2k−1}.

Now we consider a colouring F : [λ+
1 ]2k+1 → 2k+1(2× n) given by

F ({α0, . . . , α2k})(l) = (1,m)⇔ aαl ∈ D{α0,...,α2k}\{αl} and

D{α0,...,α2k}\{αl} is concentrated on
the mth coordinate.

By the Erdős–Rado theorem we may assume the set of the first (utk(B))+

elements of λ+
1 to be homogeneous for F . Now we finish as in 4.7 noticing

that for some m < n, for all α0 < . . . < α2k−1 < (utk(B))+ the ultrafilter
D{α0,...,α2k−1} is concentrated on the mth coordinate. So we may use ele-
ments of the form aα·ω(m) ∧ (−aα·ω+5(m)) (for α < (utk(B))+) to get a
contradiction.

(2) Assume that utk+1(
∏w
i<ω B) > ik(µ) where µ = ut+

k+1(B). Then
we find a sequence 〈aα : α < (ik(µ))+〉 ⊆ ∏w

i<ω B such that for any k + 1
distinct members of this sequence there is an ultrafilter containing all of them
and no other member of the sequence. We may assume that for some n < ω
we have 〈aα : α < (ik(µ))+〉 ⊆ Bn. For α0, . . . , αk < (ik(µ))+ let Dα0,...,αk

be the corresponding ultrafilter of Bn (i.e. it contains all aαl (for l ≤ k) and
nothing else from the sequence) and let F (α0, . . . , αk) < n be such that the
ultrafilter Dα0,...,αk is concentrated on that coordinate. By the Erdős–Rado
theorem we find a set A ∈ [(ik(µ))+]µ

+
homogeneous for F . Let m be

the constant value of F on A. Look at the sequence 〈aα(m) : α ∈ A〉—it
witnesses ♠B,k+1

µ+ , contradicting µ = ut+
k+1(B).

Finally, note that for the algebra Bk0 (λ) of 4.2 we have

utk(Bk0 (λ)) = tk,ω(Bk0 (λ)) = λ,

utk+1(Bk0 (λ)) = utk+1,k+1(Bk0 (λ)) = tk+1,k+1(Bk0 (λ)) = ℵ0.

This gives us an example distinguishing tk,ω and tk+1,ω (and in Corollary 4.3
we may replace ind by t). But the following problem remains open:

Problem 4.16. Are the following inequalities possible:

tk,ω(B) > utk(B), tω,k(B) > utk(B), tk,k(B) > tk,k+1(B) ?
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4.3. Independence and interval Boolean algebras. Now we are going to
reformulate (in a stronger form) and put in our general setting the results
of [Sh 503].

Definition 4.17. Let B be a Boolean algebra.

(1) For a filter D on [λ]k we say that B has the D-dependence property
if for every sequence 〈ai : i < λ〉 ⊆ B there is A ∈ D such that for every
{α0, α1, . . . , αk−1} ∈ A the set {aα0 , aα1 , . . . , aαk−1} is not independent.

(2) For a filter D on [λ]k and a Boolean term τ(x0, x1, . . . , xk−1) we say
that B has the (D, τ)-dependence property if for every 〈ai : i < λ〉 ⊆ B, for
some A ∈ D, for every {α0, α1, . . . , αk−1} ∈ A with α0 < α1 < . . . < αk−1

we have B |= τ(aα0 , aα1 , . . . , aαk−1) = 0.

It should be clear that if D is a proper filter on [λ]k and a Boolean algebra
B has the D-dependence property then λ ≥ ind+

k (B) (and so λ ≥ ind+(B)).

Proposition 4.18. Let τ = τ(x0, x1, . . . , xk−1) be a Boolean term and let
D be a κ-complete filter on [λ]k. Then any reduced product of < κ Boolean
algebras having the (D, τ)-dependence property has the (D, τ)-dependence
property (this includes products and ultraproducts).

Proposition 4.19. Assume D is a proper filter on [λ]k. Then there exists
a sequence 〈α0, α1, . . . , αk−1〉 of ordinals ≤ λ such that :

(a) {w ∈ [λ]k : for each l < k the lth member of w is < αl} 6= ∅ mod D,
(b) if α′l ≤ αl for all l < k, n < k and α′n < αn then

{w ∈ [λ]k : for each l < k, the lth member of w is < α′l} = ∅ mod D.

[Note that necessarily 〈αl : l < k〉 is nondecreasing.]

P r o o f. Let F be the set of all nondecreasing sequences 〈αl : l < k〉 ⊆
λ + 1 such that the condition (a) holds. Then F is upward closed (and
〈λ, . . . , λ〉 ∈ F ). Choose by induction α0, . . . , αk−1 such that for each l < k,

αl = min{β : (∃ᾱ ∈ F )(ᾱ¹l = 〈α0, . . . , αl−1〉 & αl = β)}.
Definition 4.20. We call a filter D on [λ]k normal for 〈α0, α1, . . . , αk−1〉

if condition (b) of 4.19 holds and

(a)+ {w ∈ [λ]k : for each l < k the lth member of w is < αl} ∈ D.

Proposition 4.21. Assume that :

(1) D is a κ-complete filter on [λ]k which is normal for 〈α0, α1, . . . , αk−1〉,
and α0, . . . , αk−1 are limit ordinals,

(2) k(∗)=k · 2k, i 7→(mi, li) : k(∗)→2k×k is a one-to-one mapping such
that i1 < i2 implies that , lexicographically , (αli1 ,mi1 , li1) < (αli2 ,mi2 , li2);
for (m, l) ∈ 2k × k the unique i < k(∗) such that (mi, li) = (m, l) is denoted
by i(m, l),



144 A. Rosłanowski and S. Shelah

(3) κ∗ is a regular cardinal such that (∀µ < κ∗)(2µ < κ) (e.g. κ∗ = ℵ0),
(4) for X ∈ D and h : X → µ with µ < κ∗,

AX,h := {w ∈ [λ]k(∗) : (∀m,m′ < 2k)(wm ∈ X & h(wm) = h(wm′))}
where for m < 2k and w = {β0, . . . , βk(∗)−1} ∈ [λ]k(∗) (the increasing enu-
meration) the set wm is {βi(m,l) : l < k},

(5) D∗ is the κ∗-complete filter on [λ]k(∗) generated by the family

{AX,h : X ∈ D, h : X → µ, µ < κ∗},

(6) τ∗ = τ∗(x0, x1, . . . , xk(∗)−1) =
∧
m<2k

∧
l<k x

fm(l)
i(m,l), where 〈fm :

m < 2k〉 lists all the functions in k2.

Then:

(a) D∗ is a proper κ∗-complete filter on [λ]k(∗) which is normal for the
sequence 〈αli : i < k(∗)〉,

(b) if a Boolean algebra B has the D-dependence property then it has the
(D∗, τ∗)-dependence property.

P r o o f. Assume that Xj ∈ D, µj < κ∗ and hj : Xj → µj for j < µ < κ∗,
and look at the intersection

⋂
j<µAXj ,hj . Let X∗ =

⋂
j<µXj . Then X∗ ∈ D

as µ < κ and D is κ-complete. Moreover, for some 〈ξj : j < µ〉 ∈ ∏j<µ µj
we have

X+ := {w ∈ X∗ : (∀j < µ)(hj(w) = ξj)} 6= ∅ mod D,

as
∏
j<µ µj < κ (remember κ∗ is regular and (∀µ < µ∗)(2µ < κ)). Let

r0 < r1 < . . . < rl∗−1 < r∗l = k − 1 be such that

α0 = . . . = αr0 < αr0+1 = . . . = αr1 < αr1+1 = . . .

. . . = αrl∗−1 < αrl∗−1+1 = . . . = αk−1.

Now we choose inductively {βm0 , . . . , βmk−1} ∈ X+ (for m < 2k) such that

βmn < αn for n < k, m < 2k,

αru < β0
ru+1 for u < l∗,

βmn < βmn+1 for n < k − 1, m < 2k,

βmr0 < βm+1
0 , βmru+1

< βm+1
ru+1 for u < l∗, m+ 1 < 2k.

How? Since D is normal for 〈α0, . . . , αk−1〉 and the αi’s are limit, the set

Y0 := {w ∈ [λ]k : for each n < k the nth member of w is < αn and
for each u < l∗ the (ru + 1)th element of w is > αru}

is in D. Thus we may choose w0 = {β0
0 , . . . , β

0
k−1} in X+∩Y0. Now suppose
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that we defined {βm0 , . . . , βmk−1}. The set

Ym+1 := {w ∈ [λ]k : for each n < k the nth member of w is < αn and
for each u < l∗ the (ru + 1)th element of w is > βmru+1

and the minimal element of w is > βmr0}
is in D and we choose wm+1 = {βm+1

0 , . . . , βm+1
k−1 } in X+ ∩ Ym+1. Note

that then i0 < i1 ⇒ β
mi0
li0

< β
mi1
li1

(for i0, i1 < k · 2k) and hence clearly

w := {βml : l < k, m < 2k} ∈ ⋂j<µAXj ,hj . Consequently, the κ∗-complete
filter D∗ generated on [λ]k(∗) by the sets AX,h is proper. The filter D∗ is
normal for 〈αli : i < k(∗)〉 since:

• if X = {{β0, . . . , βk−1} ∈ [λ]k : (∀n < k)(βn < αn)} and h is a constant
function on X then

AX,h = {{β0, . . . , βk(∗)−1} ∈ [λ]k(∗) : (∀i < k(∗))(βi < αli)} ∈ D∗;
• if i < k(∗) and α′ < αli then the complement X of the set

{w ∈ [λ]k : the lith member of w is less than α′}
is in D, and if h is a constant function on X then the set AX,h witnesses
that

{w ∈ [λ]k(∗) : the ith member of w is less than α′} = ∅ mod D∗.

It should be clear that theD-dependence property forB implies the (D∗, τ∗)-
dependence property.

This is relevant to the product of linear orders. It was proved in [Sh 503]
that if κ is an infinite cardinal and Bζ (for ζ < κ) are interval Boolean
algebras then ind(

∏
ζ<κBζ) = 2κ. The next result was actually hidden in

the proof of Theorem 1.1 of [Sh 503].

Theorem 4.22. Let κ be an infinite cardinal and let µ be a regular car-
dinal such that for every χ < µ we have χκ < µ (e.g. µ = (2κ)+ in (1) below
or µ = (22κ)+ in (2)).

(1) For a regressive function f : µ→ µ (i.e. f(α) < 1 + α), a two-place
function g : µ2 → χ for some χ < µ and a closed unbounded subset C of µ,
put

AC,f,g = {{α0, . . . , α5} ∈ [µ]6 : α0 < α1 < . . . < α5 are from C,

each has cofinality > κ, f(α0) = f(α1) = . . . = f(α5) and

g(α0, α1) = g(α0, α2) = g(α3, α4) = g(α3, α5)}.
Let D6

µ,κ be the filter on [µ]6 generated by all the sets AC,f,g. Finally , let τ6
be the following Boolean term:

τ6(x0, x1, . . . , x5) := x0 ∧ (−x1) ∧ x2 ∧ (−x3) ∧ x4 ∧ (−x5).



146 A. Rosłanowski and S. Shelah

Then D6
µ,κ is a proper κ+-complete filter normal for 〈µ, µ, µ, µ, µ, µ〉 and

every interval Boolean algebra has the (D6
µ,κ, τ6)-dependence property.

(2) Let µ0 be a cardinal such that (µ0)κ = µ0 and (2µ0)+ ≤ µ. For a
closed unbounded set C ⊆ µ, a regressive function f : µ→ µ and a two-place
function g : µ2 → µ0, let

A∗C,f,g = {{α0, α1, α2, α3} ∈ [µ]4 : α0 < α1 < α2 < α3 are from C,

each has cofinality > κ, f(α0) = f(α1) = f(α2) = f(α3) and

g(α0, α2) = g(α0, α3) = g(α1, α2) = g(α1, α3)}.
Let D4

µ,κ be the κ-complete filter on [µ]4 generated by all the sets A∗C,f,g.
Finally , let

τ4 = τ4(x0, x1, x2, x3) := x0 ∧ (−x1) ∧ x2 ∧ (−x3).

Then the filter D4
µ,κ is proper , κ+-complete and normal for 〈µ, µ, µ, µ〉 and

every interval Boolean algebra has the (D4
µ,κ, τ4)-dependence property.

P r o o f. (1) Let µ be a regular cardinal such that (∀χ < µ)(χκ < µ)
(so µκ = µ). First note that all the sets AC,f,g are nonempty. [Why? Let
f : µ → µ be regressive, g : µ2 → χ, χ < µ and let C ⊆ µ be a club. Then
for some % the set

S = {α ∈ C : cf(α) > κ & f(α) = %}
is stationary (by the Fodor lemma). Next, for each α ∈ S take h(α) < χ
such that the set {α′ ∈ S : α < α′ & g(α, α′) = h(α)} is stationary, and
note that for some δ < χ the set Z = {α ∈ S : h(α) = δ} is stationary. Take
any α0 ∈ Z and then choose α1 < α2 from (α0, µ) ∩ S such that

g(α0, α1) = g(α0, α2) = δ.

Next choose α3 > α2 from Z and α4, α5 ∈ (α3, µ) ∩ S such that

g(α3, α4) = g(α3, α5) = δ.

Clearly {α0, α1, α2, α3, α4, α5} ∈ AC,f,g.]
Now suppose that Cζ ⊆ µ, fζ : µ→ µ, gζ : µ2 → χζ , χζ < µ (for ζ < κ)

are as required in the definition of the sets ACζ ,fζ ,gζ . Let π : κµ → µ be a
bijection (remember µ = µκ). Choose a club C ⊆ µ such that C ⊆ ⋂ζ<κ Cζ
and

if α ∈ C, β < α, F ∈ κβ then π(F ) < α.

Let

f : µ→ µ : α 7→ π(〈fζ(α) : ζ < κ〉),
g : µ2 →

∏

ζ<κ

χζ : (α, β) 7→ 〈gζ(α, β) : ζ < κ〉.
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The function f is regressive on {α ∈ C : cf(α) > κ}; outside this set we
change the values of f to 0. Since

∏
ζ<κ χζ < µ we have AC,f,g ∈ D6

µ,κ. It
should be clear that AC,f,g ⊆

⋂
ζ<κACζ ,fζ ,gζ . Thus we have proved that the

filter D6
µ,κ generated by the sets AC,f,g is proper κ+-complete. To show that

D6
µ,κ is normal for 〈µ, µ, µ, µ, µ, µ〉 note that for α < µ and l < 6, if we take

C = (α, µ) and f , g constant functions then

AC,f,g ∩ {{α0, . . . , α5} ∈ [µ]6 : αl < α} = ∅.
Suppose now that (I,<I) is a linear ordering. Let −∞ be a new element

(declared to be smaller than all members of I) in the case where I has no
minimum element; otherwise −∞ is that minimum element. Further, let ∞
be a new element above all members of I. The interval Boolean algebra B(I)
determined by the linear ordering I is the algebra of subsets of I generated
by the intervals [x, y)I = {z ∈ I : x ≤I z <I y} for x, y ∈ I ∪ {−∞,∞}.

We are going to show that the algebraB(I) has the (D6
κ,µ, τ6)-dependence

property. Assume that 〈aα : α < µ〉 ⊆ B(I). Since we can find a subset of
I of size ≤ µ which captures all the dependences in the sequence we may
assume that the linear order I is of size µ, so I is a linear ordering on µ.

Fix a bijection φ : [µ ∪ {−∞,∞}]<ω × ω>4→ µ.
For each α < µ we have a (unique) <I -increasing sequence

〈sαi : i < 2n(α)〉 ⊆ µ ∪ {−∞,∞}, n(α) < ω,

such that aα =
⋃
i<n(α)[s

α
2i, s

α
2i+1)I . Take a closed unbounded set C ⊆ µ

such that for each α ∈ C:

(1) if w ∈ [α ∪ {−∞,∞}]<ω and c ∈ ω>4 then φ(w, c) < α,
(2) if φ(w, c) < α then w ⊆ α ∪ {−∞,∞},
(3) if β < α then {sβi : i < 2n(β)} ⊆ α ∪ {−∞,∞}.

For each α < µ fix a finite set wα ⊆ α ∪ {−∞,∞} such that −∞,∞ ∈ wα
and

(4) if sαi ∈ α ∪ {−∞,∞} then sαi ∈ wα,
(5) if s, t ∈ {sαi : i < 2n(α)} ∪ {−∞,∞}, s <I t and (s, t)I ∩ α 6= ∅ then

(s, t)I ∩ wα 6= ∅.
Next, let cα : wα → 4 (for α < µ) be such that for s ∈ wα,

cα(s) =





0 if (∃x <I s)([x, s)I ⊆ aα),
1 if (∃x : s <I x)([s, x)I ⊆ aα),
2 if both of the above,
3 otherwise.

We can think of cα as a member of ω>4 and we put f(α) = φ(wα, cα) for
α < µ. Note that the function f is regressive on C (so we can modify it
outside C to get a really regressive function). Now, if α0 < α1, both in C,
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and f(α0) = f(α1) then

sα0
i = sα1

j & i < 2n(α0) & j < 2n(α1)⇒ sα1
j ∈ wα1 ,

wα0 ∩ {sα0
i : i < 2n(α0)} = wα1 ∩ {sα1

i : i < 2n(α1)}.
[Why? For the first statement note that, by (3), sα0

i < α1 (for each i <
2n(α0)) so we may use (4). For the second assertion suppose that sα0

2i ∈
wα0 = wα1 . Then necessarily cα0(sα0

2i ) = 1 = cα1(sα0
2i ). Checking when the

function cα1 takes value 1 and when 2 we find that sα0
2i = sα1

2j for some
j < n(α1). Next, if sα0

2i+1 ∈ wα0 = wα1 then c(sα0
2i+1) = 0 and sα0

2i+1 = s
αj
2j+1

for some j. Similarly if we start with sα1
i .] Moreover, if s, t ∈ wα0 are two

<I -successive points of wα0 , s ≤I sα1
i <I s

α1
i+1 ≤I t and i+ 1 < 2n(α1), then

(sα1
i , sα1

i+1)I ∩ {sα0
j : j < 2n(α0)} = ∅.

Let a function g : µ2 → ω>ω be such that if α < β, α, β ∈ C and
f(α) = f(β) then

g(α, β) = 〈‖wα‖, t0, . . . , t‖wα‖−1, v0, . . . , v‖wα‖−1〉 ∈ ω>ω,

where t̄, v̄ are such that if wα={wα(0), . . . , wα(‖wα‖−1)} (the<I -increasing
enumeration) and l < ‖wα‖ then

tl = 0⇔ {sβj : j < 2n(β)} ∩ (wα(l), wα(l + 1))I = ∅,
and if sβi ∈ (wα(l), wα(l + 1))I then

vl = 0⇒ (wα(l), sβi )I ∩ {sαj : j < 2n(α)} = ∅,
vl > 0⇒ sαvl−1 ∈ (wα(l), sβi )I & (sαvl−1, s

β
i )I ∩ {sαj : j < 2n(α)} = ∅.

Suppose now that α0 < . . . < α5 from C are such that f(α0) = . . . =
f(α5) and

g(α0, α1) = g(α0, α2) = g(α3, α4) = g(α3, α5)

= 〈k, t0, . . . , tk−1, v0, . . . , vk−1〉.
Then wα0 = . . . = wα5 = w = {w(0), . . . , w(k − 1)} (the <I -increasing
enumeration). We are going to show that for each l < k − 1,

(}) τ6(aα0 , . . . , aα5) ∧ [w(l), w(l + 1))I = ∅.
Fix l < k − 1. If tl = 0 then the interval (w(l), w(l + 1))I contains no

sα1
j , sα2

j and therefore

aα1 ∧ [w(l), w(l + 1))I = aα2 ∧ [w(l), w(l + 1))I ∈ {0, [w(l), w(l + 1))I}
(remember cα1 = cα2). Hence (−aα1) ∧ aα2 ∧ [w(l), w(l + 1))I = 0 and
(}) holds. So suppose that tl > 0. Then for each k = 1, 2, 4, 5 the interval
(w(l), w(l + 1))I contains some sαkj . We know that if j < j′, k = 1, 2 and
sαkj , sαkj′ ∈ (w(l), w(l+ 1))I then there is no sα0

i in [sαkj , sαkj′ ]I (and similarly
for α3 and k = 4, 5). Assume that vl = 0 and for k = 1, 2, 4, 5 let jk < 2n(αk)
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be the last such that sαkjk ∈ (w(l), w(l+1))I . By the definition of the functions
g and f and the statement before we conclude that either

• a0 ∧ [w(l), sαkjk )I = 0 (for k = 1, 2) and
a3 ∧ [w(l), sαkjk )I = 0 (for k = 4, 5), or
• a0 ∧ [w(l), sαkjk )I = [w(l), sαkjk )I (for k = 1, 2) and
a3 ∧ [w(l), sαkjk )I = [w(l), sαkjk )I (for k = 4, 5)

and the parity of jk’s is the same (just look at cαk(w(l + 1))). Hence we
conclude that either aα0 ∧ (−aα1) ∧ aα2 ∧ [w(l), w(l + 1))I = 0 or (−aα3) ∧
aα4 ∧ (−aα5)∧ [w(l), w(l+ 1))I = 0 (and in both cases we get (})). Assume
now that vl > 0. By similar considerations one shows that if vl − 1 is even
then

(−aα3) ∧ aα4 ∧ (−aα5) ∧ [w(l), w(l + 1))I = 0

and if vl − 1 is odd then

aα0 ∧ (−aα1) ∧ aα2 ∧ [w(l), w(l + 1))I = 0.

Since g can be thought of as a function from µ2 to ω < µ the set AC,f,g
is in D6

µ,κ and we have shown that it witnesses the (D6
µ,κ, τ6)-dependence

for the sequence 〈aα : α < µ〉.
(2) is almost exactly like (1) above. The only difference is that showing

that the sets A∗C,f,g are nonempty we use the Erdős–Rado theorem (to choose
α0, α1, α2, α3 suitably homogeneous for g), and then in arguments that B(I)
has the dependence property we use the triples α0, α2, α3 and α1, α2, α3.

4.4. Appendix : How one can use [Sh 95]. For the reader’s convenience
we recall here some of the notions and results of [Sh 95]. We applied them
to reduce the number of steps in the beth hierarchy replacing them partially
by passing to successors. This reduction is meaningful if the exponentiation
function is far from GCH. Generally we think that κ+ (or even κ++) should
be considered as something less than 2κ.

Definition 4.23 (see Definition 1 of [Sh 95]). (1) For a sequence r̄ =
〈n0, . . . , nk−1〉 ∈ kω we define n(r̄) =

∑
l<k nl, k(r̄) = k, nl(r̄) = nl.

(2) Let Bξ (for ξ < µ) be disjoint well ordered sets, r̄ = 〈n0, . . . , nk−1〉
∈ kω, f : [

⋃
ξ<µBξ]

n(r̄) → χ and l ≤ n(r̄). We say that f is (r̄)l-canonical
(on 〈Bξ : ξ < µ〉) if for every ξ0 < . . . < ξk−1 < µ, a0 < . . . < an0−1 in
Bξ0 , an0 < . . . < an0+n1−1 in Bξ1 and so on, the value f(a0, . . . , an(r̄)−1)
depends on a0, . . . , an(r̄)−1−l, ξ0, . . . , ξk−1 only (i.e. it does not depend on
an(r̄)−l, . . . , an(r̄)−1).

(3) A sequence 〈λξ : ξ < µ〉 (of cardinals) has a 〈κξ : ξ < µ〉-canonical
form for Γ = {(r̄i)liχi : i < α} (where li’s are integers, li ≤ n(r̄i), χi’s
are cardinals and r̄i’s are finite sequences of integers) if for any disjoint
(well ordered) sets Aξ with ‖Aξ‖ = λξ (for ξ < µ) and functions fi :
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[
⋃
ξ<κAξ]

n(r̄i) → χi (for i < α) there are sets Bξ ⊆ Aξ with ‖Bξ‖ = κξ
such that each function fi is (r̄i)li-canonical on 〈Bξ : ξ < µ〉 (for i < α).

Several canonization theorems were proved in [Sh 95]; we will quote here
two (the simplest actually) which we needed for our applications.

Proposition 4.24 (see Composition Claim 5 of [Sh 95]). Let Γ1 be

{(〈n0, . . . , nk−1, . . . , nm−1〉)p+q2µ : (〈n0, . . . , nk−1, . . . , nm−1〉)p2µ ∈ Γ3 &

(〈n0, . . . , nk−2, nk−1−s〉)q2µ ∈ Γ2 & p = s+nk+. . .+nm−1 & 0 ≤ s < nk−1}.
Suppose that the sequence 〈λ3

ξ : ξ < µ〉 has a 〈λ2
ξ : ξ < µ〉-canonical form for

Γ3 and the sequence 〈λ2
ξ : ξ < µ〉 has a 〈λ1

ξ : ξ < µ〉-canonical form for Γ2.
Then the sequence 〈λ3

ξ : ξ < µ〉 has a 〈λ1
ξ : ξ < µ〉-canonical form for Γ1.

Proposition 4.25 (see Conclusion 8(1) of [Sh 95]). The sequence

〈(2µ)++ : ξ < µ〉
has a 〈µ : ξ < µ〉-canonical form for {(r̄∧〈1〉)2

2µ : r̄ ∈ kω, k < ω}.
Recall that for a cardinal µ and an integer k we have defined kk(µ) by

k0(µ) = µ and kk+1(µ) = (2kk(µ))++.

Proposition 4.26. Suppose that 〈Aξ : ξ < µ〉 is a sequence of disjoint
sets with ‖Aξ‖ = kk+1(µ). Let F : [

⋃
ξ<µAξ]

2k+1 → 2µ. Then:

(a) there are α0
ξ , α

1
ξ ∈ Aξ (for ξ < µ), α0

ξ 6= α1
ξ such that for any pairwise

distinct ξ0, . . . , ξk < µ,

(⊕) F (α0
ξ0 , α

1
ξ0 , . . . , α

0
ξk−1

, α1
ξk−1

, α0
ξk

) = F (α0
ξ0 , α

1
ξ0 , . . . , α

0
ξk−1

, α1
ξk−1

, α1
ξk

)

and even more:

(b) there are sets Bξ ∈ [Aξ]µ (for ξ < µ) such that if ξ0, . . . , ξk < µ are
distinct and a0

ξi
, a1
ξi
∈ Bξi are distinct then (⊕) of (a) holds true.

P r o o f. It follows from 4.24 and 4.25 (e.g. inductively) that 〈kk+1(µ) :
ξ < µ〉 has a 〈µ : ξ < µ〉-canonical form for Γ , where Γ consists of the
following elements:

(〈2 . . . 2︸ ︷︷ ︸
k

1〉)2
2µ , (〈2 . . . 2︸ ︷︷ ︸

k

11〉)2
2µ , (〈2 . . . 2︸ ︷︷ ︸

k−1

121〉)4
2µ ,

(〈2 . . . 2︸ ︷︷ ︸
k−2

1221〉)6
2µ , . . . , (〈1 2 . . . 2︸ ︷︷ ︸

k

1〉)2k+2
2µ .
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