FUNDAMENTA
MATHEMATICAE
155 (1998)

Cardinal invariants of ultraproducts of
Boolean algebras

by

Andrzej Rostanowski (Jerusalem and Wroclaw)
and Saharon Shelah (Jerusalem and New Brunswick, N.J.)

Abstract. We deal with some problems posed by Monk [Mo 1], [Mo 3] and related to
cardinal invariants of ultraproducts of Boolean algebras. We also introduce and investigate
several new cardinal invariants.

0. Introduction. In the present paper we deal with cardinal invariants
of Boolean algebras and ultraproducts. Several questions in this area were
posed by Monk ([Mo 1], [Mo 2], [Mo 3|) and we address some of them. A
general schema of these problems can be presented in the following fashion.
Let inv be a cardinal function on Boolean algebras. Suppose that B; are
Boolean algebras (for i < k) and that D is an ultrafilter on the cardinal .
We ask what is the relation between inv([],_, B;/D) and [],_, inv(B;)/D.
For each invariant inv we may consider two questions:

(Qinv Is inv ( H Bi/D> < H inv(B;)/D possible?

1<K

1<K 1<K
(>)iny Is inv ( H Bi/D> > H inv(B;)/D possible?
1<K 1<K

We deal with these questions for several cardinal invariants. We find it help-
ful to introduce “finite” versions inv,, of the invariants. This helps us in
some problems as inv' ([],., B;/D) > ]_[Kninvjfm(Bi)/D for each func-
tion f : k — w such that limp f = w.

In Section 1 we will give a general setting of the subject. These results
were known much earlier (at least to the second author). We present them
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here to establish a uniform approach to the invariants and show how the
t.0§ theorem applies. In the last part of this section we present a simple
method which uses the main result of [MgSh 433] to show the consistency
of the inequality inv([[, . Bi/D) < [I,., inv(B;)/D for several invariants
inv. These problems will be fully studied and presented in [MgSh 433].

Section 2 is devoted to the (topological) density of Boolean algebras.
We show here that, in ZFC, the answer to the question (<)4 is “yes”. This
improves Theorem A of [KoSh 415] (a consistency result) and answers (neg-
atively) Problem J of [Mo 3]. It should be remarked here that the answer to
(>)a is “no” (see [Mo 2]).

In the third section we introduce strong A-systems which are one of
tools for our constructions. Then we apply them to build Boolean algebras
which (under some set-theoretical assumptions) show that the inequalities
(>)hecof and (>)ine are possible (a consistency). These results seem to be
new, the second one can be considered as a partial answer to Problem X of
[Mo 3]. We get similar constructions for spread, hereditary Lindelof degree
and hereditary density. However, they are not sufficient to give in ZFC
positive answers to the corresponding questions (>)iny. These investigations
are continued in [Sh 620], where the relevant Boolean algebras are built in
ZFC. The consistencies of the reverse inequalities will be presented in [MgSh
433].

The fourth section deals with the independence number and the tight-
ness. It has been known that both questions (>)ing and (>); have the answer
“yes”. In the forthcoming paper [MgSh 433] it will be shown that (<)ing,
(<)¢+ may be answered positively (a consistency result; see also Section 1).
Our results here were inspired by other sections of this paper and [Sh 503].
We introduce and study “finite” versions of the independence number get-
ting a surprising asymmetry between odd and even cases. A completely new
cardinal invariant appears naturally here. It has some reflection in what we
can show for the tightness. Finally, we re-present and re-formulate the main
result of [Sh 503] (on products of interval Boolean algebras) putting it in
our general schema and showing explicitly its heart.

History. A regular study of cardinal invariants of Boolean algebras was
initiated in [Mo 1], where several problems were posed. Those problems
stimulated and directed the work in the area. Some of the problems were
naturally related to the behaviour of the invariants in ultraproducts and that
found a reflection in papers coming later. Several bounds, constructions and
consistency results were proved in [Pe], [Sh 345], [KoSh 415], [MgSh 433],
[Sh 479], [Sh 503]. New techniques of constructions of Boolean algebras were
developed in [Sh 462] (though the relevance of the methods for ultraproducts
was not stated explicitly there).
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This paper is, in a sense, a development of the notes “F99: Notes on
cardinal invariants...” which the second author wrote in January 1993. A
part of these notes is incorporated here, other results will be presented in
[MgSh 433] and [RoSh 599].

The methods and tools for building Boolean algebras which we present
here will be applied in a forthcoming paper to deal with the problems of
attainment in different representations of cardinal invariants.

Notation. Our notation is rather standard. All cardinals are assumed to
be infinite and usually they are denoted by A, &, 8, © (with possible indices).

We say that a family {(s§,...,s%_;) : @ < A} of finite sequences forms
a A-system with the root {0,...,m* — 1} (for some m* < m) if the sets
{8,821} (for o < ) are pairwise disjoint and

(Yo < A)(VI < m*)(sf* = s).

In Boolean algebras we use V (and \/), A (and /\) and — for the Boolean
operations. If B is a Boolean algebra and x € B then 2° = z and 2! = —2.

The sign ® stands for the operation of the free product of Boolean al-
gebras (see [Ko], Def. 11.1) and []" denotes the weak product of Boolean
algebras (as defined in [Ko], p. 112).

All Boolean algebras we consider are assumed to be infinite (and we
will not repeat this assumption). Similarly whenever we consider a cardinal
invariant inv(B) we assume that it is infinite.

Acknowledgments. We would like to thank Professor Donald Monk
for his very helpful comments at various stages of preparation of the paper
as well as for many corrections and improvements.

1. Invariants and ultraproducts

1.1. Definable cardinal invariants. In this section we try to systematize
the definition of cardinal invariants and we define what is a def.car. invariant
(definable cardinal invariant) of Boolean algebras. Then we get immediate
consequences of this approach for ultraproducts. Actually, Boolean algebras
are irrelevant in this section and can be replaced by any structures.

DEFINITION 1.1. (1) For a (not necessarily first order) theory 7" in the lan-
guage of Boolean algebras plus one distinguished predicate P = Py (unary if
not said otherwise) plus, possibly, some others Py, P, ... we define cardinal
invariants invy and invJ. of Boolean algebras by (for a Boolean algebra B)

invy(B) := sup{||P|| : (B, Pn)n is a model of T'},
inv(B) := sup{||P||" : (B, Py)y is a model of T},
Invy(B) :={||P]| : (B, P,)y is a model of T'}.

(+)
T

We call invy’ a def.car. invariant (definable cardinal invariant).
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(2) Ifin (1), T is first order, we call such a cardinal invariant a def.f.o.car.
invariant (definable first order cardinal invariant).

(3) A theory T is n-universal in (P, Py) if all sentences ¢ € 1" are of the
form

Va1, ..., 2, € Bo)(¥(T)),
where all occurrences of z1,...,x, in ¥ are free and P, does not appear
there and any appearance of P; in 1) is of the form Pj(x;,,...,z;, ) with no
more complicated terms.

If we allow all n then T is said to be universal in (Py, Py).

Note: quantifiers can still occur in ¥ (Z) on other variables.

(4) If in (1), T is universal in (Py, P1), first order except the demand that
P is a well ordering of Py we call such a cardinal invariant a def.u.w.o.car.
invariant (definable universal well ordered cardinal invariant).

(5) If in (1), Py is a linear order on P (i.e. T says so) and in the defi-
nition of invy(B) and inv' (B) we replace ||P|| by the cofinality of (P, P;)
then we call those cardinal invariants def.cof. invariants (definable cofinality
invariants, cf-invy); we can have the f.o. and the u.w.o. versions. We define
similarly cf-Invy(B) as the set of such cofinalities. To use cf-inv we can put
it in T (we may omit “cf-” if the context allows it). We can use order type
instead of cofinality and cardinality writing ot-inv. For cardinality we may
use car-inv.

(6) For a theory T as in (2), the minimal definable first order cardinal
invariant of B (determined by T') is min Invp(B).

To avoid a long sequence of definitions we refer the reader to [Mo 1],
[Mo 2] for the definitions of the cardinal functions below. Those invariants
which are studied in this paper are defined in the respective sections.

PROPOSITION 1.2. (1) The following cardinal invariants of Boolean al-
gebras are def.f.o.car. invariants (of course each has two versions: inv and
inv'): ¢ (cellularity), Length, irr (irredundance), cardinality, ind (indepen-
dence), s (spread), Inc (incomparability).

(2) The following cardinal invariants of Boolean algebras are def.f.o.cof.
invariants: hL. (hereditary Lindeldf), hd (hereditary density).

(3) The following cardinal invariants of Boolean algebras are def.u.w.o.-
car. invariants: Depth, t (tightness), h-cof (hereditary cofinality), hL, hd.

(4) 7 (algebraic density) and d (topological density) are minimal def.f.o.-
card. invariants.

Proof. All unclear cases are presented in the next sections. m

PROPOSITION 1.3. (1) If inv(B) is a limit cardinal then the sup in the
definition of invy(B) is not attained and invy(B) = invih(B).
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(2) If invi(B) is not a limit cardinal then it is (invy(B))* and the sup
in the definition of invy(B) is attained. m

DEFINITION 1.4. A linear order (I, <) is ©-like if

1I]l=6 and (Vac I)(|{bel:b<a}|<®).

PROPOSITION 1.5. Assume that invgjr) s a definable first order cardinal

invariant. Assume further that D is an ultrafilter on a cardinal k, B; is a
Boolean algebra (for i < k) and B :=[],_, Bi/D. Then:

(a) if \i < inv(B;) fori < & then [[;. \i/D < invi(B),

(b) HKKIHVT( i)/D < invy(B),

(c) if invp(B) < [l,..inve(B;)/D then for the D-magority of i < k,
Ai := invy(B;) is a limit cardinal and the linear order [, ., (\i, <)/D is
(invy(B))*-like; hence for the D-majority of i < Kk, \; is a reqular limit
cardinal (i.e. weakly inaccessible),

(d) minInvy(B) <[], ., minInvy(B;)/D.

Proof. (a) This is an immediate consequence of the ¥.o$ theorem.
(b) For i < k define \; = inv(B;). Suppose that A < []._. A;/D. As
[L:<.(Xi, <)/D is a linear order of cardinality > X we find f € [],_, A\i with

|{o/0 e TTn/D 29/ < /DY 2 1

1<K

Since f(i) < inv4(B;) (for i < k) we may apply (a) to conclude that
A< H Hf(z’)/DH < invi(B).
<K

(c) Let A=invy(B) and A\; =invy(B;), and assume that A <[],
By part (b) we conclude that then

(%) AT = HanT i)/ D = H invy(B;)/D = invh(B).
<K i<K

Let A = {i < k : invyp(B;) < inv;(B;)}. Note that A ¢ D: if not then
we may assume A =  and for each i < k we have \; < invi(B;). By
part (a) and (x) above we get AT =[], \i/D < inv}(B), a contradiction.
Consequently, we may assume that A = (). Thus for each i < x we have
A\ = invy(B;) = invih(B;) and ); is a limit cardinal, \; = sup Invy(B;) ¢
Invy(B;) (by 1.3).

The linear order [[,_, (X, <)/D is of cardinality A™ (by (x)). Suppose
J € Ilic, Ai and choose p; € Invy(B;) such that f(i) < p; for i < k. Then

< HMZ/D e Invy (HB,/D) C At

1<K

\i/D.

1<K

Hence the order Hi</§()\i’ <)/D is AT-like.
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Finally, assume that A = {i < k : \; is singular} € D, so without loss
of generality A = k. Choose cofinal subsets ); of A; such that Q; C A\; =
sup Q;, [|Qi]| = cf(N;) (for i < k) and let M; = (A, <,Qy,...). Take the
ultrapower M = [],_. M;/D and note that M |= “QM is unbounded in
<M. As earlier, QY]] = I, [|Qill/D < X so cf([];..(Ni,<)/D) < A,
which contradicts the AT-likeness of the product order.

(d) This follows from (a). m

DEFINITION 1.6. Let (I, <) be a partial order.

(1) The depth Depth(I) of the order I is the supremum of the cardinal-
ities of well ordered (by <) subsets of I.

(2) I is ©-Depth-like if I is a linear ordering which contains a well ordered
cofinal subset of length © but Depth™({b € I : b < a},<) < O for each
acl.

LEMMA 1.7. Let D be an ultrafilter on a cardinal K, and \; (for i < k)
be cardinals. Then:

(1) if TLic.(A,<)/D contains a <p-increasing sequence (fo/D
o < po) where po is a cardinal then g < Depth™ (T], . (A, <)/D),
(2) Depth(IT;.,.(Af, <)/D) < Depth™ ([, ,.(Ai, <)/D) and hence
Depth* ([T,-..(\F, <)/D) < (Depth™ ([, (A, <)/ D))+
Proof. (1) Define puy = cf(]],.,.(\i,<)/D), so that we have p; <

Depth™ (T, ,.(Xi,<)/D). If po < py then we are done, so assume that
o > w1 and consider two cases.

CASE A: cf(uo) # p1. Let (9g/D : B < pi1) be an increasing sequence
cofinal in [[,_,. (i, <)/D. For each i < s choose an increasing sequence
(Af 1 € < \i) of subsets of f,,, (i) such that f,, (i) = Uen, Af and [|[ AL < i
Then

(Va < 1) (38 < p)({i < v : fali) € Ay, (5} € D)
and, passing to a subsequence of (f,/D : a < pg) if necessary, we may
assume that for some Gy < p1 and all o < pg,
{i<r:fa(i)e A;ﬁo(i)} €D
(this is the place where we use the additional assumption cf(ug) # p1). Each
set A;B (i) is order-isomorphic to some ordinal g(i) < A; (as HA;ﬁ @l < Ad).
0 0

These isomorphisms give us a “copy” of the sequence (f,/D : o < pg) below
some g/D € [],., Ai/D, witnessing po < Depth™ (I, ,.(Ai, <)/D).

CASE B: cf(ug) = p1 < po. For each regular cardinal p € (cf(uo), o)
we may apply Case A to p and the sequence (f,/D : a < u) and conclude
that u < Depth™ (I, (i, <)/D). Hence po < Depth™ (I];_,.(Ai, <)/D).

1<K
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Let (u® : &€ < cf(uo)) € (cf(uo), o) be an increasing sequence of regu-
lar cardinals cofinal in po. Note that for each £ < cf(po) and a function
f € Ilic, N we can find a <p-increasing sequence (h}, : o < p¢) C
[I;<.. A such that f <p hgy. Using this fact we construct inductively a
< p-increasing sequence (ho/D : a < po) C [[,.. Ai/D (which will show
that po < Depth™([],.,.(\i, <)/D)):

Suppose we have defined h, for a < pé (for some & < cf(up)). Since
pé is regular and pé # py the sequence (h/D : o < pf) cannot be cofinal
in[[,..(\i,<)/D. Take f/D € [], ., Ai/D which <p-bounds the sequence.
By the previous remark we find a < p-increasing sequence (ho/D : u¢ < a <
sty C [I;<.. Ai/D such that f <p h,e. So the sequence (hq : a < pstt)
is increasing.

Now suppose that we have defined h, /D for a < SUP¢ ¢, ué for some
limit ordinal &, < cf(uo). The cofinality of the sequence (ho/D : a <
supg ¢, 1) is ¢f (&) < p1. Therefore, the sequence is bounded in [, _, Ai/D
and we may proceed as in the successor case and define h,/D for a €
[supe ¢, 1, p1&0).

(2) follows immediately from (1). m

1<K

PRrROPOSITION 1.8. Assume that invgjr) is a definable universal well or-
dered cardinal invariant. Assume further that D is an ultrafilter on a cardinal
K, By is a Boolean algebra (for i < k) and B :=1],_,. Bi/D. Then:

(a) if \; < invh(B;) fori < k then Depth™ ([,_,.(\i, <)/D) < invi(B),
(b) Depth(I ;. (invy(Bs), <)/D) < invy(B),

(c) if invy(B) < Depth([[,.,.(invr(B;),<)/D) then for the D-majority
of i < k, \j :=1invyp(B;) is a limit cardinal and, moreover, the linear order
[L;c.(Xi, <)/D is (invp(B)) T -Depth-like; hence for the D-majority of i < k,
A is a reqular limit cardinal, i.e. weakly inaccessible.

Proof. (a) Suppose u < Depth™ ([T, . (A, <)/D). As \; < invi(B;) we
find P}, Pj,... such that M; := (B;, P¢, P{,...) = T, |Pi|| > \i. Look at
M :=T],.,. M;/D. Note that (Pg!, P}) is a linear ordering such that

1<K

Depth " ((PM, PM)) > Depth ™ (H(Ai, <) /D).
1<K
Thus we find Pj € PM such that | P{|| = p and (Pg, PM) is a well ordering.
As formulas of T are universal in (Py, P;), first order except the demand
that Py is a well order on Py we conclude that M* := (B, Py, PM,...) = T.
Hence p = ||P¢|| < invi(B).
(b) We consider two cases here.

CASE 1: For the D-majority of i < x we have invy(B;) < invi(B;).
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Then we may assume that for each ¢ < k,

N = invy(B;) < invih(Bi) = A

7

By Lemma 1.7(2) we have

Depth (H(A;L, <) /D) < Depth™ (H()\i, <) /D).

1<K 1<K
On the other hand, it follows from (a) that

Depth™ (H()‘i’ <)/D) <invi(B)
1<K
and consequently we are done (in this case).

CASE 2: For the D-majority of i < x we have invy(B;) = invh(B;). So
suppose that invy(B;) = inv.(B;) for each i < k. Suppose that

9=1{90/D: o < ) C [[ inv(B;)/D
1<K
is a <p-increasing sequence.

If g is bounded then we apply (a) to conclude that p < inv(B). If g is
unbounded (so cofinal) then there are two possibilities: either p is a limit
cardinal or it is a successor. In the first case we apply the previous argument
to initial segments of g and we conclude that u < inV?(B). In the second
case we necessarily have p = cf (I, ,.(invi(B;), <)/D) = pg (for some p)
and o < inv(B). Thus p < invi(B).

Consequently, if there is an increasing (well ordered) sequence of length
pin [T, (invi(B;), <)/D then p < inv}(B) and Case 2 is done too.

(c) Assume that A := invy(B) < Depth([],.,.(invr(B;), <)/D). By (b)
we then get

(#%) At = Depth (H(lan( ), < /D) = Depth (H(inv;(Bi), <) /D)
= inv£(B).
Suppose that {i < & : invy(B;) < invf(B;)} € D. Then by (a) we have
Depth™ (H(lan( i)s )/D> <invi(B),
but (by (#*) and 1.3) we know that
Depth™ (H(ian(B,-), <) /D) =\t > invi(B),

a contradiction. Consequently, for the D-majority of i < k we have \; =

invy(B;) = invi(B;) and J; is a limit cardinal.
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Note that if f € [],., invy(B;) then Depth™ ([],_,.(f(i),<)/D) < AT
(because of the previous remark, (*x) and (a)). Moreover, (**) implies that
there is an increasing sequence (fo/D : o < AT) C [[,_,. (invp(B;),<)/D.
By what we noted earlier the sequence has to be unbounded (so cofinal).
Consequently, the linear order [],_, (invp(B;), <)/D is At-Depth-like. Now
assume that A = {i < k : \; is singular} € D. Let ; C \; be a cofinal
subset of \; of size cf();) (for i < k). Then Depth™ ([],_,.(Qi, <)/D) < AT
but ], ., Qi/D is cofinal in [],_, invy(B;)/D—a contradiction, as the last
order has cofinality A\T. m

PROPOSITION 1.9. Assume that invgjr) is a definable first order cofinality

invariant. Assume further that D is an ultrafilter on a cardinal k, B; is a
Boolean algebra (for i < k) and B :=[],_, Bi/D. Then:

(a) if \i € Invp(B;) fori < k and A = cf([],.,.(Ni, <)/D) then X €
Invy(B),

(b) if invi(B) < cf([],., invy(B;)/D) then for the D-majority of i <
k, invp(B;) is a limit cardinal.

Proof. Should be clear. =

PROPOSITION 1.10. Suppose that T is a finite n-universal (in (Py, P1))
theory in the language of Boolean algebras plus two predicates Py, Py and the
theory says that Py is a linear ordering on Py. Let inv%?L) be the corresponding
cardinality invariant. Assume further that D is an ultrafilter on a cardinal
K, B; is a Boolean algebra (fori < k) and B :=1],_, Bi/D. Lastly, assume
A — (W), n>2and X\ € Inv(B). Then for the D-majority of i < k,
p < invi(B;).

Proof. We may assume that 7' = {19, 1}, where the sentence 1y says
“Py is a linear ordering of Py” (and we denote this ordering by <) and

= Vzo < ...<Zn_1)(A(T))

where ¢ is a formula in the language of Boolean algebras. Note that a formula

(Vzo,...,2n—1 € Po)(¢(Z))

as in 1.1(3) is equivalent to the formula

/\(Vmo,...,xn,lePo)q /\ zp=x1 & /\ mk<xl}:>¢£(§:)),
fern FR)=r@) FR)<f()

where, for any f : n — n, the formula ¢£ is obtained from ¢ by replacing
appearances of P;(z;,x;) by either z; = x; or z; # z;. Consequently, the
above assumption is easily justified.

Let A= {i < k:p < invh(B;)}. Assume that A € D. As A € Invy(B)
we find Py, Py such that ||Py|| = A and P = < is a linear ordering of Py
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and (B, Py, P1) = v. For each element of [], _, B;/D we fix a representative
of this equivalence class (so we will freely pass from f/D to f with no
additional comments). Now, we define a colouring F' : [Py]™ — &k by

F(fo/D,..., fn—1/D) = the first i € k\ A such that
if fo/D<...< fn-1/D
then fy(7),..., fn—1(i) are pairwise distinct and

Bi ': ¢[f0(l)¢ ceey fn—l(i)]'
The i exists since A € D and

B “fo/D,..., fn—1/D are distinct and ¢[fo/D,..., fn_1/D]".
By the assumption A — ()% we find W € [Py]* which is homogeneous for

F. Let i be the constant value of F on W and put Pi = {f(i) : f/D € W}
(recall that we fixed representatives of the equivalence classes). Now we may
introduce P{ as the linear ordering of P¢ induced by P.

Note that f(i) # f’(i) we have for distinct f/D,f'/D € W and if
fo(0)s.o s famr(i) € Py and fo(i) <p; fi(i) <pi ... <pj fa—1(i) then
fo/D < ... < fn—1/D and hence

As |PE|| = w and (B;, Pi, P}) = 1 A1 we conclude that p < invh(B;),
which contradicts i ¢ A. m

One of the tools in studying the invariants are their “finite” versions (for
invariants determined by infinite theories). Suppose T' = {¢,, : n < w} and

if T is supposed to describe a def.u.w.o.car. invariant then ¢ already says
that P is a well ordering of Py. Let T™ = {¢,, : m < n} for n < w.

CONCLUSION 1.11. Suppose that D is a uniform ultrafilter on k and

f ik — wis such that limp f = w. Let B; (for i < k) be Boolean algebras
and B =[], Bi/D.
(1) If T is first order then:
(a) if \i € Invpry (By) (for i < k) then []
(b) [T;<, invy s (Bi)/D < inv(B).
(2) If T is u.w.o. then:
(a) if \; € Invypse (B;) (for i < k) and A < Depth™ [],_, (\;,<)/D
then X € Invyp(B),
(b) Depth([],.,.(invy., . (Bi), <)/D) < invy(B).
Proof. Like 1.5 and 1.8. =

1.2. An example concerning the question (<), . Now we are going to
show how the main result of [MgSh 433] may be used to give affirmative
answers to the questions (<), for several cardinal invariants.

)\z/D S IHVT(B),

1<K
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PROPOSITION 1.12. Suppose that D is an Ry-complete ultrafilter on s
and B; o are Boolean algebras (for o < A\; and i < k). Let C : [[, .. A\i/D —
[Lic.. Ai be a choice function (so C(x) € = for each equivalence class x €

Hi<;€ )\l/D)
(1) If Bi = ®a<x,; Bi,a then
i<k 1<K 1<K

(2) If Bz = HZ</\,¢ Bi,a then

[[B/D~]] { [[Bicww/D:ze]] )\Z-/D}. .

1<K 1<K 1<K

DEFINITION 1.13. Let O be an operation on Boolean algebras.
(1) For a theory T we define the property [J3:
0L  if pis a cardinal and B; are Boolean algebras for i < u* then
supinvy(B;) < invp( O B;), invyp( O B;) < p+ sup invy(B;).
i< <p i<pt i<pt

(2) Of course we may define the corresponding property for any cardi-
nal invariant (not necessarily of the form invy). But then we additionally
demand that 7(B) < ||B|| (where 7 is the invariant considered).

PROPOSITION 1.14. Suppose that a def.car. invariant invy (or just an
invariant T) satisfies either Dg or Dﬁw and suppose that for each cardinal
X there is a Boolean algebra B such that x < invyp(B) and there is no weakly
inaccessible cardinal in the interval (x, ||B||]. Assume further that

(®) (N :i<K)is a sequence of weakly inaccessible cardinals, \; > kT,
D is an Ri-complete ultrafilter on r and [[,_,.(\i, <)/D is p*-like
(for some cardinal ).

i<f—i(

Then there exist Boolean algebras B; for i < k such that invp(B;) = \; (for
i < k) and invy([[,_,. Bi/D) < u. So we have

<K
H IHVT(Bl)/D = u+ > invy ( H Bl/D)
1<K 1<K

Proof. Assume that invy satisfies Dg. For i < k and a < )\; fix an
algebra B; , such that

le] < inve(Bia) < [[Biall < Ai

(possible by our assumptions on invy) and let B; = ®q<x, Bio- By 1.12 we
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have

1<K 1<K 1<K
where C : [[,.,. A\i/D — [1;-, Ai is a choice function. So by OF (the second
inequality),

invy (H Bi/D> < p+ sup { invy (H Bi,C(r)(i)/D) tx € H )\i/D}.
i<k i<k i<k

Since || Bl < Ai and [],_,. (i, <)/D is pt-like, for each = € [],_,. Ai/D

we have

<K

invy (H Bi,C(ac)(i)/D> < [ IBi.c@l/D < p.
1<K 1<K
Moreover, by the first inequality of Dg, for each o < Ay,
o]l < invp(Bia) < invy(B;i) < ||Bill = Ai
and thus invy(B;) = A;. =

REMARK. 1. The consistency of (®) is the main result of [MgSh 433],
where several variants of it and their applications are presented.

2. If invy is either a def.f.o.car. invariant or a def.u.w.o.car. invariant
then we may apply 1.5(c) or 1.8(c) respectively to conclude that for the
D-majority of i < x we have inv(B;) = inv'(B;). Consequently, in these
cases we may slightly modify the construction in 1.14 to get additionally
inv(B;) = inv'(B;) for each i < k.

3. Proposition 1.14 applies to several cardinal invariants. For example
the condition Dﬁw is satisfied by: Depth (see §4 of [Mo 2]), Length (§7 of
[Mo 2]), Ind (§10 of [Mo 2]), m-character (§11 of [Mo 2]) and the tightness ¢
(8§12 of [Mo 2]).

Moreover, 1.14 can be applied to the topological density d, since this
cardinal invariant satisfies the corresponding condition D‘é. [Note that
d(®; <yt Bi) = max{\, sup; .+ d(B;)}, where A is the first cardinal such that
pt <22 s0 A < p; see §5 of [Mo 2).]

2. Topological density. The topological density of a Boolean algebra
B (i.e. the density of its Stone space Ult B) equals min{x : B is k-centred}.
To describe it as a minimal definable first order cardinality invariant we use
the theory defined below.

DEFINITION 2.1. (1) For n < w define the formulas ¢¢ by
¢5 = (V2)(3y € Po)(z # 0= Pi(y,x)) & (Vz)(Vy € Po)(Pi(y, ) = x # 0)
and for n > 0,
% = (Vao, ..., 2,)(Vy € Po)(Pi(y,z0) & ... & Pi(y, z,) = ToA. .. Azy #0).
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(2) Forn <w let T} = {¢r : k < n}.

(3) For a Boolean algebra B and n < w we put d,,(B) = min Invr» (B).

(4) For 1 < n < w, a subset X of a Boolean algebra B has the n-
intersection property provided that the meet of any n elements of X is
nonzero; if X has the n-intersection property for all n, then X is centred,
or has the finite intersection property.

Note that d,(B) is the topological density d(B) of B. Since T9 = 0,
the invariant do(B) is just 0. The theory T says that for each y € P
the set X, := {x : Pi(y,z)} has the (n + 1)-intersection property and
Uyer, Xy = B\ {0}. Thus, for 1 <n <w, d,,(B) is the smallest cardinal &
such that B\ {0} is the union of k sets having the n-intersection property.

We easily get (like 1.11):

FAcT 2.2. (1) For a Boolean algebra B, the sequence (d,(B) : 1 <n < w)
is increasing and d(B) < ], dn(B).

(2) If D is an ultrafilter on a cardinal k, f : kK — w is a function such that
limp f = w and B; (for i < k) are Boolean algebras then d(]],_, Bi/D) <
ici ds@(Bi)/D. w

Fact 23. (1) If 1 < n < w and X is a dense subset of B\ {0}, then
d,,(B) is the least cardinal k such that X can be written as a union of k sets
each with the n-intersection property.

(2) If X is a dense subset of B\ {0}, then d,(B) is the least cardinal
K such that X can be written as a union of k sets each with the finite

intersection property.
(3) If B is an interval Boolean algebra then do(B) = d(B).

Proof. Suppose X C B\ {0} is dense and 1 < n < w. Obviously
X can be written as a union of d,(B) sets each with the n-intersection
property. If X = J,_,.Y:, where the Y; have the n-intersection property,
let Z; :={be B:(Jy € Y;)(y <b)}. Then each Z; has the n-intersection
property and B\ {0} = |J,., Zi. This proves condition (1); condition (2)
is proved similarly. Condition (3) follows since for an interval algebra B
intervals are dense in B and if a1, ..., ay are intervals such that a; Aa; # 0
then /\f:1 a; #0. m

A natural question that arises here is if we can distinguish the invariants
d,. The positive answer is given by the examples below.

1<K

EXAMPLE 2.4. Let k be an infinite cardinal and n > 2. There is a Boolean
algebra B such that d,,(B) > k and d,_1(B) < 2<F.

Proof. Let B be the Boolean algebra generated freely by {z, : n € "n}
except that if v € *“n and v () C n € "n (for | < n) then zp, A... Az,
= 0.
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Suppose that BY = J,_,. D;. For n € "n let i(n) < k be such that
Ty € Djyy). Now we inductively try to define n* € "n:

Assume that we have defined n*[i (i < k) and we want to choose 1* (7).
If there is [ < n such that i(n) # 4 for each n 2 n*[i"(I) then we choose one
such [ and put n*(¢) = . If there is no such [ then we stop our construction.

If the construction was stopped at stage i < k (i.e. we were not able
to choose 1*(i)) then for each | < n we have a sequence 7; € "n such
that n* [« (I) C m and i(n) = 4. Thus zp,,..., 2y, , € D; and z,;) A ... A
Zy,_, = 0, so that D; does not satisfy the n-intersection property. If we
could carry out our construction up to x then we would get n* € *n such
that z,« ¢ ;... Di. Consequently, the procedure had to stop and we have
proved that d,,(B) > k.

Now we are going to show that d,,_1(B) < 2<%. Let X be the set of all
nonzero elements of B of the form

Tpg Ao o Ny, A= )N A (=y,)

in which the sequences 7g,...,n € "n are pairwise distinct and 0 < [ <
k < w. Clearly X is dense in B. We are going to apply Fact 2.3(1). To this
end, if 0 <l < k, a < k, and (v, ...,v) is a sequence of distinct members
of @n, let DLF .y be the set

(V0,5
{Zno Ao o ATy AN(=Zgyy A A(=2g,) 9 S 1o € "y, © g € "n}\{0}
Note that X is the union of all these sets. There are 2<* possibilities for the
parameters, so it suffices to show that each of the sets Diy’ia ) has the
(n — 1)-intersection property.

Note first that if 79, ..., € "n are such that ; # n; when¢ <[l <j <k

and

BExg A .. Nty A(=2p )N A (—2y,) =0,
then necessarily there is v € <*n such that

(Vm < n)(Ei < D" m) S m).

Now we check that D'*

(vo
0<l<k<w,a<k,and vy,...,v, are pairwise distinct elements of “n.

Thus suppose that

“ ) has the (n—1)-intersection property, where

x ~/\.../\:L‘mj/\(—:17j YA N (—x,5)

m My U

are members of Dé:}a ) for each j < n — 1; and suppose that

B): /\ xng/\.../\ /\ xn{-/\ /\ (—xn{+1)/\.../\ /\ (—xni)zo.
j<n—1 j<n—1 j<n—1 j<n—1

By the above remark, choose v € <*n such that for all m < n there exist

an i(m) < ! and a j(m) < n — 1 such that v"(m) C (™) (note that if



Cardinal invariants of ultraproducts 115

jo,ji<n—1,49 <land [ +1 < i; <k then nfg #* 77311 as vg,...,V are
pairwise distinct).

CASE Ly, Cv for some i < k. Then for each m < n we have v; C v C
v™m) C 7717((;:)) and consequently i(m) = ¢ (for m < n). As j(m) <n—1

for m < n we find mg < m; < n — 1 such that j(mo) = j(m1) = j. Then
v (mo) Cn} and v"(mq) C i give a contradiction.

CASE 2: v; € v for all i < k. Note that for all m < n the sequences v (m)
and v;(,,) are compatible. By the case we are in, it follows that v is shorter
than v;(,,,). So v (m) C v,y and i(m) < l. But then by construction,

Difﬁ-uw is empty, a contradiction. m

EXAMPLE 2.5. Let \; be cardinals (for i < k) such that 2% < [],
and 2 < n < w. Then there is a Boolean algebra B such that

B <> [[A and du(B) =Bl =]] M-

a<k i< 1<K

Z<K

In particular, if X is a strong limit cardinal with cf(\) < XA and 2 < n <
w then there is a Boolean algebra B such that d,(B) = ||B| = 2* and
dp—1(B) <.

Proof. Let B be the Boolean algebra generated freely by {z, : n €
[I;c,. Ai} except that if a < &, v € [[,., Ai, v S € [[;,. Ai and [[{mi(c) :
Il <n}||=nthen zp, A...Azp, _, =0.

The same arguments as in the previous example show that

By I
a<k <o
Suppose now that [[,_,. A = (H{D; : j < 0}, 0 < [[,.. A\ and if
N0y .-, Mn—1 € D;j (for some j < @) then z,, A...Azy, , # 0. Thus the trees
T; = {nla : a < k, n € D;} have no splitting into more than n — 1 points
and hence || D;|| < n® <[], A for all j < 0 and we get a contradiction,
proving dn(B) =[], Ai- =

COROLLARY 2.6. Let A be a strong limit cardinal with k < cf(X) < A.
Suppose that D is an ultrafilter on x which is not Xy-complete. Then there
exist Boolean algebras B; (for i < k) such that

(HB/D)<A<2A [T,

Proof. As D is not Nj-complete we find a function f : kK — w \ 2
such that limp f = w. Let B; be such that ||B;|| = dgy41(B;) = 2* and
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df;)(B;) < A (see 2.5). Then, by 2.2, we have

d( [1 Bi/D) < [T dsoB/D <3 =

As d(BZ) = df(z)+1(Bz) = 2>‘ we have H d(BZ)/D = 2)‘. | |

1<K

REMARK. 1. Corollary 2.6 applied e.g. to A = 3, and kK = w gives a
negative answer to Problem J of [Mo 3].

2. The algebras B; in 2.6 are of a quite large size: ||B;| = 2%, with A
strong limit of cofinality > . Moreover, the cardinal A had to be singular.
The natural question if these are real limitations is answered by the theorem
below. This example, though more complicated than the previous ones, has
several nice properties. E.g. it produces algebras of size 2(2%0)" already.

THEOREM 2.7. Assume that 0§ = cf() and 0% = 6. Then there are
Boolean algebras B, for v < K such that d(B,) = d2(B,) = 07 and
d(ny</-c B, /D) <0 for every nonprincipal ultrafilter D on k.

Proof. Let A = 2¢. Choose Na,i € 99 for w < X\ and i < 61 such that:

(1) if Nay,in = Nag,ia then (alvil) = (a2’i2)7
(2) for each f € 99 and i < 6% the set {a < A: (Ve < 0)(f(¢) < Na.il€))}
is of size A.

(The choice is possible as there are 2° = X pairs (f,4) to take care of and
for each such pair we have 2 candidates for Nev,i-)
For two functions f, g € 90 we write f <* ¢ if and only if

{e < 0: f(e) = g(e)} < 0.

We say that a set A C X\ x 61 is i-large (for i < 61) if for every f € 0 we
have |[{a < A : (a,i) € A & f <* nai}| = A, and we say that A is large if
sup{i < 6% : A is i-large} = 6+.

CLAIM 2.7.1. The union of at most 0 sets which are not large is not large.
Proof. Should be clear as cf(8) = 6 < cf(\).

Now we are going to describe the construction of the Boolean algebras
we need. First suppose that S C {j < 0% : cf(j) = 0} is a stationary set and
let St = {(a,j) € Ax 0% :j € S}. Now choose a sequence F' = (F. : ¢ < 0)
such that:

(3) F. is a function with domain dom(F.) = S+,

(4) if i € S and a < A then F(a,i) = (F;1(a, 1), Fr2(a,1)) € A X 1,

(5) if i € S and o < A then the sequence (F; o(cv, i) : € < ) is strictly
increasing with limit ¢,
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(6) if (A, : e < 0) is a sequence of large subsets of A x 1 then for some
stationary set S’ C S for each i € S’ and f € 0 we have

Ho < A: f <" oy & (Ve < 0)(Fe(a,i) € Ao)}| = A,
(7) if e < ( < 0 then NF. (a,i) <* NF (a,i)-

To construct the sequence F fix i € S. Let {(fa, [ o < A} enumer-
ate with A-repetitions all triples (f, g, ) such that f € 90, j = (j. : € < 0)
is an increasing cofinal sequence in i and g € %)\ is such that

(%) €< (<0 =ng0e),5. < Ng().ic

(recall that cf(i) = @ and A = 2). Now we inductively choose (3, : o < \)
C X such that By & {Bs5 : 0 < a} and f, <* ng, ; (this is possible by (2)).
Finally, for & < A and € < 6 define F(«, ) by:

e if & = 35 for some § < A then F.(a,i) = (gs5(¢),j?),

oif o {fs5:9 < A} then F.(a,i) = (gal(e), j2)
(where js = (j2 : € < 6)). Conditions (3)-(5) and (7) are easily shown to be
satisfied. To check clause (6) suppose that (A. : € < 6) is a sequence of large
sets and let S” be the set of all ¢ € S such that there exists an increasing
cofinal sequence (j. : € < 6) C i such that A, is j.-large (for each ¢ < 6).
The set S’ is stationary. [Why? For € < 6 let C. be the set of all points in
6% which are limits of increasing sequences from {j < 0% : A. is j-large}.
Clearly each C. is a club of 7 and thus ()__, C: is a club of 8. Now one
easily checks that SN(.,C: C 5]

We are going to show that S’ works for (A, : € < ). Take i € S’ and
suppose that f € %0. Let j = (j. : ¢ < ) C i be an increasing cofinal
sequence witnessing i € S’. Take ¢ € ?X such that

e<( <O = [nge) g < Myi)ge & (9(€),Je) € Al
(possible by the j.-largeness of A. and the regularity of #). When we defined
F.(a,1) (for e < 6 and o < A), the triple (f,g,j) appeared A times in the
enumeration {(fu,ga,Jja) : @ < A}. Whenever (f,9,7) = (fa, 9a, jo) We had
Fs(ﬁaai) = (ga(s),jg‘) = (g(é),ja) €A.and f = f, <* NBa,i- Consequently,
ifi € 8" and f € %0 then

Ho < A: f <" o & (Ve <0)(Fe(a,i) € A} = A

and condition (6) holds.

For the sequence F we define a Boolean algebra B: it is freely generated
by {Za,i:a <A, i <01} except that if F.(aq,41) = (a2, i) for some ¢ < 0
then zq, 4, A Tay,i, = 0.

Now fix a sequence (S, : v < k) of pairwise disjoint stationary subsets
of {j € 07 : cf(j) = 6} and for each v < £ fix a sequence F, = (F) : & < 0)
satisfying conditions (3)—(7) above (for S).

e<6
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CLAIM 2.7.2. For each v < k, d2(Bp ) > 0.

Proof. Let F = F., and suppose that B;Q = U.cp De. Let Ac = {(a, 1) :
Ta; € Dc} and let AL = A, if A, is large and AL = X\ x 6 otherwise. So
the sets AL are large (for € < ) and by condition (6) so is the set

A= {(a,i) € A x 0 : (Ve < 0)(F.(a,i) € AL)}.
Since A. # AL implies that A, is not large we see (by 2.7.1) that

AN J{Ae s Ac # AL & e <0} #0.
So take (a,i) € A\ J{A4: : Ac # AL & € < 0}. We find £ < 0 such that
Zai € De (so (a,i) € A.). Then A. = AL and we get F.(a,i) € A.. Hence
Ta,is TF, (a,i) € De and T4 i AN Tp_(a,i) = 0.
CLAIM 2.7.3. Let D be a nonprincipal ultrafilter on k. Then
d< I1 BFW/D) < 0.
Y<K
Proof. Fix functions h : 0 x 67 — 6 and h* : 0 x § — 67 such that
fori € (6,0) and ¢ € 0,
jl <j2 <Z:>h(2ajl)#h(27]2)7 h*(Z,C) <i7
J<i= h*(i,h(i,j)) =J.
For v < let Z, C Bp be the set of all meets x4, A... AZa, , A(=Zp,) A

.. A (=mp,,_,) such that ag,...,an—1,00,---,bm—1 € A x 01 are with no
repetition, and for all k£,l < n, r <m and all € < 6,

Fl(aw) # a,  F2(by) #a,  F (@) # br.
Clearly Z, is dense in By and Z:= ][] _, Z,/D is dense in []
Foree [], .. Zy and v < & let:

i 6(7) = /\l<n(e77) La(e,l,y) A /\l<m(e7'y) “To(e,l,y)

o ae,l,y) = (alel,7),i(e,1,7)),

e b(e,l,v) = (B(e;1,7),5(e,1,7)),

o base”(e) = {a(e,l,7) : L <nle,7)} U{ble,l,7) : L <mle, )},
e base(e) = U7</<; base” (e),

e up(e) ={i < 0" : (Ja < \)((a, i) € base(e))},

e u1(e) be the (topological) closure of ug(e),

e us(e) be the closure of uj(e) under the functions h, h*,

e ((e) be the first e < 0 such that

(Vy < K)(¥(a, i) € base(e) N dom(FY))(sup(ui(e) Ni) < Fy(a,i)).

[Note that ||base(e)]| < k < cf(0) = 0, so ||ug(e)|l, [|[u1(e)]], [luz(e)|| < k;
looking at the definition of {(e) remember that (a,i) € dom(F?) implies
cf(i) =6.]

By /D.

Y<K Y<K

Y<K
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Next for each v < #, (@, i) € ST and (o < ¢ choose ¢/ (a,4) < 6 such that
the sequence (npg(a’i) (520 (ar,7)) = ¢ < (o) is strictly increasing (it is enough
to take 520(04, i) sufficiently large—apply condition (7) for F, remembering
Co < 0). Further, for (a,i),(83,j) € A x 07, v < k and (o < 6 such that

(B,7) € {F2(a,i) : e < (o} choose e/ ((a,i),(3,j)) < 0 such that for every
¢ < (p, either

® N1 (o) (€4, (2, 0), (8, 1)) # mp.j (el (e, ), (B, ))), or
® NEY (i) (€, (@, 9)) # g 5 (e, (1))
(this is possible as the second condition may fail for at most one ¢ < (p: the
sequence <7]Fg(a’i) (5Z(a,i)) : ¢ < (o) is strictly increasing). Next, for each
e € [[,<. Zy and v <  choose a finite set X, (e) C 0 such that:
(8) if a,b € base”(e) are distinct then 1, [ X, (e) # np [ X, (€),
(9) if a € base” (e) N S then €/, (a) € X, (e),
(10) if a,b € base”(e) then 5C(e) (a,b) € X, (e) (if defined),
(recall that base”(e) is finite). Finally, we define a function H on [[. _, Z

such that for e € [[ _, Z, the value H(e) is the sequence consisting of the
following objects:

(11) (n(e,v) : v < K),

(12) (m(e,7) : v < ),

(13) C(e),

(14) (Xy(e) : 7y < k),

(15) (('77l Na(e,l 'y)[ (e)) 2y <K, I < n(€>’7)>a
(16) <('77l Mo (e,l,v) TX (e)) Y <K, I < m(€7’7)>7
(17) uz(e) N6,

(18) {(otp(z Nuz(e)),otp(i Nwui(e))) : i € uz(e)}.
Since 0" = 0 we easily check that ||rng(H)| < 6. For T € rng(H) let

ZT::{eE HZV:H(e):T}, Zi={e/D:ec Zy} C Z.

Y<K

The claim will be proved if we show that
for each T € rng(H) the set Zy is centred.

First note that if e,e’ € Zy then uq(e) Nuz(e’) is an initial segment
of both us(e) and usz(e’). Why? Suppose that j < i € uz(e) Nuz(e’) and
j €wus(e). If j < 0 then j € us(e’) since us(e) N = uq(e’) N . Suppose that
0 <j < 6%. Then h(i,j) € ua(e) N0 =us(e’) N6 and so j = h*(i,h(i,j)) €
uz(e’). This shows that us(e)Nug(e’) is an initial segment of uq(e). Similarly
for ug(e).
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Applying to this fact condition (18) we may conclude that u;(e) Nuy(e’)
is an initial segment of both w;(e) and uy(e’) for e,e’ € Zy. [Why? Assume
not. Let ¢ < 6T be the first such that there is j € ui(e) Nuy(e’) above i but

i € (ua(e) \ur(e)) U (ur(e) \ ua(e)).
By symmetry we may assume that i € uj(e) \ ui(e’). Let i* be the first
element of us(e) above i. Then necessarily i* < j (as 7 € ui(e) Nuy(e’) C
uz(e) Nuz(e’)) and hence i* € uaz(e’) (and i* is the first element of usy(e’)
above ). By the choice of i,i* we have

i,i* €ug(e) Nua(e’), iNui(e)=iNui(e), i*Nuale) =14 Nug(e).
But now we may apply condition (18) to conclude that
(otp(i* Nua(e)),otp(i* Nui(e))) = (otp(i* Nuz(e")),otp(i* Nuq(e’)))

and therefore

otp(i* Nui(e’)) = otp(i* Nuy(e)) = otp(i Nuy(e)) + 1 = otp(i Nuy(e')) + 1.
As there is no point of u; (€’) in the interval [i,i*) (remember u;(e’) C ua(€’))
we get a contradiction.

For e € Zr we have n(e,y) = n(y), m(e,y) = m(y), ¢((e) = ¢* and
X,(e) =X,. Let eg,...,ex—1 € Zy. We are going to show that

[[B#,/DEec/DA...Nex—1/D#0

Y<K

and for this we have to prove that

Ieg,..enon = {7 <r:Bp = N\ [ A zaen N —xb<ejm)} 7 0}

i<k I<n(v) l<m(v)

eD.

First let us ask what can be the reasons for

/\[ /\ Taes,dy) /N /\ _wb(ej,l,n,)} = 0.

i<k i<n(v) l<m(v)

There are essentially two cases here: either z, A (—x,) appears on the left-
hand side of the above equality or z, A x F2(a) (for some ¢ < 6) appears
there. Suppose that the first case happens. Then we have distinct ji, jo < k
such that a(e;,,l1,7) = b(ej,,l2,7) for some l;,l3. By (15) (and the defi-
nition of Zr) we have Na(es, ) [ Xy = Na(ey, 1s.7) [ Xy and by (8) we have
Na(ejy,l1,7) rX'y 7‘& Mb(ejy,l2,7) rX’y- Therefore, Na(ej, 11,7) rX’y 7& Mo(ejy,l2,7) FX’W
a contradiction. Consider now the second case and suppose additionally
that ¢ < ¢*. Thus we assume that for some ¢ < (*, for some distinct
Jji,j2 < k and some l1,l> < n(y) we have F/(a(ej,,11,7)) = alej,l2,7).
Then by (15) we get Na(esy dam) [ Xy = Na(es, 1o [ Xy As ¢ < (" we have
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[by the choice of e/.(a(ej,,l1,7),alej,l2,7)), €. (alejy,l1,v))—note that
FX(a(ej,,l1,7)) # alej,,l2, ) for all e < (*], either

® an(a(e]'l 7l17’y)) (Ez* (a(ejl Y ll? 7)a a’(ejl ) l27 PY)))
7£ 77a(e]-1 J2,7) (SZ* (a(ej1 ; lla 7)7 a(eh ) l27 ’7)))7 or
i an (a(ejq liy7)) (52* (a(€j1 sl ’7))) 7é Na(ej, l2,7) (82* (a’(ejl U1, 7)))

and el (a(ej,, l1,7), alej, 12, 7)), el (alesy, l1,7)) € Xy (by (9), (10); note
that in the definition of 52’ (a,b) we allowed a = b so no problem appears if
l1 = l3). Hence NFY (a(ejy 7)) [ Xy # Nae;, la,y) [ Xy and so NFY (a(ejy ,11,7)) [y
=+ Naejy la,) [ X, a contradiction. Consequently, the equality considered may
hold only if z, A TRy (a) APPeArs there for some ¢ > (*.

Asume now that I, . .. , € D. From the above considerations we

know that for each v € K\ I¢,... ¢, , we find distinct ji(7),j2(y) < k and
11(7),1l2(y) < n(y) and ¢, € (¢*,0) such that

(%) FZ (alejy (), 11 (7),7) = alegy(4), 12(7),7)

(note that (+*) implies a(ej, (), 11(7),7) Edom(F&), i(ej, (), 11(7),7) €55).
We have assumed that « \ I, € D so we find ji1, jo < k such that

050y €k—1

J = {’7 € K\Ieoy--~7€k—1 3j1(’7) = J1, j2(7) = ]2} eD.

As we have remarked after (xx), i(e;,,l1(7),7) € Sy (for v € J) and con-
sequently there are no repetitions in the sequence (i(ej,,l1(7),7) : v € J)
(and J is infinite). Choose v, € J (for n € w) such that the sequence
(i(ejy, li(m), ) * n € w) is strictly increasing (so i(ej,,l1(n), V) €
ui(ej,) Ni(ejy, li(Ynt1), Ynt1)) and let i = lim, i(ej,, 11 (n),7n). By the
definition of ((e),(* and the fact that {, > ¢* for all v € J (and by (5)) we
have for v € J,

i(ejQ ) l2(7)7 7) = F&,Q(a(ejl ’ 11(7)7 7))
€ i(ej, 11(7),7) \ sup(ua(e;,) Nilejy, 1 (7),7))-
Applying this for 7,1 we conclude that

i(ejlvll('Yn)/Yn) < Z'(ejw12('7n—|—1):'7n—|-1) < i(ejlal1(7n+1)77n+1)

and ¢ = lim,, i(ej,, l2(Vn), ¥n). Since u;(e;,) and uq(ej,) are closed we con-
clude that ¢ € uq(e;,) Nuq(e;,). From the remark after the definition of Zy
we know that the last set is an initial segment of both wu;(ej,) and wu;(ej,).
But this gives a contradiction: i(e;,, l2(Vn+1), Tn+1) € ui(ej,) \ ui(ej,) and
it is below i € ui(ej, ) Nui(ej,). The claim is proved.

Similarly to Claim 2.7.3 (but much easier) one can prove that really
d(Bp,)) = 6F. m
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We want to finish this section with posing two questions motivated by
2.5 and 2.7:

PROBLEM 2.8. Are the following theories consistent?
(1) ZFC + there is a cardinal k such that for each Boolean algebra B,
dn(B) < k= dp41(B) < 2"

(2) ZFC + there is a cardinal 0 such that 0% = 6 and for each Boolean
algebra B and a nonprincipal ultrafilter D on w,

d(B) <6 = d(B*/D) < 2°.

3. Hereditary cofinality and spread

3.1. The invariants. The hereditary cofinality of a Boolean algebra B is
the cardinal

h-cof(B) = min{x : (VX C B)(3C C X)(||C]| < k & C is cofinal in X)}.
It can be represented as a def.u.w.o.car. invariant if we use the following
description of it (see [Mo 1]):

(®h-cof ) h-cof(B) = sup{|| X|| : X C B & (X, <p) is well-founded}.
Let the theory Tj_.of introduce predicates Py, P, on which it says that:

e P; is a well ordering of Py,
° (V.T[),I‘l S P())(l‘o < T = Pl(xo,l‘l))

(in the above < stands for the relation of the Boolean algebra). Clearly
Th-cof determines a def.u.w.o.car. invariant and

Invy, . (B) ={||X]|| : X € B & (X, <) is well-founded}.
The spread s(B) of a Boolean algebra B is
s(B) =sup{||S]| : S CUlt B & S is discrete in the relative topology}.

It can be easily described as a def.f.o.car. invariant: the suitable theory
T, introduces predicates Py, P; and it says that for each x € Py the set
{y : Pi(z,y)} is an ultrafilter and the ultrafilters form a discrete set (in
the relative topology). Sometimes it is useful to remember the following
characterization of s(B) (see [Mo 1]):

(®s) s(B) = sup{||X|| : X C B is ideal-independent}.
Using this characterization we can write s(B) = s,,(B), where

DEFINITION 3.1. (1) ¢$ is the formula saying that no member of Py can
be covered by the union of n + 1 other elements of Fj.
(2) For 0 <n <wlet T = {¢] : k < n}.
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(3) For a Boolean algebra B and 0 < n < w, sgf)(B) = invg,f@) (B) (so sy,

are def.f.o.car. invariants).
The hereditary density of a Boolean algebra B is the cardinal
hd(B) = sup{dS : S C Ult B}

where dS is the (topological) density of the space S. The following charac-

terization of hd(B) is important for our purposes (see [Mo 1]):

(®na) hd(B) = sup{||x|| : there is a strictly decreasing sequence of ideals
(in B) of length }.

We should remark here that on both sides of the equality we have sup but

the attainment does not have to be the same. If the sup of the left-hand side

(hd(B)) is attained then so is the sup of the other side. If the right-hand

side sup is attained AND hd(B) is regular then the sup of hd(B) is realized.

An open problem is what can happen if hd(B) is singular.
The hereditary Lindelof degree of a Boolean algebra B is

hLL(B) = sup{LS : S C Ult B},
where for a topological space S, LS is the minimal x such that every open
cover of S has a subcover of size < k. The following characterization of
hL(B) is crucial for us (see [Mo 1]):
(®n1,) hL(B) = sup{||x|| : there is a strictly increasing sequence of ideals
(in B) of length x}.
Note: we may have here differences in the attainment, like in the case of hd.
DEFINITION 3.2. (1) Let the formula v say that P; is a well ordering of
Py (denoted by <1).
(2) For n < w let ¢4 and ¢l be the following formulas:
gf)gd = & (on, vy Tp41 € Po)($o <1...<1 Tp41
= Xy $$1V...Vxn+1),
oM = & (Y20, Tny1 € Po)(Tng1 <1 ... <1 To
= X ﬁl‘l\/...vxn+1).
(3) For 0 <n <w welet )Yy = {¢hd : k < n} and T, = {L : k < n}.
(4) For a Boolean algebra B and 0 < n < w,

hd((B) = v (B),  BL{Y(B) = vy (B).

a4
So hd,,, hL,, are def.u.w.o.car. invariants and hd,, = hd, hL,, = hL (the
sets Invre (B), Invres (B) agree with the sets on the right-hand sides of
(®na), (®n1), respectively).
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3.2. Constructions from strong A-systems. One of our tools for construct-
ing examples of Boolean algebras is an object taken from pcf theory.

DEFINITION 3.3. (1) A weak A-system (for a regular cardinal \) is a
sequence S = (4, A, f) such that:

(a) 0 is a limit ordinal, ||0]] < A,

()X = (\; : i < §) is a strictly increasing sequence of regular
cardinals,

(¢) f = {(fa:a <A CI[iesN is a sequence of pairwise distinct
functions,

(d) for every i <6, |[{fali:a <A} < sup;c5Ai.

(2) A A-system is a sequence S = (§, \, f,J) such that Sy = (5, \, f) is
a weak A\-system and

(e) J is an ideal on & extending the ideal JP4 of bounded subsets
of ¢,

(f) fis a <-increasing sequence cofinal in [],_s(Xi, <)/,

(g) for every i < 0, |[{fali:a <A} <\

In this situation we say that the system S extends the weak system Sp.
(3) S = (0, A, f,J,(A¢ : ¢ < K)) is a strong X-system for k if (6, A, f, J)
is a A-system and
(h) cf(9) < k and sup,; 5 A; < 2%,
(i) Ac €0, and A¢ ¢ J (for ( < k) are pairwise disjoint.
In ZFC, there is a class of cardinals A for which there are (weak, strong)
A-systems. We can even demand that, for (weak) \-systems, \ is the succes-

sor of a cardinal Ao satisfying Ay = Ao (which is relevant for ultraproducts,
see below). More precisely:

FACT 3.4. (1) If p=" < p® = X then there is a weak \-system S = (0, A, f)
such that sup; s \i < p and § = k.
(2) If k = cf(k) and
(%) K>Ro, p=p~"<A  cf(\) <p”
or even
()7 cf(p) =~
(V0)(Fpo < p)(VX) (o < x < p & cf(x) =0 = ppy(x) < p)

then there is a A-system S = (3, \, f, J) such that p = sup;_s A; and § = K
(see [Sh 371)).
(3) If k = N, cf(u) = Ro < p and either

o\ = COV(M7M7 va 2)7 or
o X =N & (Vx < p) (XM < p)
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then for many reqular X\ € (1, \*) there are A-systems (A = pd really) (see
[Sh 430]).

(4) There is a class of cardinals \ for which there are strong A-systems
(for some infinite k), even if we additionally demand that X is a successor
cardinal (see [Sh 400], [Sh 410] or the proof of 4.4 of [Sh 462]). m

THEOREM 3.5. Assume that there exists a strong A-system for k, with A
a reqular cardinal. Let 6 be an mﬁm'te cardinal < k. Then there are Boolean
algebras B, (for e < 0) such that inVT .(Be) < A\ and for any ultrafilter D
on 6 containing all co-bounded sets we have s S (Il.co B:/D) > A

Proof. The algebras B.’s are modifications of the algebra constructed
in Lemma 4.2 of [Sh 462]. Let (3, A, f, J, (A¢ : ¢ < K)) be a strong A-system
for k. For distinct o, 8 < A let p(a, ) = min{i < 0 : fo (i) # f5(i)}.

Take a decreasing sequence (w; : ¢ < ) of subsets of x such that ||w.| =
kand (.o we = 0.

Fix ¢ < 0. For ¢ < 0 choose a family {F; : ( < s} of subsets of
{fali:a < A} such that if X1, X5 € [{fali: a < A}]<¢ then for some ( < &
we have X; = F; ¢ N (X; U X3) (possible as 2% > A;). Next take a sequence
((4i,¢i) = 1 < 0) such that j; <1, (; < k and the set

{j<5:(VC</€)(H§€w5)(A5 Cy {7'<5]z:]&<z:<-})}
is unbounded in ¢ (possible as cf(0) < k and ||w:|| = k).
Now we define a partial order <. on A:

a <. [ if and only if i = o(«, ) € U A¢ and

fewe
falji € Fj,¢; & fa(i) < fp(i).
The algebra B. is the Boolean algebra generated by the partial order <.. It is

the algebra of subsets of A generated by the sets Z, = {# < A : § <. a}U{a}
(for a < A).

Cram 3.5.1. (a) If o(«a, B) < 0(B,7) where a, B,7 < A then <. o <
Y =<caand a <. S a <.

(b) If 7(zo,...,2n-1) is a Boolean term, o < X\ for k < n are pair-
wise distinct (I < 2), and i < § is such that o(al,at) > i (for k < n)
but o(al,al,) < i (forl < 2 and k < k' < n) then on setting X; =
T(Zoys -+ Zaot ) we have:

(2) for each k < n, either
o X D{a<A: fali= faoli} forl <2, or
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o Xinfa <A fali= fapli} = Zo N{a <At fali = fopli}
forl <2, or

o Xyn{a < A: fali= faoli} ={a < X: fali= faoli} \ Zo1
forl <2, or
o Xyn{a < i fali= faoli} =0 forl <2.

CLAIM 3.5.2. Suppose that (ao : o < \) are distinct members of B..
Then there exist o < 3 < X\ such that aq > ag.

Proof. First we may assume that for some integers n < m < w, a

Boolean term 7(zg,...,Zn—-1,...,Tm—1), ordinals a,,...,am,_1 <A, an or-
dinal i* <4 and a function @ : A xn — A\ {an,...,am_1} for all B < X we
have

a,@ - T(Zo?(ﬂ,O)? ey Z&(ﬁ,n—l)7 ZOéna ey Zam71)7
and if 3 < A\, k,kK' < n, (B,k) # (,k") then a(B,k) # a(f, k'), and
{fa ) 17*, fa, 17"k <n,n <k <m} are pairwise distinct.
As we may enlarge i* we may additionally assume that
(V< r)(FEcw)(Ae Cr{i<d:jgi=1" & (G =(}).

Furthermore, we may assume that fagr) 7" = fa(o,x) " for all 3 < X and
k < n (remember that ||{fn[i* : @ < A}|| < A). Let B be the set of all i < §
such that
(V¢ < M) (38 < (k<) (C < fagam(@))-

Then the set B is in the dual filter J¢ of J (if not clear see Claim 3.1.1 of
[Sh 462]). Now apply the choice of Fj« ¢’s to find ¢ < & such that for k < n,
if

ap N{a <At faom i = fali™} = Zaor N{a < At faoumi™ = fali*}
then fao,1) 1" € Fi ¢, and if

ao N {a < Xt famli™ = fali™} ={a <A faor " = fali™}\ Zao.r)

then f&(O,k) [i* € Fi*,C'

Note that by Claim 3.5.1 we can replace 0 in the above by any 8 < A.
Take & € w, such that Ac C; {i < § : j; = i* & ¢; = ¢} and choose
i € A¢ N B such that j; = i* and {; = ¢. Since |[{fali : @ < A}|| < A; and
1 € B we find By < #1 < A such that

(Vk < n)(o(a(Bo, k), a(f1, k) = 1) & max fa(s,k) () < min fags k) (0).

Now by the choice of ¢, Claim 3.5.1 and the property of BO, (1 we deduce
that ag, C ag,.

CLAM 3.5.3. inv,  (Bc) <\

Proof. Directly from Claim 3.5.2 noting that A — (\,w)?.
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CLAIM 3.5.4. Suppose that ag, . .., a, < X\ are pairwise <.-incomparable.
Then Zoy € Zo, U...UZ,,.

Suppose now that D is an ultrafilter on 6 containing all co-bounded sets.

Cram 3.5.5. sf([[..o B:/D) > \.

Proof. We need to find an ideal-independent subset of [],._, B:/D of
size A. But this is easy: for a < Xlet 2 € [[,_y Be/D be such that z4(c) =
{# < X: B =: a}. The set {z, : @ < A} is ideal-independent since if
Qag,...,0, < A are distinct and ¢ is such that «g,...,a, are pairwise <.-
incomparable then

B. Exa,(e) £ ko, (€) V... V,,(€)
(by Claim 3.5.4). Now note that if g < 6 is such that

U Aen{ola,am) :1<m<n} =0

gewso

then for all € > ¢¢ we deduce that «ay, ..., a, are pairwise <.-incomparable.
Now by the f.o§ theorem we conclude that

HBE/D):xaoﬁmal\/...\/xan. "

e<6

REMARK. 1. For A such that there exists a strong A-system and A is a
successor (and for the corresponding 6, k’s) we have algebras B, (for ¢ < 0)
such that invp(B.) < A and for the corresponding ultrafilters D on k we
have invy (], o Be/D) > A, where T' is one of the following: Th_cof, 7%, T3,
Ty, or Tine.

2. We do not know if (in ZFC) we can demand A = A\ and AY = A;
consistently yes.

THEOREM 3.6. Assume that there exists a strong A-system for k and 0 <
n < w. Then there is a Boolean algebra B such that s} (B) = ||B||T = AT
(so hd! (B) = hLf(B) = A1) but s} (B),hd"(B),hL*(B) < .

Proof. The construction is slightly similar to the one of 3.5.

Let (6, \, f,J,(A¢ : ¢ < K)) be a strong A-system for &, let o(a, 3) =
min{i < 0 : fo(i) # fs(i)} (for distinct o, 8 < X) and let F; o C {fa]i :
a < A} (for i < 6 and ¢ < k) be such that if X7, X5 € [{fali:a < A}<¥
then there is ( < k with X; = Fj ¢ N (X7 U X3). As before, fix a sequence
((4i» Gi) 14 < 0) such that j; <14, ¢; < k and the set

{]<5(VC<I€)(E|£<I{)(A§QJ{Z<(Sjzzj&CZ:C})}

is unbounded in 6.
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Let B be the Boolean algebra generated freely by {z, : @ < A} except
that:

() if ag, ..., amq2 <A 0 <6, foli = ... = fanialis fao(1) < far (i) <
o< fania (@) and fo,lji € Fj, ¢, then zoy < Tay V.oV Za, s,
(B) if ag,...,anqp2 < A, 0 <6, foli = ... = fanolt fao(i) < fa, (i) <

o< fanyo (@) and fo,ldi & Fj, ¢, then o, Ao AZq, 1, < Za,-
CrLamm 3.6.1. If ag, ..., a, < A are pairwise distinct then
BlE2y £ %oy V...V,
Consequently, s} (B) =hd(B) = hL}(B) = | B||* = \*.
Proof. Let h: A — 2 be such that h(ag) = 1 and for o € X\ {a},

0 lf fa UZ ¢ sz,Cz or
h(a) = { falji € Fj, ¢, and fo[(i+1) € {fa,I(i+1):1=1,...,n},

1 otherwise,

where ¢ = o(ap, ). We are going to show that the function h preserves
the inequalities imposed on B in (a), () above. To deal with («) suppose
that ﬁo,...,ﬁn+2 < A, fﬁo [i=...= f/gn+2 [, flgo(i) < .. < f5n+2(i) and
f8,1ji € Fj,¢c;- If h(Bo) = 0 then there are no problems, so assume that
h(Bo) = 1. Since fg,[(i +1) (for k = 1,...,n + 2) are pairwise distinct we
find ko € {1,...,n+ 2} such that

fouo 1 +1) & {fa, 1(i+ 1) : 1 <n}.

It is easy to check that then h(fk,) = 1, so we are done. Suppose now
that Bo,..., 08042 < A, fali = ... = fo.,0lt, f3,(1) < ... < fa,.,(i) but
faolJi & Fj, ¢, and suppose h(By) = 0 (otherwise trivial). If o(ao, Bo) < ¢
then clearly h(f8r) = h(By) = 0 for all & < n + 2. If o(a, o) > ¢ then
for some ko € {1,...,n+ 2} we have o # B,, 0(0,Pr,) = ¢ and clearly
h(Bk,) = 0.

CLAIM 3.6.2. hd™(B),hL"(B) < \.

Proof. Suppose that (ag: 5 < A\) C B. After the standard cleaning we
may assume that for some Boolean term 7, integers my < m < w, a function
@: A xm — A, and an ordinal ig < §, for all 5 < A we have:

(*)1 ag = T(JJ@(@O), .o ,x&(ﬂ,m_l)),

(x)2  (fanlio : I < m) are pairwise distinct and f5(g,)li0 = fa(0,) [0
(for I < m),

(x)s  {(@(B,0),...,a(B,m —1)) : B < A} forms a A-system of sequences
with the root {0,...,mo — 1}.
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Moreover, as we are dealing with hd, hLL, we may assume that the term 7 is
of the form

1
T(Zoy ooy Tp—1) = /\ xf( ),
l<m
where t : m — 2. Let { < k be such that for each | < m,

fo—é(()’l) [ig S Fio,( = t(l) =0.
Take 41 > i such that j;, =9, (;; = ¢ and
(V¢ < X, )(FB < N(VL € [mo,m))(C < fagan(in))

(as in the proof of Claim 3.5.2). Now, as ||[{fali1 : @ < A}|| < Aiy, we may
choose distinct By, ..., Bpm.(nt2) < A such that for k <m-(n+2) and [ < m,

fagony i1 = fagpenlin = v

and for each [ € [mg,m),

fason)(i1) < fae (i) <o < fa(B. onin) (01)-

Note that we can demand any order between fy, . . ., By, (n42) We wish, which
allows us to deal with both hd and hL. We are going to show that ag, <
m-(n+2)

w1 ag,. Suppose | € [mg,m) and 1 < k; < ... < kpjo <m-(n+2).
If ¢(I) = 0 then by the choice of ¢ and i; we may apply clause («) of the
definition of B and conclude that

Ta(Bol) < Ta(Bi, ) V-V Ta(sy
Similarly, if ¢(1) = 1 then

n+2’l)'

Ta(By, 1) VANV Ta(Br, 1) < Ta(Bo,l)-

Hence, for any distinct kq,...,k,12 € {1,...,m-(n+2)} and I < m we
have
t(1) t(1) t(1)
TaBo) S Taltiy ) VY TalBh, )
and therefore
m-(n+2)
t(1) t(l)
A< Vo N v
l<m k=1 I<m

REMARK. Theorem 3.6 is applicable to ultraproducts, of course, but we
do not know if we can demand (in ZFC) that A = A\J and \§ = \.

ZFC constructions (using A-systems) parallel to 3.6 will be presented
in a forthcoming paper [Sh 620]. Some related consistency results will be
contained in [RoSh 599].

PROBLEM 3.7. For each 0 < n < w find (in ZFC) a Boolean algebra B
such that s, (B) > sp41(B). Similarly for hL, hd.
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3.3. Forcing an example

THEOREM 3.8. Assume that g < K < p < A = pt = 2*. Then
there is a forcing notion P which is (< \)-complete of size AT and satis-
fies the Xt -cc (so it preserves cardinalities, cofinalities and cardinal arith-
metic) and such that, in VE, there exist Boolean algebras Be (for & < k)
such that hd(Bg),hL(Be) < X (so s(Be¢) < A) but for each ultrafilter D on
K containing co-bounded subsets of k we have ind([[_, Be/D) > A* (s0
AT <hd([[ec, Be/D), hL(I1¢c Be/ D), (1w, Be/D))-

Proof. By Theorem 2.5(3) of [Sh 462] there is a suitable forcing notion
PP such that, in V¥, there is a sequence (n; : i < A*) C *\ with no repetition
and functions ¢, d such that:

(a) c: X — ),

(b) the domain dom(d) of the function d consists of all pairs (Z, h) such
that h: { = A x A x A for some ( < p, and T : p — ¥\ is one-to-one, o < A,

(c) for (z,h) € dom(d), d(z,h) is a function from

{@ € "(\") :a is increasing and (Vi < pu)(x; < 1q,)}
to A such that d(z,h)(a@) = d(z,h)(b) implies supa # supb and defining
t; = Na, N\ M, for some 7* < p we have:
(c) level(t;) = level(t;~) for i > i*,
(8) (Ve < 1)(3 < ) c(t:) = 2),
() for p ordinals ¢ < p divisible by (, either there are §y < §& < A
such that

(Ve < O)(C &0 < mp,, . (level(tiye)) < ¢+ &1 <, (level(tiie))),
h = ((c(tite),mp,, . (level(tite)) — ¢ - o,
Nasi. (level(tize)) — - &1) e < (),
or a symmetrical condition holds with a and b interchanged.
From now on we are working in the universe V¥ using the objects listed
above.
For distinct 4,5 < AT let o(i,j) = min{ < X : n;(§) # n;(£)}. For
€0,€1 < K we put
RZ . ={(,]) € AT x AT 1i# j and 1;(0(4, §)) = €0 mod x and
n;(0(i,j)) = €1 mod K},

and now we define Boolean algebras B, = for &€ = (g, €1,¢€2,¢3) satisfying
€0 < €1 < €2 < €3 < K. By ¢ is the Boolean algebra freely generated by
{x; i < AT} except that:

o if (i,j) € RZ, ., then z; < zj,

o if (i,j) € RE .. then z; < z;.

€2,€3
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Cram 3.8.1. If i,5 <At (i,7) € RE, ., and (j,i) € RE, .. then B¢ =
z; £ xj. In particular, if i < j < \T then B, s = x; # xj and |B.g|| = AT.

Proof. Fix i < AT. A function f : {z; : j < AT} — P(2) (where P(2) is
the Boolean algebra of subsets of {0,1}) is defined by f(z;) = {0} and for
je T\ {i}:

o if (i,j) € RZ, ., or (j,i) € R, ., then f(z;) = {

o if (i,5) € RE, ., or (j,i) € RE, ., then flzj) =10,

e otherwise f(z;) = {1}.

We are going to show that f respects all the inequalities we impose on x;’s
in By . So suppose that (ji,j2) € RE . . If f(25,) = () then there are no
problems so assume that both (i, j1) & R62 ; and (j1,7) € RZ . Similarly,
we may assume that f(x;,) # {0,1}, i.e. that both (i,j2) ¢ RE0 ., and

(j2,1) & RE, .- Note that these two assumptions imply ji # i # j2. Now we
consider three cases:

o if Q(j17j2) > Q(i’jl) = Q(iv.]é) then f(le) = f(xj2)7

it o(j1, j2) = 0li, j1) = oli j2) then f(x3,) = {1} = f(z;,) (remember
(j17j2) eRso €1” (iva)v(jlv ) QR(?O 51)

o if o(j1,j2) < max{o(j1,%),0(j2,4)} then either o(ji,j2) = 0(i,j2) <
0(i,71) and (7, j2) € RZ . (which is excluded already) or o(j1,j2) = 0(3, j1)

€0,€1
< o(1,72) and (j1,7) € RS _ (which is also against our assumption).

€0,€1

This shows that f(z;,) < f(z;,) whenever (ji,j2) € RE . Similarly
one shows that (ji,j2) € RE, ., implies f(z;,) < f(;,). Consequently, the
function f respects all the inequalities in the definition of By . Hence it
extends to a homomorphism f : B, : — P(2). But for each j < AT,

((i,4) & R, o, & (4,0) & RE, o) = (f(z5) € {0, {1}} & f(z:) = {0}).

CLAIM 3.8.2. Suppose i : At xn — AT andt:n — 2 for n < w are such
that (Vo < AT)(Vly < Iy < n)(i(a,l1) < i(a,l2)). Then

(®1) (Fa< p< A*)(B,m: = /\($2(a,1))£(l) < /\(xz(ﬂyl))f(l)»

l<n l<n
(®2) (Fa< p< A*)(Bm = /\(mf(a,l))f(l) > /\@g(ﬂ’l))fm)'
I<n l<n

Proof. To prove (@1) and (®3) it is enough to show the following:
@) (Ga<f <AV <n)(Brg b (@igan) < (@3.)™),
(®3) Qo <f <AV <n)(Brs E (@ian)™ = (zi5)"™)-

1)

By the definition of B s for (¢7) it is enough to have
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(@7*)  there are « < 8 < AT such that

l<n&t(l)=0= (i(a,1),i(8,1)) € RE ., or i(a, 1) = i(B,1),
lL<n&tl)=1= (i(a,1),i(B,1)) € RE, _, or i(a, 1) =i(8,1),

and similarly for (&3).

We will show how to get (©3*) from the properties of (n; : i < AT). For
this we start with a cleaning procedure in which we pass from the sequence
((i(a,1) : 1 < m) : @ < AT) to its subsequence ((i(a,l) : | < n): a € A) for
some A C AT of size AT (so we will assume A = A1). First note that if ¢ is
repeated AT times in (i(a, 1) : @ < AT, | < n) then for some | < n we have
[{a :i(a, 1) = i}| = AT and we may assume that for all o < AT, i(a, 1) = 1.
Therefore, (¢7*) holds trivially for this [ (and every a < 8 < AT). Thus we
may assume that each value appears at most A times in (i(a,l) : o < AT,
[ < n) and hence we may assume that the sets {i(c, 1) : | < n} are disjoint
for a < A" (so there are no repetitions in (i(a, 1) : & < A", [ < n)). Further,
we may assume that

a<fB<A =ila,0)<... <i(a,n—1) <i(B,0) <...<i(B,n—1).

For I < n and a < AT let apat; = i(a,l). We find € < X such that for A"
ordinals § < AT divisible by p the sequence (74, [£ : € < p) is with no
repetitions and does not depend on 3 (for these (3). Since A = u™ = 2# there
are £ < X\ and a one-to-one sequence 7 : 1 — S\ such that the set

B ={B < A" : 3 is divisible by p and (Ve < p)(Na,,. 1€ = z.)}
is of size AT. Let h : Kk — A3 be such that for [ < 2n,
(0,e9,e1) ift(l) =0, I <n,
(0,81,60) if E(l - TL) =0, n<Il<2n,
(0,82,83) if E(l) =1, | <n,
(0,e3,e2) ift(l—n)=1, n<Il<2n.
Consider the function d(Z,h). There are distinct fy,3;1 € B such that
d(z,h)((agy+e = € < p)) = d(Z,h)({ag,+e : € < p)). This implies that
we find 0 < p divisible by & such that (possibly interchanging (3y, 31) there
are & < &1 < A such that for some v < A and every € < &,

h(l) =

0(ay+5+e: Ay +5+) = s
K- 50 < 77a50+5+e (7) <K- fl < 77a51+5+5 (7)7
h = <(c(77a50+5+g W), 77a50+5+5 (’7) — K- 501 77a51+5+g — k- 51) ce< K>'

Suppose that Gy < (81 and look at the values naﬁ0+6+l(7) and Nay 5., () for
[ < n. By the definition of h we have:

o if £(l) = 0 then 14, 5,,(v) = €0 mod £ and 14, ,,,,(7) = €1 mod & (so
(agy+o+1,ap,+6+1) € RE, ), and
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o if £(l) = 1 then 1y, 5,,(y) = €2 mod x and 714, ,,,,(7) = €3 mod & (so
(apo+s+1,ap,+5+1) € RE, ).

Consequently, 8o + 6 < 1 + 6 < AT are as required in (®3*). If 81 < (o
then we look at the values 94, 5, () and Nay, 4., () (for I < n) and
similarly we conclude that 31 + 0 +n < By + 6 +n < AT witness (D}*).

Similarly one can get ®5.

CLAIM 3.8.3. hd(By z) < A and hL(B,z) < A.

Proof. Suppose that hL(By ) > A" (or hd(B, ) > AT). Then there is
a sequence (Yo : @ < A7) C B, = such that for each o < A" the element y,,

is not in the ideal generated by {ys : 8 < a} ({ys : B > a}, respectively).
Moreover, we can demand that each y, is of the form /\l<n(a)(952(a,i))t(°"l)

with i(a, 1) < i(a,lp) for I; < I3 < n(a). Next, we may assume that
n(a) =n, t(a,l) = t(l) for a« < AT, 1 < n and apply (1) ((2), respectively)
of Claim 3.8.2 to get a contradiction.

Now, for § < K let Be = By (a¢4¢+41,4642,4¢+3) and B = H§<H Be/D,
where D is an ultrafilter on x such that no member of it is bounded in k.

CramM 3.8.4. ind(B) > AT,
Proof. Let f; € [[;., Be (fori < AT) be the constant sequence f; (&) =
x;. Suppose ig < i1 < ... <ip_1 < AT and look at the set
X={{<r:(Fj<4)FTm<k<n)n, (0(im,ir)) =4+ j mod K
or 1iy, (0(im, i) = 4§ + j mod k)}.
Obviously, the set X' is bounded in k. By Claim 3.8.1 (or actually by a
stronger version of it, but with a similar proof) we see that for £ € k\ X,

Be = “fi (&), ..., fi,,_, (&) are independent elements”.

Therefore, we conclude that B = “f;,,..., fi,_, are independent”. m

4. Independence number and tightness

4.1. Independence. In this section we are interested in the cardinal in-
variants related to the independence number.

DEFINITION 4.1. (1) ¢i" is the formula which says that any nontrivial
Boolean combination of n + 1 elements of Py is nonzero (i.e. ™ says that
if g, ..., z, € Py are distinct then A, xf(l) # 0 for each t € "*12).

(2) For 0 <n < w let T, = {¢ind Tk <n}

(3) For a Boolean algebra B and 0 < n < w we define ind,(B) =
invy, (B) and indf (B) = inv}, (B). We will also denote ind(") by ind™®.

(4) A subset X of a Boolean algebra B is n-independent if and only if
any nontrivial Boolean combination of n elements of X is nonzero.
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REMARK. 1. Note that the theory Tiﬁgl consists of formulas ¢4, ...
..., ¢ and thus it says that the set Py is (n+1)-independent. Consequently,
for each n < w,

ind} (B) = sup{|| X||*) : X C Bis (n + 1)-independent}.

2. The cardinal invariants ind,, (the n-independence number) were first
introduced and studied by Monk in [Mo 4].

PROPOSITION 4.2. Suppose that A is an infinite cardinal and n is an
integer greater than 1. Then there is a Boolean algebra B such that

ind,(B) =A=|B|, ind,41(B)=Ry.
Proof. Surprisingly the example we give depends on the parity of n.
CASE 1:n =2k, k > 1. Let X = {x € 2 : [z~ [{1}]|| < k} and for

a < Alet Z, = {z € X : x(a) = 1}. Let B§(\) be the Boolean algebra of
subsets of X' generated by {Z, : o < A}.

CrLAM 4.2.1. ind,, (BE (M) = \.

Proof. For « > 0 put Y, = Zy A Z, (A stands for the symmetric
difference). We are going to show that the set {Y, : 0 < o < A} is n-
independent. For this suppose that ¢ € "2 and 0 < ag < ... < @p_1 < A.
Choose z € X such that:

o if |[t71[{0}]]] < k then 2(0) = 0 and z(oy) = 1 — t(I) for | < m,

o if |t71[{0}]|| > k then z(0) = 1 and z(coy) = t(l) for | < n.
Then clearly z € (,_,, yi®,

CLAIM 4.2.2. ind,, 1 (BE())) = Ry.

Proof. It should be clear that ind(B5(\)) > RNg, so what we have to
show is ind,,; 1 (BE(\)) < R;. Suppose that (Y, : @ < w;) € BE(\). We may
assume that:

o Yo = 7(Zi(a,0)s - - s Zi(a,m—1)), Where m < w, 7 is a Boolean term and

i:wp X m— Ais such that i(e,0),...,i(a,m — 1) are pairwise distinct,

e {(i(a,0),...,i(a,m — 1)) : @ < wy} forms a A-system of sequences
with the root {0,...,m* — 1} (for some m* < m).

Further, we may assume that 7(zo,...,Zm-1) = Vica Nicm CL‘E(Z) for
some A C 2. If m = m* (i.e. all the Y,’s are the same) then the sequence
is not (n + 1)-independent. If m* = 0 (i.e. the sets {i(c,l) : | < m} are
disjoint for o < wy) then either Yo A...AY, =0or (=Yp)A...A(=Y,) =0
(e.g. the first holds if 1"...*1 =1 ¢ A and otherwise the second equality

is true). So we may assume that 0 < m* < m.
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Suppose that 1 € A. We claim that then (—=Yp)A.. . A(=Yi)AYri1A. . A
Yo, = 0. If not then we find € (N, op41 Y5 \Ujcpy1 ¥j- For j <2k +1
let t; € ™2 be defined by ¢;(1) = 1—z(i(j,1)). Thust; € Afork < j < 2k+1
and t; ¢ A for j < k+1. As ||z~ [{1}]]| < k for some jo < k we necessarily
have (VI € [m*,m))(t,(l) = 1). Since 1 € A and t;, ¢ A, necessarily for
some lp < m* we have t;,(lp) = 0. Now look at t; for j € [k + 1,2k]. Since
tiIm* = tj, Im* and t;, € A (and t; € A, remember k+ 1 < j < 2k) we
have

(Vj € [k+1,2k])(3l; € [m™,m))(t;(l;) =0).

This implies that z(i(j,l;)) = 1 for j € [k + 1,2k] and together with
2(i(jo,lo)) = 1 we get a contradiction to ||z~ 1[{1}]|| < k.
Suppose now that 1 ¢ A. Symmetrically to the previous case we show

that then Yo A ... AYe A (=Yit1) A ... A(=Ya,) = 0. The claim is proved.
CASE 2: n =2k + 1, k > 1. In this case we consider
X' ={z e 2: a7 [{1}]]| <k or [lz7 {0} < k}
and the Boolean algebra BY()) of subsets of X’ generated by the sets Z/,
= {z € X' : z(a) = 1}. Then the sequence (Z/, : a < \) is n-indep-
endent (witnessing ind,,(Bf(\)) = \). Similarly to Claim 4.2.2 one can show

that ind,, 1 (B¥(\)) = Rq (after the cleaning consider (—Yp) A... A (=Y%) A
Yit1,-- o A Y2k+1). [

REMARK. Note that
ind}), (BE(A) x BE (V) = A
as witnessed by the set {(Z,, —Za) : @ < A}.

COROLLARY 4.3. Suppose that X\ is an infinite cardinal. Then there are
Boolean algebras By, (for n < w) such that ind(B,) = Rg but for every
nonprincipal ultrafilter D on w, ind([ | B,/D) =\, u

A detailed study of the reasons why we did have to consider two cases
in Proposition 4.2 leads to interesting observations concerning the invariant
ind,, and products of Boolean algebras. First note the following.

nw

Fact 4.4. For any Boolean algebras B; (i < \) we have:
(1) indg,,(By x By) < indf (By) < ind; (By x By),

(2) indi<kni(B0 X ...x By_1) <3, ind} (By),

(3) ind™(J[;%, Bi) = sup;. ind " (B;). =
However, there is no immediate bound on ind,,+1 (B X B) in this context.
One can easily show that the algebra BY()\) from the proof of 4.2 (Case 2)
satisfies
indog2(BF(A) x BY(N)) = R.
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So we get an example proving:

COROLLARY 4.5. If X is an infinite cardinal and n is an odd integer > 2
then there is a Boolean algebra B such that ind,,(B) = X\ and ind,,+1(B x B)
= NQ. ]

The oddity of n in the corollary is crucial. For even n (and A\ strong
limit) the situation is different. In the lemmas below p is a cardinal, & is an
integer > 1 and B is a Boolean algebra.

DEFINITION 4.6. For a cardinal p and an integer k € w we define T (p)
inductively by (1)

To(w) =g, Tepa(p) = @),
LEMMA 4.7. (1) Suppose that
(@) inda (B) > Jax (1) "

or at least

(®7)  there exists a sequence (x; : i < Jor(p)*) C B such that if ig <
1 <.o..<lgp_g <ilop_1 < 32k<,u)+ then /\l<k Ty, A (_xi2L+1) 7£ 0.

Then

ff there is a sequence (y; : j < ut) C B such that for each w € [tk

there is an ultrafilter D € Ult B with
(v < 1*)(y; € D & j € w).
(2) If indax(B) > Tpy1(p) then we can conclude ®3".
[In (2) it is enough to assume a suitable variant of (@~ ): see the proof.]

Proof. (1) Assume (7). For each ip < ... < dgp_1 < Jog(p)* fix
an ultrafilter DYo-i2e-1} € Ult B such that A, (%i, A (—Tiy,,)) €

Dliossizes} Tt F 1 [Dgp(p)F]25+1 — 25412 be defined by
F({io, ... ia})(1) = 1 & a;, € Dlowizeh\ i}

(where I < 2k + 1 and ig < ... < i9p < Jox(p)™). By the Erdés-Rado
theorem we find a set I of size 4 homogeneous for . We may assume that
the sequence (x; : i < u™) behaves uniformly with respect to F.

Put y; = @y A (—Zy.jq5) for j < pT. We claim that the sequence
(y; : 7 < p) has the required property. For this suppose that jo < ... <
Jr—1 < pt oand let iy = w7 and ig 1 = w- g+ 5 (for [ < k). Then
io < ... < dgp_o < dop_1 < pT so we can take D = Dlioi2k-1}  Thug
Yji = Tiy N (—Tiy,,) € D for I < k. On the other hand, suppose that

(}) Remember that T (daleth) is the second letter after 2 (beth) in the Hebrew
alphabet.
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Jj & {Jjoy.--,jk—1} and look at i = w- j and i’ = w- j + 5. Note that for each
I < k we have

1< 1< igl+1 s < igl+1 s < 19].
Since F({i,io, cen ,izk_l}) = F({i/,io, s ,izk_l}) we get
v, €D xy €D

and hence y; = x; A (—zy) € D.

(2) The proof is essentially the same as above but instead of the Erdds—
Rado theorem we use 4.26 which is a special case of the canonization theo-
rems of [Sh 95]. We start with a sequence (zq¢:a < Tpp1(p), £ <p) C B
such that if &y,...,&—1 < p and f < af < Tgy1(p) (for I < k) then
Ni<r (a0 e, A (=21 ) # 0. Then we choose the corresponding ultrafilters

0 1 0 1
Daoao---ak—10‘k—1

£0,--s6k—1
such that

F((ag, &), (@0, €0). -5 (0f 1§, (-1, Er1), (@, €)) = -

if and only if z,¢ € Dso, @c 1

€ Ult B and consider a function F : [Ty 1(p) x ]2+ — 2

By 4.26(a) we find of,ap < Tgy1(p) (for & < p) such that for all distinct
€0, &k € 1,
F((agd,,€0), (agy, 0)s - (g, &e—1), (g, 5 Er—1), (g, &)

= F((ag,, &), (agy,€0), o (@l &), (0,5 Erm1), (0, Ek))-
Finally, put ye = 40.¢ A (—xaé75). "

LEMMA 4.8. Suppose that there is a sequence (y; : j < p) € B such that
for every w € [u]* there is an ultrafilter D € Ult B such that

(Vi <w)y; €D jew).
Then
i d2k:+1(B x B) >

Proof. Consider the sequence ((yj,—yj) :j < u) € B x B. To prove
that it is 2k + 1-independent suppose that jo < ... < jor < p and t € 2F+12,
Let wo = {7; : t(I) = 0} and wy = {j; : t(I) = 1}. One of these sets has at
most k elements so we find an ultrafilter D € Ult B such that either

o (VI <2k+1)(y;, € D= t(l) =0), or
o (VI <2k+1)(y;, €D t(l)=1).

t(l) € D, in the second case /\l<2k+1(_yjl)t(l)

(i .
€ D. Consequently, (A; oz 11 y;l ), Nicorir(— ;)W) # 0 and the lemma is
proved. =m

In the first case A;_gp 195
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THEOREM 4.9. Let k be an integer > 1, B a Boolean algebra and A a
cardinal. Then:

(1) indax (B) > max{3ox (AT, Txr1(AT)} implies indogy1(B x B) > AT
(2) If A is strong limit and indax(B) > A then indagq1(B X B) > A.

(3) indap ([T, B) < T (indag 41 ([T, B)-

Proof. (1) is an immediate consequence of Lemmas 4.7 and 4.8.

(2) follows from (1).
(3) follows from (2) and the following observation.

CrLAM 4.9.1. For every integer n > 1 and a Boolean algebra B we have

ind,, (Hw B) — ind, (HwB ng B).

1<w 1<w

Proof. By 4.4(1) we have

ind,, (HwB) < ind, (HwB X H“’B).

<w 1<w <w

For the other inequality assume that

ri=ind, (J]"B) <ima, (T B B).
i<w <w 1<w
Thus we find an n-independent set X C [/_ B x [[;.,, B of size ™. For
z € X let az, b, € []; B and m(z) < w be such that

x = (az,bz) and (Ym > m(x))(az(m) = az(m(z)) & by(m) = by(m(z))).

Take mp < w and Y € [X]"€+ such that m(z) = mg forx € Y. Forz € Y
let

cz = (az(0),...,az(mo),b:(0),...,bs(mg)) € B*™0+2,
The set Z := {c, : * € Y} is n-independent as a,(m) = a,(mo) and b, (m) =
be(mo) for m > mq. As ||Z|| = k™ we conclude that k* < ind,, (B?™0+2).
Now note that the algebras [];. B and B*"*2 x [[*. B are isomorphic,
so (by 4.4)

ind, (B2™0+?) < ind,, (Hw B),
i<w
and hence kT < ind,([];- ,B) = &, a contradiction. m
PROBLEM 4.10. (1) Can Lemma 4.7 be improved? Can we (consistently)
weaken the variant of the assumption (®~) for (2) to sequences shorter than
Tk(p) (we are interested in the reduction of the steps in the beth hierarchy)?
(2) Describe (in ZFC) all dependences between indg(B™) (for n,k < w)
[note that we may force them distinct].
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4.2. Tightness. The tightness t(B) of a Boolean algebra B is the minimal
cardinal k such that if F' is an ultrafilter on B, Y C Ult B and F C JY
then there is Z € [Y]<" such that F C |JZ. To represent the tightness
as a def.u.w.o.car. invariant we use the following characterization of it (see
[Mo 1]):

t(B) = sup{||c|| : there exists a free sequence of length o in B}
where a sequence (z¢ : { < a) C B is free if
(V€ < @)(¥F € [ )G € [a\ <) [ \ 2y A N =2y £ 0]
ner neG

Now it is easy to represent t(B) as a def.u.w.o.car. invariant. Together with
(finite versions of) the tightness we will define a def.f.o.car. invariant uty
which is inspired by 4.7.

DEFINITION 4.11. (1) Let ¢ be the sentence saying that P; is a well
ordering of Py (we denote the relevant order by <;). For k,l < w let (25};7 , be

the sentence asserting that for each xg, ..., 2k, vo,...,y1 € Po,
if T0<1...<10ZT<1Y0<1..-<1Y1 then /\l‘zﬁ\/yl,
i<k i<l

and let the sentence ¢}*, say that

for all distinct zq,..., %k, Yo,-- .,y € Py we have /\ x; £ \/yi.
i<k i<l
(2) For n,m < wlet T;"" = {},; : k <n, I <m}U{¢} and T,y™ =
{64 : k <n, I <mj}, and for a Boolean algebra B,
tnm(B) = invprm(B), Uty ,m(B) = invpnm (B).
(3) The unordered k-tightness uty, is the def.f.o.car. invariant uty .

REMARK. Note that T}""™ = {4} if either n = 0 or m = 0 (and thus
tn.m(B) = || B|| whenever n - m = 0). The theory T;""""™ "' says that P; is
a well ordering of Py and if zg <1 ... <1 T, <1 Yo <1 ... <1 Ym then the
meet /\,,, ; is not covered by the union \/,_, ;. The invariant ¢, ., (B) is
just the tightness of B. Similarly for T7™.

COROLLARY 4.12. For a Boolean algebra B and n,m < w, 0 < k < w:
(1) ind ), (B) < utsfn(B) = utsi3(B) < tiln(B),

n+m
(2) utgj)(B) =sup{s*) : #2F holds true}, where the condition #5* is
as defined in Lemma 4.7,
(3) the condition #2F is equivalent to: the algebra BE (k) of 4.2 can be
embedded into a homomorphic image of B,

(4) uty”(B) < ind$(B) and ut{" (B) < ind$}), (B x B).
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Proof. (1) and (2) should be clear.
(3) Assume #ZF and let (y; : j < k) C B be a sequence witnessing it.
Let I be the ideal of B generated by the set

{yjo/\"'/\yjk J0 < ... < Jk </€}.
Then the algebra BE (k) naturally embeds into the quotient algebra B/I.
Moreover, if B’ is a homomorphic image of B and QEI”“ then clearly #Z:*
so the converse implication also holds.
(4) follows from (3), (the proof of) Proposition 4.2 and the remark after
the proof of 4.2. m

REMARK. Corollary 4.12(3) is specially interesting if you remember that
sT(B) > X if and only if the finite-cofinite algebra on A can be embedded
into a homomorphic image of B.

From Lemma 4.7 we can conclude the following:

COROLLARY 4.13. For k > 0 and an algebra B:

(1) if either uty x(B) > Dok(p) or utg kx(B) > Tpy1(p™) then uty(B)
> pt,
(2) if X is strong limit and uty ,(B) > A then uty(B) > A,

(3) uthk(B) < :lw(utk(B)). ]

PROPOSITION 4.14. Suppose n,m < w, k = min{n,m} and B is a
Boolean algebra. Then

tn,m(B) < :n—l-m(utk(B) + t(B))

Proof. Let pu = utg(B) + t(B) and assume that t, ,(B) > 3, 1m(@).
Then we have a sequence (aq, : o < 3y (p)*) C B such that

(Vap < ... < Opgm—1 < Tnam(u)™) [(lé\ Aoy N /\ —aal) # 0}.

n<ll<n4+m

For each ay, ..., ap+m—1 as above fix an ultrafilter Dleoanim-1} ¢ Ul B

containing the element A;_, aa, A A\, <;cpim —@a,- Look at the function

F: [jn+m(ﬂ)+]n+m+1 — rmtig
defined by
F(ag, .-y 0nim)(l) = 1 & ag, € DIornim\on},

By the Erdés—Rado theorem we may assume that u* is homogeneous for F
with the constant value ¢ € "t™m+12,

If ¢(I) = 0 for each I < n + m then the sequence (a, : a < u*)
witnesses ut < ut, (B), giving a contradiction to the definition of y (re-
member utg(B) > ut,(B)). In fact, given n elements oy < ... < @,_1,
choose m additional elements a,_1 < ay, < ... < Qptm—1. Suppose that
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B e ut\{ao,-..,anim_1}. Then by homogeneity —ag € D{@0rantm-1}
proving the result.

If ¢(l) = 1 for each [ then the sequence (—a, : n < a < pu™) exemplifies
put < ut,,(B), once again a contradiction. In fact, take any m elements
n—1< a, < ... < Quim_1 and suppose that 3 € p* \ {0,...,n — 1,
Qpy-- s Qnim—1} - Then by homogeneity ag € DAOn=lan,nanimo1} | aq
desired.

Finally, suppose that there are ly,l; < n + m such that ¢(lp) = 0 and
C(ll) =1.

CasE 1: 1y <lp. Let I' = {8 +w: B < put}. We claim that (ay : a € I')
witnesses ut < ¢(B), contradicting p > ¢(B). In fact, let ap < ... < o <
... < g1 be elements of I'; we want to show that

/\aal A /\ —Qq, # 0.

I<p p<Il<q
Say oy, = f+w. Define y; = [ for all l <1y, 7;,,...,v,—1 are consecutive val-
ues starting with 5+ 1, and 7., ..., Ym+n—1 are consecutive values starting

with a1 + 1 (none of the latter if [y = n+m). Then a,, € D0 Yntm-1}
for all Il < p and —a,, € D1vormtm—1} for all [ > p, as desired.

CASE 2: [y > lp. This is similar, using (—an : € I'). m

Our next proposition is motivated by Theorem 4.9 and the above corol-
laries.

PRrOPOSITION 4.15. Let B be a Boolean algebra and k a positive integer.
Then:

(1) indox(TT;~,, B) < min{Ips—1(indx(B)), Jok—1(utk(B))},

2) w1 ([T, B) < Tulut,y (B)).

Proof. (1) Suppose that A\g = Jap—1(indx(B)) < indak([];~,, B). Thus
we find a sequence (aq : o < AJ) C []i~, B which is 2k-independent. Let
o = (an(i) : i < w) (for a < A\J). Consider the function F : [A\]?¢ — w
given by
F(Olo, cey a2k_1)
=min{i € w: B = oo (i) A (=aa, (1)) A A Gag,_, (8) A (—8ay,, () # 0},
where ag < ... < agi_1 < )\a“. By the Erdés—Rado theorem we find a set [
of size (indy(B))* homogeneous for F'’; we may assume that I = (indg(B))™.
Let iy be the constant value of F' (on [(indg(B))*]?*). Look at the sequence
{an(ip) : @ < (indg(B))T & « limit). Any combination of k members of this

sequence can be “extended” to a combination of 2k elements of (a,(ip) :
a < (indg(B))™) of the type used in the definition of F. A contradiction.
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Now suppose that A1 := Jap_1(uty(B)) < indok([];-,B). As in 4.7, we
take a sequence (aq : @ < Af) C [[;2 B such that for some n < w, for each
a < A\, a, € B" (i.e. the support of a,, is contained in n) and

(VO&O < o< agp1 < )\f)( /\ Aoy, N (—aa2l+1) 7£ 0),
<k
and foreach ag < ... < agg_1 < )\f we choose an ultrafilter D{®0:-a2e-1} ¢
Ult [];~, B such that

/\ Qagy N (_aazl+1) € D{Oto """ a%*l}.
<k

Now we consider a colouring F' : [\[]2¥+! — 2k+1(2 x n) given by

F({ag,...,am})() = (1,m) & a,, € Dioomeai\or apq

Dleosme e} i concentrated on
the mth coordinate.

By the Erdés-Rado theorem we may assume the set of the first (utg(B))™
elements of A\ to be homogeneous for F. Now we finish as in 4.7 noticing
that for some m < n, for all ag < ... < agr_1 < (utx(B))T the ultrafilter
Dteowa2k—1} jg concentrated on the mth coordinate. So we may use ele-
ments of the form aq.,(Mm) A (—@a.w15(m)) (for a < (utg(B))T) to get a
contradiction.

(2) Assume that utpi1([T;%, B) > Jx(p) where p = ut);(B). Then
we find a sequence (aq : @ < (Jp(p))T) C [[;%,, B such that for any k + 1
distinct members of this sequence there is an ultrafilter containing all of them
and no other member of the sequence. We may assume that for some n < w
we have (aq : o < (i (u))™) € B™. For g, ...,ar < (Jx(p))™ let D00k
be the corresponding ultrafilter of B™ (i.e. it contains all a,, (for I < k) and
nothing else from the sequence) and let F'(ayp,...,ar) < n be such that the
ultrafilter Do»-~“* is concentrated on that coordinate. By the Erd6s—Rado
theorem we find a set A € [(Jx(p))T]*  homogeneous for F. Let m be
the constant value of F' on A. Look at the sequence (an(m) : a € A)—it
witnesses Qf;kﬂ, contradicting pu = utg+1(B). n

Finally, note that for the algebra BE(\) of 4.2 we have
uty,(Bg(A)) = trw(BE (V) = A,
utye41(BE (V) = utis,641(By(\) = i1 k41 (BF (V) = Ro.

This gives us an example distinguishing ¢, ., and t511 ., (and in Corollary 4.3
we may replace ind by t). But the following problem remains open:

PROBLEM 4.16. Are the following inequalities possible:
thW(B) > utk(B), twyk(B) > utk(B), tk’k(B) > gkt (B) ?
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4.3. Independence and interval Boolean algebras. Now we are going to
reformulate (in a stronger form) and put in our general setting the results
of [Sh 503].

DEFINITION 4.17. Let B be a Boolean algebra.

(1) For a filter D on [A]* we say that B has the D-dependence property
if for every sequence (a; : i < A\) C B there is A € D such that for every
{ag,01,...,ap_1} € A the set {an,,0ays---0a,_, } is N0t independent.

(2) For a filter D on [A]* and a Boolean term 7(xg, 1, ...,2,_1) We say
that B has the (D, 7)-dependence property if for every (a; : i < \) C B, for
some A € D, for every {ag,a1,...,a5_1} € A with ag < a1 < ... < a1
we have B = T(aag; Gayy - -+ Gay_y) = 0.

It should be clear that if D is a proper filter on [A]* and a Boolean algebra
B has the D-dependence property then A > ind; (B) (and so A > ind™ (B)).

PROPOSITION 4.18. Let 7 = 7(x9, 1, . . ., Tp—1) be a Boolean term and let
D be a k-complete filter on [N|*. Then any reduced product of < r Boolean
algebras having the (D, T)-dependence property has the (D, T)-dependence
property (this includes products and ultraproducts). m

PROPOSITION 4.19. Assume D is a proper filter on [\*. Then there exists
a sequence (g, aq,...,a_1) of ordinals < X such that:

(a) {w € [N]*: for each | < k the Ith member of w is < oy} # ) mod D,

(b) if o < oy for alll <k, n <k and o), < o, then

{w € [\F : for each | < k, the Ith member of w is < &}} = () mod D.
[Note that necessarily (o : I < k) is nondecreasing.]

Proof. Let F be the set of all nondecreasing sequences (a; : | < k) C
A + 1 such that the condition (a) holds. Then F' is upward closed (and
(\,...,A) € F). Choose by induction «p,...,ar_1 such that for each | < k,

ap =min{f: (Ja € F)(all = (ag,...,q—1) & a;=0F)}. =
DEFINITION 4.20. We call a filter D on [A\]* normal for {ag, a1, ..., 1)
if condition (b) of 4.19 holds and
(a)T {w € [A]* : for each | < k the Ith member of w is < oy} € D.
PROPOSITION 4.21. Assume that:

(1) D is a k-complete filter on [\]* which is normal for (ag, ay, ..., ax_1),
and aq, . ..,aE_1 are limit ordinals,

(2) k(x)=k- 2% irs(my, ;) : k(x) —2F xk is a one-to-one mapping such
that iy < iy implies that, lexicographically, (cu, ,mi,,li,) < (ou,,,Miy, i, );
for (m,1) € 2% x k the unique i < k(x) such that (ms,1;) = (m,1) is denoted
by i(m, 1),
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(3) k* is a regular cardinal such that (Yu < k*)(2" < k) (e.g. K* = Ny),

(4) for X € D and h : X — p with p < k*,

Axp = {w € NP (Vm,m' < 2%)(w,, € X & h(wp) = h(wm))}
where for m < 2% and w = {Bo, ..., Br)-1} € [NJ*() (the increasing enu-
meration) the set Wy, is {Bitm,) : | < k},

(5) D* is the k*-complete filter on [\]**) generated by the family

{Axp:X€eD, h: X —p, p <k},

* * m l
(6) " = (20,21, Th)—1) = Nmeor Nick ‘rzf(m(,l))’ where (fm
m < 2F) lists all the functions in 2.

Then:

(a) D* is a proper k*-complete filter on [A]**) which is normal for the
sequence (g, 11 < k(x*)),

(b) if a Boolean algebra B has the D-dependence property then it has the
(D*, 7*)-dependence property.

Proof. Assume that X; € D, u; < k* and h; : X; — p; for j < p < K™,
and look at the intersection (;_, Ax; n,;. Let X* =, , X;. Then X* € D
as p <  and D is k-complete. Moreover, for some (§; : j < p) € [[,;, p;
we have

X+ = {we X+ (v < p)(hy(w) = &)} # 0 mod D,
as [[;., #j < K (remember r* is regular and (Vp < p*)(2* < k)). Let
ro<ri <...<rp=_1 <r; =k—1besuch that

Q) = ... = Qpy < Qg1 = ... =0y < Qpyp] = ...

e = O < O 41 = oo = Of—1.

Now we choose inductively {8",...,8 ,} € Xt (for m < 2¥) such that

O < ap, for n < k, m < 2F,
o, <B4 for u < 1%,
B < B, forn<k—1, m<2F,
;’g<ﬂ3"“,ﬂg+l<ﬁgﬁ for u < 1*, m+1 < 2~
How? Since D is normal for (ayg,...,ar—1) and the «;’s are limit, the set

Yy := {w € [\]* : for each n < k the nth member of w is < a,, and
for each u < {* the (7, + 1)th element of w is > a,., }

is in D. Thus we may choose wo = {§,...,3)_,} in XTNY;,. Now suppose
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that we defined {33, ..., 07"} The set

Yyi1 := {w € [\]* : for each n < k the nth member of w is < a,, and
for each u < I* the (r, + 1)th element of w is > ()"

Tu+1
and the minimal element of w is > 57}

is in D and we choose w11 = {58”1,...,52‘_‘*'11} in XT NY,.1. Note
that then i < i; = *8230 < ﬁl:n_l” (for ig,i1 < k - 2F) and hence clearly
wi=A{F": 1<k m< 2k} € ﬂj<u Ax; n;- Consequently, the x*-complete
filter D* generated on [AJ*(*) by the sets Ay is proper. The filter D* is
normal for («y, : 7 < k(x)) since:

oif X = {{Bo,...,Bk-1} € [N]*: (¥n < k)(B, < o)} and h is a constant
function on X then

Axn ={{Bo -, Bry—1} € NP+ (Vi < k(%))(Bi < i)} € D*;
o if i < k(%) and o < «, then the complement X of the set
{w € [\)* : the I;th member of w is less than o/}

is in D, and if h is a constant function on X then the set Ax ; witnesses
that

{w € [A]F™) : the ith member of w is less than o'} = 0 mod D*.

It should be clear that the D-dependence property for B implies the (D*, 7*)-
dependence property. =m

This is relevant to the product of linear orders. It was proved in [Sh 503]
that if x is an infinite cardinal and B¢ (for ( < k) are interval Boolean
algebras then ind([],_, B¢) = 2". The next result was actually hidden in
the proof of Theorem 1.1 of [Sh 503].

THEOREM 4.22. Let k be an infinite cardinal and let p be a regular car-
dinal such that for every x < p we have x* < p (e.g. p = (2%)" in (1) below
or = (22")F in (2)).

(1) For a regressive function f:pu— p (i.e. f(a) <1+ ), a two-place
function g : u> — x for some x < p and a closed unbounded subset C' of pu,
put

Ac.tg = {{ao, . a5t €W ap < a1 < ... < as are from C,
each has cofinality > K, f(ag) = f(a1) = ... = f(as) and
g(ao, a1) = glao, a2) = g(as, as) = g(as, as)}.
Let DfMg be the filter on [u]® generated by all the sets Ac., 4. Finally, let 7g
be the following Boolean term:

Te(Z0, X1, ..., T5) == 2o A (—21) ANz A (—x3) Ay A (—25).
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Then Dgﬁ is a proper kT -complete filter normal for {(p, p, w, p, 1, p) and

every interval Boolean algebra has the (DfL’K,Tﬁ)—dependence property.

(2) Let po be a cardinal such that (puo)® = po and (2M0)* < u. For a
closed unbounded set C C u, a regressive function f : u — p and a two-place
function g : p? — pg, let
AL 5o = Hao, a1, 02,03} € (1] s o < a1 < ag < ag are from C,

each has cofinality > K, f(ag) = f(a1) = f(az) = f(as) and

g(ao, a2) = g(ao, as) = glon, az) = g(ar, a3)}-

Let Dﬁﬁ be the k-complete filter on [u]* generated by all the sets AC g
Finally, let

T4 = Ta(T0, 21, T2, 3) 1= o A (—x1) A @2 A (—3).

Then the filter Dﬁ,n is proper, kT -complete and normal for (u, p, u, 1) and

every interval Boolean algebra has the (Dl‘iﬁ,u)-dependence property.

Proof. (1) Let g be a regular cardinal such that (Vx < p)(x* < p)
(so p" = p). First note that all the sets A¢ f4 are nonempty. [Why? Let
f:p— u be regressive, g : u2 — x, x < p and let C' C i be a club. Then
for some p the set

S={aeC:cf(a) >k & fla) =0}

is stationary (by the Fodor lemma). Next, for each a € S take h(a) < x
such that the set {o/ € S: a < o & g(a,a') = h(a)} is stationary, and
note that for some 0 < y the set Z = {a € §: h(a) = 0} is stationary. Take
any ag € Z and then choose oy < ag from (g, ) NS such that

g(ap, 1) = g(ag, ) = 4.
Next choose ag > aq from Z and ay, a5 € (ag, 1) NS such that

g(as, ) = g(as, az) = 6.

Clearly {aOa aq, G2, 3, (i, CK5} € AC’,f,g']

Now suppose that C¢ C p, fe:pp— py ge : 12 — x¢» Xe < p (for ¢ < k)
are as required in the definition of the sets Ac, f. g.. Let m: " — p be a
bijection (remember p = p*). Choose a club C' C p such that C' C ﬂc<n Ce¢
and

if aeC, f<a, Fe®3F then n(F)<a.

Let
frp—=pramm((fda): ¢ <)),
g:p?— HXC:(a,ﬂ)H(gg(Oé,ﬁ)ZC<H).

(<K
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The function f is regressive on {a € C : cf(a) > k}; outside this set we
change the values of f to 0. Since H§</-c X¢ < p we have Ac ¢4 € wa. It
should be clear that Ac,rg C (., Ace,fe,g.- Thus we have proved that the
filter Dg’,‘i generated by the sets Ac f,4 is proper kT -complete. To show that
Dﬁ’ﬁ is normal for (u, p1, p, g, p, 1) note that for o < p and I < 6, if we take
C = (o, ) and f, g constant functions then

AcpgN{{ag,. . a5} €W’ :ap < a} =0.

Suppose now that (I, <j) is a linear ordering. Let —oo be a new element
(declared to be smaller than all members of I) in the case where I has no
minimum element; otherwise —oo is that minimum element. Further, let co
be a new element above all members of I. The interval Boolean algebra B(I)
determined by the linear ordering I is the algebra of subsets of I generated
by the intervals [z,y)r ={z €1 :2 <; 2z <7y} for z,y € I U{—o00,00}.

We are going to show that the algebra B(I) has the (Df ,, 76)-dependence
property. Assume that (a : a < p) € B(I). Since we can find a subset of
I of size < u which captures all the dependences in the sequence we may
assume that the linear order I is of size p, so I is a linear ordering on pu.

Fix a bijection ¢ : [uU {—00,00}|<¥ x “74 — pu.

For each a < p we have a (unique) <;-increasing sequence

(s¢ 11 < 2n(a)) CpU{—o0,00}, n(a)<w,

such that aa = U< (a)[5%i> 5%i41)1- Take a closed unbounded set C' C p
such that for each o € C":

(1) if w e [aU{—00,00}]< and ¢ € “~4 then ¢(w,c) < «,

(2) if ¢p(w,c) < @ then w C a U {—o0, o0},

(3) if B < a then {s” :i < 2n(B)} C o U {—00,c0}.
For each o < p fix a finite set w, C aU {—00,00} such that —oo, 00 € w,,
and

(4) if s € a U {—00,00} then s € w,,

(5) if s,t € {s¢:i < 2n(a)}U{—00,00}, s <;tand (s,t)f Na # 0 then
(S,t)[ N we # 0.

Next, let ¢, : wo — 4 (for @ < p) be such that for s € wg,
0 if 3z <1 s)([z,9)1 C aa),

1 if (Fz:s <y x)([s,2)r C aa),

2 if both of the above,

3 otherwise.

ca(s) =

We can think of ¢, as a member of “~4 and we put f(«) = ¢(wa, cq) for
a < u. Note that the function f is regressive on C' (so we can modify it
outside C' to get a really regressive function). Now, if ag < a1, both in C,
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and f(ap) = f(ay) then
syt =57 & i< 2n(ag) & j < 2n(an) = s € way,

1

Way N {550 11 < 2n(ap)} = wa, N{s{* 11 < 2n(aq)}.
[Why? For the first statement note that, by (3), si° < «a; (for each i <

2n(agp)) so we may use (4). For the second asserti(l)n suppose that s5? €
Wa, = Wq,. Then necessarily cq,(s57) = 1 = cq, (s57). Checking when the
function c,, takes value 1 and when 2 we find that sy = s5} for some
J < nfon). Next, if 550, € wa, = Wa, then ¢(sy, ;) =0 and s5, = s57,,
for some j. Similarly if we start With s ] Moreover if 5,t € w,, are two
<7-successive points of wa,, s <r s§'" <7 sif; <rtand i+1 < 2n(ay), then
(it sit)r N{s5° 1 j < 2n(ao)} = 0.

Let a function g : p? — “>w be such that if o« < 3, a,3 € C and
f(e) = f(B) then

g(a, B) = (HwaH,tO, . ,t”%”*l7 0, ,UH“’QH*1> €Yuw,

where ¢, 0 are such that if w, ={w,(0), ..., ws(|Jwa||—1)} (the <;-increasing
enumeration) and [ < ||w,|| then

=0 {s] 5 <2n(B)} N (wall), wa(l +1)); =0,
and if 57 € (wa(1), we(l +1)); then
o' = 0= (wa(l),s))r N {s? 5 < 2n(a)} =0,
o' > 0= 8% € (wall), )1 & (s%_y,8)) 1N {s? 1 j < 2n(a)} = 0.

Suppose now that ap < ... < a5 from C are such that f(ag) = ... =
f(as) and

9(040, 041) = 9(0407 a2) = 9(043, 044) = 9(043,045)
= (k69 P00 R,

Then wy, = ... = Wy, = w = {w(0),...,w(k — 1)} (the <;-increasing
enumeration). We are going to show that for each | < k — 1,

(©) T6(Qags - - > Gas) A [w(l),w(l + 1)) = 0.
Fix | < k— 1. If #* = 0 then the interval (w(l),w(l + 1)); contains no

5?1 , 5?2 and therefore

o, Aw(l),wl+1))r = aa, A fw(l),w(l +1))1 € {0, [w(l), w(l +1))r}
(remember c,, = Ca,). Hence (—aq,) A aa, A [w(l),w(l +1)); = 0 and
(®) holds. So suppose that ' > 0. Then for each k = 1,2, 4 5 the interval
(w ( ) ( 1))r contains some s7*. We know that if j < j’, k = 1,2 and
si*, 85k € (w(l),w(l+ 1)) then there is no s in [s7*, s7*]; (and similarly
for a3 and k = 4,5). Assume that v! = 0 and for k = 1,2,4, 5 let ji, < 2n(ay)
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be the last such that s* € (w(l), w(I+1));. By the definition of the functions
g and f and the statement before we conclude that either

e ag A[w(l),s5")r =0 (for k= 1,2) and

az A fw(l),s5F)r =0 (for k =4,5), or
o ag A[w(l),s55)r = [w(l), sj})r (for k=1,2) and
az A [w(l)as?:)l = [w(l)78?:>l (fOI" k=4, 5)

and the parity of ji’s is the same (just look at c,, (w(l + 1))). Hence we
conclude that either an, A (—aq,) A, A [w(l),w(l+ 1))y =0 or (—aq,) A
Aoy N (—aas) A [w(l),w(l+1)); =0 (and in both cases we get (®)). Assume
now that v' > 0. By similar considerations one shows that if v! — 1 is even
then

(—Gag) A Gay N (—aaz) Afw(l), w(l+1))r =0
and if o' — 1 is odd then

Aoy N (—ay) A o, A w(l),w(l+ 1)) = 0.

Since g can be thought of as a function from p? to w < u the set Ac s,
is in wa and we have shown that it witnesses the (Dgﬁ,Tﬁ)—dependence
for the sequence (aq : o < ).

(2) is almost exactly like (1) above. The only difference is that showing
that the sets Af, = are nonempty we use the Erdés-Rado theorem (to choose
ag, a1, g, ag suitably homogeneous for g), and then in arguments that B([)

has the dependence property we use the triples ag, as, a3 and ay, a2, 3. =

4.4. Appendiz: How one can use [Sh 95]. For the reader’s convenience
we recall here some of the notions and results of [Sh 95]. We applied them
to reduce the number of steps in the beth hierarchy replacing them partially
by passing to successors. This reduction is meaningful if the exponentiation
function is far from GCH. Generally we think that ™ (or even k™) should
be considered as something less than 2.

DEFINITION 4.23 (see Definition 1 of [Sh 95]). (1) For a sequence 7 =
(ng,...,nk—1) € Fw we define n(r) = 3", m, k(F) =k, n(F) = ny.

(2) Let B¢ (for £ < p) be disjoint well ordered sets, 7 = (ng,...,nE—1)
€ku, f: Ue<p Be|"(™ — x and [ < n(7). We say that f is (7)'-canonical
(on (Be : & < p)) if for every & < ... < &ro1 < p, ap < ... < Gpy—1 in

Bey, any < ... < Gpgyn,—1 in Be, and so on, the value f(ao, ..., apF)—1)
depends on ag, . .., GpF)—1-1, &0, - -+, &k—1 only (i.e. it does not depend on
An(F)—1s - -+ 5 On(F)—1)-

(3) A sequence (A¢ : & < p) (of cardinals) has a (ke : & < p)-canonical
form for I' = {(7)k : i < a} (where lj’s are integers, I; < n(7;), xi’s
are cardinals and 7;’s are finite sequences of integers) if for any disjoint

(well ordered) sets A¢ with [[A¢|| = A¢ (for £ < p) and functions f; :
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Ue < Ag]"T) — x; (for i < a) there are sets By C Ag with ||Be|| = ke

l

such that each function f; is (7;)"-canonical on (B : { < p) (for i < a).

Several canonization theorems were proved in [Sh 95]; we will quote here
two (the simplest actually) which we needed for our applications.

PROPOSITION 4.24 (see Composition Claim 5 of [Sh 95]). Let I be

{(<n0, RN 1775 P ,nm,1>)’27,fq : (<n(),. ey N—1y .- - ,nm,1>)g# cel3 &

((noy . yng—2,np—1—58))ad, €I & p=s+ng+...4nm-1 &0<s <ng_1}.
Suppose that the sequence <)\§’ 2 &< ) has a <)\g : & < p)-canonical form for
I's and the sequence ()\g 2 & < ) has a ()\é 1 & < p)-canonical form for I'y.
Then the sequence <)‘§ 1€ < u) has a ()\% : & < py-canonical form for ;. m
PROPOSITION 4.25 (see Conclusion 8(1) of [Sh 95]). The sequence
(@) 6 <p)
has a (i : &€ < p)-canonical form for {(FN(1))3, : 7 € Fw, k <w}. m
Recall that for a cardinal p and an integer k we have defined T (u) by
To(p) = p and Tpp () = (270)+H,

PROPOSITION 4.26. Suppose that (A¢ : & < p) is a sequence of disjoint
sets with | A¢| = T (p). Let F 2 U, AP — 21, Then:

(a) there are ag, a% € A¢ (foré& < p), ag #* a% such that for any pairwise
distinct &g, . .., & < p,

0 1 0 1 0 0 1 0 1 1
(@) F(aﬁo’aﬁo’ T ’a§k717a5k71’a5k) = F(afo’ Cggre s a&kq’a&kq’a&k)

and even more:

(b) there are sets Be € [A¢]* (for & < p) such that if &, ..., & < p are
distinct and ag,,ag, € Be, are distinct then (@) of (a) holds true.

Proof. It follows from 4.24 and 4.25 (e.g. inductively) that (Tx41(p) :
€ < p) has a (u : & < p)-canonical form for I', where I" consists of the
following elements:

((2...21))2.,((2...211))2., ((2...2121))3.,
k k k—1
((2...21221))8,,...,((12...21))212 o
k—2 k
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