A polarized partition relation and failure of GCH at singular strong limit

by

Saharon Shelah (Jerusalem and New Brunswick, N.J.)

Abstract

The main result is that for λ strong limit singular failing the continuum hypothesis (i.e. $2^{\lambda}>\lambda^{+}$), a polarized partition theorem holds.

1. Introduction. In the present paper we show a polarized partition theorem for strong limit singular cardinals λ failing the continuum hypothesis. Let us recall the following definition.

Definition 1.1. For ordinal numbers $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}$ and a cardinal θ, the polarized partition symbol

$$
\binom{\alpha_{1}}{\beta_{1}} \rightarrow\binom{\alpha_{2}}{\beta_{2}}_{\theta}^{1,1}
$$

means that if d is a function from $\alpha_{1} \times \beta_{1}$ into θ then for some $A \subseteq \alpha_{1}$ of order type α_{2} and $B \subseteq \beta_{1}$ of order type β_{2}, the function $d \upharpoonright A \times B$ is constant.

We address the following problem of Erdős and Hajnal:
$(*) \quad$ if μ is strong limit singular of uncountable cofinality with $\theta<\operatorname{cf}(\mu)$, does

$$
\binom{\mu^{+}}{\mu} \rightarrow\binom{\mu}{\mu}_{\theta}^{1,1} ?
$$

The particular case of this question for $\mu=\aleph_{\omega_{1}}$ and $\theta=2$ was posed by Erdős, Hajnal and Rado (under the assumption of GCH) in [EHR, Problem 11, p. 183]). Hajnal said that the assumption of GCH in [EHR] was not crucial, and he added that the intention was to ask the question "in some, preferably nice, Set Theory".

[^0]Baumgartner and Hajnal have proved that if μ is weakly compact then the answer to $(*)$ is "yes" (see $[\mathrm{BH}]$), also if μ is strong limit of cofinality \aleph_{0}. But for a weakly compact μ we do not know if for every $\alpha<\mu^{+}$:

$$
\binom{\mu^{+}}{\mu} \rightarrow\binom{\alpha}{\mu}_{\theta}^{1,1} .
$$

The first time I heard the problem (around 1990) I noted that (*) holds when μ is a singular limit of measurable cardinals. This result is presented in Theorem 2.2. It seemed likely that we could combine this with suitable collapses, to get "small" such μ (like $\aleph_{\omega_{1}}$) but there was no success in this direction.

In September 1994, Hajnal reasked me the question putting great stress on it. Here we answer the problem (*) using methods of [Sh:g]. But instead of the assumption of GCH (postulated in [EHR]) we assume $2^{\mu}>\mu^{+}$. The proof seems quite flexible but we did not find out what else it is good for. This is a good example of the major theme of [Sh:g]:

Thesis 1.2. Whereas CH and GCH are good (helpful, strategic) assumptions having many consequences, and, say, $\neg \mathrm{CH}$ is not, the negation of GCH at singular cardinals (i.e. for μ strong limit singular $2^{\mu}>\mu^{+}$, or the really strong hypothesis: $\left.\operatorname{cf}(\mu)<\mu \Rightarrow \operatorname{pp}(\mu)>\mu^{+}\right)$is a good (helpful, strategic) assumption.

Foreman pointed out that the result presented in Theorem 1.2 below is preserved by μ^{+}-closed forcing notions. Therefore, if

$$
V \models\binom{\lambda^{+}}{\lambda} \rightarrow\binom{\lambda}{\lambda}_{\theta}^{1,1}
$$

then

$$
V^{\operatorname{Levy}\left(\lambda^{+}, 2^{\lambda}\right)} \models\binom{\lambda^{+}}{\lambda} \rightarrow\binom{\lambda}{\lambda}_{\theta}^{1,1} .
$$

Consequently, the result is consistent with $2^{\lambda}=\lambda^{+} \& \lambda$ is small. (Note that although our final model may satisfy the Singular Cardinals Hypothesis, the intermediate model still violates SCH at λ, hence needs large cardinals, see $[\mathrm{J}]$.) For λ not small we can use Theorem 2.2.

Before we move to the main theorem, let us recall an open problem important for our methods:

Problem 1.3. (1) Let $\kappa=\operatorname{cf}(\mu)>\aleph_{0}, \mu>2^{\kappa}$ and $\lambda=\operatorname{cf}(\lambda) \in$ $\left(\mu, \operatorname{pp}^{+}(\mu)\right)$. Can we find $\theta<\mu$ and $\mathfrak{a} \in[\mu \cap \operatorname{Reg}]^{\theta}$ such that $\lambda \in \operatorname{pcf}(\mathfrak{a})$, $\mathfrak{a}=\bigcup_{i<\kappa} \mathfrak{a}_{i}, \mathfrak{a}_{i}$ bounded in μ and $\sigma \in \mathfrak{a}_{i} \Rightarrow \bigwedge_{\alpha<\sigma}|\alpha|^{\theta}<\sigma$? For this it is enough to show:
(2) If $\mu=\operatorname{cf}(\mu)>2^{<\theta}$ but $\bigvee_{\alpha<\mu}|\alpha|^{<\theta} \geq \mu$ then we can find $\mathfrak{a} \in$ $[\mu \cap \operatorname{Reg}]^{<\theta}$ such that $\lambda \in \operatorname{pcf}(\mathfrak{a})$. (In fact, it suffices to prove it for the case $\theta=\aleph_{1}$.)

As shown in [Sh:g] we have
Theorem 1.4. If μ is strong limit singular of cofinality $\kappa>\aleph_{0}$ and $2^{\mu}>\lambda=\operatorname{cf}(\lambda)>\mu$ then for some strictly increasing sequence $\left\langle\lambda_{i}: i<\kappa\right\rangle$ of regulars with limit $\mu, \prod_{i<\kappa} \lambda_{i} / J_{\kappa}^{\text {bd }}$ has true cofinality λ. If $\kappa=\aleph_{0}$, this still holds for $\lambda=\mu^{++}$.
[More fully, by [Sh:g, II, §5], we know $\operatorname{pp}(\mu)=^{+} 2^{\mu}$ and by [Sh:g, VIII, $1.6(2)]$, we know $\mathrm{pp}^{+}(\mu)=\mathrm{pp}_{J_{\kappa}^{\mathrm{d}}}^{+}(\mu)$. Note that for $\kappa=\aleph_{0}$ we should replace $J_{\kappa}^{\text {bd }}$ by a possibly larger ideal, using [Sh 430, 1.1, 6.5] but there is no need here.]

Remark 1.5. Note that the problem is a $\mathrm{pp}=$ cov problem (see more in [Sh $430, \S 1]$); so if $\kappa=\aleph_{0}$ and $\lambda<\mu^{+\omega_{1}}$ the conclusion of 1.4 holds; we allow $J_{\kappa}^{\text {bd }}$ to be increased, even "there are $<\mu^{+}$fixed points $<\lambda^{+}$" suffices.

2. Main result

Theorem 2.1. Suppose μ is strong limit singular satisfying $2^{\mu}>\mu^{+}$. Then:
(1) $\binom{\mu^{+}}{\mu} \rightarrow\binom{\mu+1}{\mu}_{\theta}^{1,1}$ for any $\theta<\operatorname{cf}(\mu)$.
(2) If d is a function from $\mu^{+} \times \mu$ to θ and $\theta<\mu$ then for some sets $A \subseteq \mu^{+}$and $B \subseteq \mu$ we have $\operatorname{otp}(A)=\mu+1, \operatorname{otp}(B)=\mu$ and the restriction $d\lceil A \times B$ does not depend on the first coordinate.

Proof. (1) This follows from part (2) (since if $d(\alpha, \beta)=d^{\prime}(\beta)$ for $\alpha \in A$, $\beta \in B$, where $d^{\prime}: B \rightarrow \theta$, and $|B|=\mu, \theta<\operatorname{cf}(\mu)$ then there is $B^{\prime} \subseteq B$ with $\left|B^{\prime}\right|=\mu$ such that $d^{\prime} \upharpoonright B$ is constant and hence $d \upharpoonright A \times B^{\prime}$ is constant as required).
(2) Let $d: \mu^{+} \times \mu \rightarrow \theta$. Let $\kappa=\operatorname{cf}(\mu)$ and $\bar{\mu}=\left\langle\mu_{i}: i<\kappa\right\rangle$ be a continuous strictly increasing sequence such that $\mu=\sum_{i<\kappa} \mu_{i}, \mu_{0}>\kappa+\theta$. We can find a sequence $\bar{C}=\left\langle C_{\alpha}: \alpha<\mu^{+}\right\rangle$such that:
(A) $\quad C_{\alpha} \subseteq \alpha$ is closed, $\operatorname{otp}\left(C_{\alpha}\right)<\mu$,
(B) $\beta \in \operatorname{nacc}\left(C_{\alpha}\right) \Rightarrow C_{\beta}=C_{\alpha} \cap \beta$,
(C) if C_{α} has no last element then $\alpha=\sup \left(C_{\alpha}\right)$ (so α is a limit ordinal) and any member of $\operatorname{nacc}\left(C_{\alpha}\right)$ is a successor ordinal,
(D) if $\sigma=\operatorname{cf}(\sigma)<\mu$ then the set

$$
S_{\sigma}:=\left\{\delta<\mu^{+}: \operatorname{cf}(\delta)=\sigma \& \delta=\sup \left(C_{\delta}\right) \& \operatorname{otp}\left(C_{\delta}\right)=\sigma\right\}
$$

is stationary
(possible by [Sh 420, $\S 1]$); we could have added
(E) for every $\sigma \in \operatorname{Reg} \cap \mu^{+}$and a club E of μ^{+}, for stationary many $\delta \in S_{\sigma}, E$ separates any two successive members of C_{δ}.

Let c be a symmetric two-place function from μ^{+}to κ such that for each $i<\kappa$ and $\beta<\mu^{+}$the set

$$
a_{i}^{\beta}:=\{\alpha<\beta: c(\alpha, \beta) \leq i\}
$$

has cardinality $\leq \mu_{i}$ and $\alpha<\beta<\gamma \Rightarrow c(\alpha, \gamma) \leq \max \{c(\alpha, \beta), c(\beta, \gamma)\}$ and

$$
\alpha \in C_{\beta} \& \mu_{i} \geq\left|C_{\beta}\right| \Rightarrow c(\alpha, \beta) \leq i
$$

(as in [Sh 108], easily constructed by induction on β).
Let $\bar{\lambda}=\left\langle\lambda_{i}: i<\kappa\right\rangle$ be a strictly increasing sequence of regular cardinals with limit μ such that $\prod_{i<\kappa} \lambda_{i} / J_{\kappa}^{\text {bd }}$ has true cofinality μ^{++}(exists by 1.4 with $\lambda=\mu^{++} \leq 2^{\mu}$). As we can replace $\bar{\lambda}$ by any subsequence of length κ, without loss of generality $(\forall i<\kappa)\left(\lambda_{i}>2^{\mu_{i}^{+}}\right)$. Lastly, let $\chi=\beth_{8}(\mu)^{+}$ and $<_{\chi}^{*}$ be a well ordering of $\mathcal{H}(\chi)(:=\{x:$ the transitive closure of x is of cardinality $<\chi\}$).

Now we choose by induction on $\alpha<\mu^{+}$sequences $\bar{M}_{\alpha}=\left\langle M_{\alpha, i}: i<\kappa\right\rangle$ such that:
(i) $M_{\alpha, i} \prec\left(\mathcal{H}(\chi), \in,<_{\chi}^{*}\right)$,
(ii) $\left\|M_{\alpha, i}\right\|=2^{\mu_{i}^{+}}$and ${ }^{\mu_{i}^{+}}\left(M_{\alpha, i}\right) \subseteq M_{\alpha, i}$ and $2^{\mu_{i}^{+}}+1 \subseteq M_{\alpha, i}$,
(iii) $d, c, \bar{C}, \bar{\lambda}, \bar{\mu}, \alpha \in M_{\alpha, i},\left\langle M_{\beta, j}: \beta<\alpha, j<\kappa\right\rangle \in M_{\alpha, i}, \bigcup_{\beta \in a_{i}^{\alpha}} M_{\beta, i} \subseteq$ $M_{\alpha, i}$ and $\left\langle M_{\alpha, j}: j<i\right\rangle \in M_{\alpha, i}, \bigcup_{j<i} M_{\alpha, j} \subseteq M_{\alpha, i}$,
(iv) $\left\langle M_{\beta, i}: \beta \in a_{i}^{\alpha}\right\rangle$ belongs to $M_{\alpha, i}$.

There is no problem to carry out the construction. Note that actually clause (iv) follows from (i)-(iii), as a_{i}^{α} is defined from c, α, i. Our demands imply that

$$
\left[\beta \in a_{i}^{\alpha} \Rightarrow M_{\beta, i} \prec M_{\alpha, i}\right] \quad \text { and } \quad\left[j<i \Rightarrow M_{\alpha, j} \prec M_{\alpha, i}\right]
$$

and $a_{i}^{\alpha} \subseteq M_{\alpha, i}$, hence $\alpha \subseteq \bigcup_{i<\kappa} M_{\alpha, i}$.
For $\alpha<\mu^{+}$let $f_{\alpha} \in \prod_{i<\kappa} \lambda_{i}$ be defined by $f_{\alpha}(i)=\sup \left(\lambda_{i} \cap M_{\alpha, i}\right)$. Note that $f_{\alpha}(i)<\lambda_{i}$ as $\lambda_{i}=\operatorname{cf}\left(\lambda_{i}\right)>2^{\mu_{i}^{+}}=\left\|M_{\alpha, i}\right\|$. Also, if $\beta<\alpha$ then for every $i \in[c(\beta, \alpha), \kappa)$ we have $\beta \in M_{\alpha, i}$ and hence $\bar{M}_{\beta} \in M_{\alpha, i}$. Therefore, as also $\bar{\lambda} \in M_{\alpha, i}$, we have $f_{\beta} \in M_{\alpha, i}$ and $f_{\beta}(i) \in M_{\alpha, i} \cap \lambda_{i}$. Consequently,

$$
(\forall i \in[c(\beta, \alpha), \kappa))\left(f_{\beta}(i)<f_{\alpha}(i)\right) \quad \text { and thus } \quad f_{\beta}<J_{k}^{\text {bd }} . ~ f_{\alpha} .
$$

Since $\left\{f_{\alpha}: \alpha<\mu^{+}\right\} \subseteq \prod_{i<\kappa} \lambda_{i}$ has cardinality μ^{+}and $\prod_{i<\kappa} \lambda_{i} / J_{\kappa}^{\text {bd }}$ is μ^{++}-directed, there is $f^{*} \in \prod_{i<\kappa} \lambda_{i}$ such that
$(*)_{1} \quad\left(\forall \alpha<\mu^{+}\right)\left(f_{\alpha}<J_{k}^{\text {bd }} f^{*}\right)$.

Let, for $\alpha<\mu^{+}, g_{\alpha} \in{ }^{\kappa} \theta$ be defined by $g_{\alpha}(i)=d\left(\alpha, f^{*}(i)\right)$. Since $\left|{ }^{\kappa} \theta\right|<\mu<$ $\mu^{+}=\operatorname{cf}\left(\mu^{+}\right)$, there is a function $g^{*} \in{ }^{\kappa} \theta$ such that
$(*)_{2} \quad$ the set $A^{*}=\left\{\alpha<\mu^{+}: g_{\alpha}=g^{*}\right\}$ is unbounded in μ^{+}.
Now choose, by induction on $\zeta<\mu^{+}$, models N_{ζ} such that:
(a) $N_{\zeta} \prec\left(\mathcal{H}(\chi), \in,<_{\chi}^{*}\right)$,
(b) the sequence $\left\langle N_{\zeta}: \zeta<\mu^{+}\right\rangle$is increasing continuous,
(c) $\left\|N_{\zeta}\right\|=\mu$ and ${ }^{\kappa>}\left(N_{\zeta}\right) \subseteq N_{\zeta}$ if ζ is not a limit ordinal,
(d) $\left\langle N_{\xi}: \xi \leq \zeta\right\rangle \in N_{\zeta+1}$,
(e) $\mu+1 \subseteq N_{\zeta}, \bigcup_{\alpha<\zeta, i<\kappa} M_{\alpha, i} \subseteq N_{\zeta}$ and $\left\langle M_{\alpha, i}: \alpha<\mu^{+}, i<\kappa\right\rangle$, $\left\langle f_{\alpha}: \alpha<\mu^{+}\right\rangle, g^{*}, A^{*}$ and d belong to the first model N_{0}.

Let $E:=\left\{\zeta<\mu^{+}: N_{\zeta} \cap \mu^{+}=\zeta\right\}$. Clearly, E is a club of μ^{+}, and thus we can find an increasing sequence $\left\langle\delta_{i}: i<\kappa\right\rangle$ such that
$(*)_{3} \quad \delta_{i} \in S_{\mu_{i}^{+}} \cap \operatorname{acc}(E)\left(\subseteq \mu^{+}\right)$(see clause (D) at the beginning of the proof).
For each $i<\kappa$ choose a successor ordinal $\alpha_{i}^{*} \in \operatorname{nacc}\left(C_{\delta_{i}}\right) \backslash \bigcup\left\{\delta_{j}+1: j<i\right\}$.
Take any $\alpha^{*} \in A^{*} \backslash \bigcup_{i<\kappa} \delta_{i}$.
We choose by induction on $i<\kappa$ an ordinal j_{i} and sets A_{i}, B_{i} such that:
$(\alpha) j_{i}<\kappa$ and $\mu_{j_{i}}>\lambda_{i}$ (so $j_{i}>i$) and j_{i} strictly increasing in i,
$(\beta) f_{\delta_{i}} \upharpoonright\left[j_{i}, \kappa\right)<f_{\alpha_{i+1}^{*}} \upharpoonright\left[j_{i}, \kappa\right)<f_{\alpha^{*}} \upharpoonright\left[j_{i}, \kappa\right)<f^{*} \upharpoonright\left[j_{i}, \kappa\right)$,
(γ) for each $i_{0}<i_{1}$ we have $c\left(\delta_{i_{0}}, \alpha_{i_{1}}^{*}\right)<j_{i_{1}}, c\left(\alpha_{i_{0}}^{*}, \alpha_{i_{1}}^{*}\right)<j_{i_{1}}, c\left(\alpha_{i_{1}}^{*}, \alpha^{*}\right)$ $<j_{i_{1}}$ and $c\left(\delta_{i_{1}}, \alpha^{*}\right)<j_{i_{1}}$,
($\delta) A_{i} \subseteq A^{*} \cap\left(\alpha_{i}^{*}, \delta_{i}\right)$,
$(\varepsilon) \operatorname{otp}\left(A_{i}\right)=\mu_{i}^{+}$,
($\zeta) A_{i} \in M_{\delta_{i}, j_{i}}$,
(η) $B_{i} \subseteq \lambda_{j_{i}}$,
($\theta) \operatorname{otp}\left(B_{i}\right)=\lambda_{j_{i}}$,
(८) $B_{\varepsilon} \in M_{\alpha_{i}^{*}, j_{i}}$ for $\varepsilon<i$,
(κ) for every $\alpha \in \bigcup_{\varepsilon \leq i} A_{\varepsilon} \cup\left\{\alpha^{*}\right\}$ and $\zeta \leq i$ and $\beta \in B_{\zeta} \cup\left\{f^{*}\left(j_{\zeta}\right)\right\}$ we have $d(\alpha, \beta)=g^{*}\left(j_{\zeta}\right)$.

If we succeed then $A=\bigcup_{\varepsilon<\kappa} A_{\varepsilon} \cup\left\{\alpha^{*}\right\}$ and $B=\bigcup_{\zeta<\kappa} B_{\zeta}$ are as required. During the induction at stage i concerning (ι), if $\varepsilon+1=i$ then for some $j<\kappa, B_{\varepsilon} \cap M_{\alpha_{i}^{*}, j}$ has cardinality $\lambda_{j_{\varepsilon}}$, hence we can replace B_{ε} by a subset of the same cardinality which belongs to the model $M_{\alpha_{i}^{*}, j}$ if j is large enough such that $\mu_{j}>\lambda_{i}$; if $\varepsilon+1<i$ then by the demand for $\varepsilon+1$, we have $\bigvee_{j<\kappa} B_{\varepsilon} \in M_{\alpha_{i}^{*}, j}$. So assume that the sequence $\left\langle\left(j_{\varepsilon}, A_{\varepsilon}, B_{\varepsilon}\right): \varepsilon<i\right\rangle$ has already been defined.

We can find $j_{i}(0)<\kappa$ satisfying requirements $(\alpha),(\beta),(\gamma)$ and (ι) and such that $\bigwedge_{\varepsilon<i} \lambda_{j_{\varepsilon}}<\mu_{j_{i}(0)}$. Then for each $\varepsilon<i$ we have $\delta_{\varepsilon} \in a_{j_{i}(0)}^{\alpha_{i}^{*}}$ and
hence $M_{\delta_{\varepsilon}, j_{\varepsilon}} \prec M_{\alpha_{i}^{*}, j_{i}(0)}$ (for $\varepsilon<i$). But $A_{\varepsilon} \in M_{\delta_{\varepsilon}, j_{\varepsilon}}$ (by clause (ζ)) and $B_{\varepsilon} \in M_{\alpha_{i}^{*}, j_{i}(0)}$ (for $\varepsilon<i$), so $\left\{A_{\varepsilon}, B_{\varepsilon}: \varepsilon<i\right\} \subseteq M_{\alpha_{i}^{*}, j_{i}(0)}$. Since ${ }^{\kappa>}\left(M_{\alpha_{i}^{*}, j_{i}(0)}\right) \subseteq M_{\alpha_{i}^{*}, j_{i}(0)}$ (see (ii)), the sequence $\left\langle\left(A_{\varepsilon}, B_{\varepsilon}\right): \varepsilon<i\right\rangle$ belongs to $M_{\alpha_{i}^{*}, j_{i}(0)}$. We know that for $\gamma_{1}<\gamma_{2}$ in nacc $\left(C_{\delta_{i}}\right)$ we have $c\left(\gamma_{1}, \gamma_{2}\right) \leq i$ (remember clause (B) and the choice of c). As $j_{i}(0)>i$ and so $\mu_{j_{i}(0)} \geq \mu_{i}^{+}$, the sequence

$$
\bar{M}^{*}:=\left\langle M_{\alpha, j_{i}(0)}: \alpha \in \operatorname{nacc}\left(C_{\delta_{i}}\right)\right\rangle
$$

is \prec-increasing and $\bar{M}^{*} \upharpoonright \alpha \in M_{\alpha, j_{i}(0)}$ for $\alpha \in \operatorname{nacc}\left(C_{\delta_{i}}\right)$ and $M_{\alpha_{i}^{*}, j_{i}(0)}$ appears in it. Also, as $\delta_{i} \in \operatorname{acc}(E)$, there is an increasing sequence $\left\langle\gamma_{\xi}: \xi<\mu_{i}^{+}\right\rangle$ of members of nacc $\left(C_{\delta_{i}}\right)$ such that $\gamma_{0}=\alpha_{i}^{*}$ and $\left(\gamma_{\xi}, \gamma_{\xi+1}\right) \cap E \neq \emptyset$, say $\beta_{\xi} \in\left(\gamma_{\xi}, \gamma_{\xi+1}\right) \cap E$. Each element of $\operatorname{nacc}\left(C_{\delta}\right)$ is a successor ordinal, so every γ_{ξ} is a successor ordinal. Each model $M_{\gamma_{\xi}, j_{i}(0)}$ is closed under sequences of length $\leq \mu_{i}^{+}$, and hence $\left\langle\gamma_{\zeta}: \zeta<\xi\right\rangle \in M_{\gamma_{\xi}, j_{i}(0)}$ (by choosing the right \bar{C} and δ_{i} 's we could have managed to have $\alpha_{i}^{*}=\min \left(C_{\delta_{i}}\right)$, $\left\{\gamma_{\xi}: \xi<\mu_{i}^{+}\right\}=\operatorname{nacc}\left(C_{\delta}\right)$, without using this amount of closure).

For each $\xi<\mu_{i}^{+}$, we know that

$$
\left(\mathcal{H}(\chi), \in,<_{\chi}^{*}\right) \models "\left(\exists x \in A^{*}\right)\left[x>\gamma_{\xi} \&(\forall \varepsilon<i)\left(\forall y \in B_{\varepsilon}\right)\left(d(x, y)=g^{*}\left(j_{\varepsilon}\right)\right)\right] "
$$

because $x=\alpha^{*}$ satisfies it. As all the parameters, i.e. $A^{*}, \gamma_{\xi}, d, g^{*}$ and $\left\langle B_{\varepsilon}: \varepsilon<i\right\rangle$, belong to $N_{\beta_{\xi}}$ (remember clauses (e) and (c); note that $B_{\varepsilon} \in$ $\left.M_{\alpha_{i}^{*},,_{i}(0)}, \alpha_{i}^{*}<\beta_{\xi}\right)$, there is an ordinal $\beta_{\xi}^{*} \in\left(\gamma_{\xi}, \beta_{\xi}\right) \subseteq\left(\gamma_{\xi}, \gamma_{\xi+1}\right)$ satisfying the demands on x. Now, necessarily for some $j_{i}(1, \xi) \in\left(j_{i}(0), \kappa\right)$ we have $\beta_{\xi}^{*} \in M_{\gamma_{\xi+1}, j_{i}(1, \xi)}$. Hence for some $j_{i}<\kappa$ the set

$$
A_{i}:=\left\{\beta_{\xi}^{*}: \xi<\mu_{i}^{+} \& j_{i}(1, \xi)=j_{i}\right\}
$$

has cardinality μ_{i}^{+}. Clearly $A_{i} \subseteq A^{*}$ (as each $\beta_{\xi}^{*} \in A^{*}$). Now, the sequence $\left\langle M_{\gamma_{\xi}, j_{i}}: \xi<\mu_{i}^{+}\right\rangle \smile\left\langle M_{\delta_{i}, j_{i}}\right\rangle$ is \prec-increasing, and hence $A_{i} \subseteq M_{\delta_{i}, j_{i}}$. Since $\mu_{j_{i}}^{+}>\mu_{i}^{+}=\left|A_{i}\right|$ we have $A_{i} \in M_{\delta_{i}, j_{i}}$. Note that at the moment we know that the set A_{i} satisfies the demands $(\delta)-(\zeta)$. By the choice of $j_{i}(0)$, as $j_{i}>j_{i}(0)$, clearly $M_{\delta_{i}, j_{i}} \prec M_{\alpha^{*}, j_{i}}$, and hence $A_{i} \in M_{\alpha^{*}, j_{i}}$. Similarly, $\left\langle A_{\varepsilon}\right.$: $\varepsilon \leq i\rangle \in M_{\alpha^{*}, j_{i}}, \alpha^{*} \in M_{\alpha^{*}, j_{i}}$ and

$$
\sup \left(M_{\alpha^{*}, j_{i}} \cap \lambda_{j_{i}}\right)=f_{\alpha^{*}}\left(j_{i}\right)<f^{*}\left(j_{i}\right) .
$$

Consequently, $\bigcup_{\varepsilon \leq i} A_{\varepsilon} \cup\left\{\alpha^{*}\right\} \subseteq M_{\alpha^{*}, j_{i}}$ (by the induction hypothesis or the above) and it belongs to $M_{\alpha^{*}, j_{i}}$. Since $\bigcup_{\varepsilon \leq i} A_{\varepsilon} \cup\left\{\alpha^{*}\right\} \subseteq A^{*}$, clearly

$$
\left(\mathcal{H}(\chi), \in,<_{\chi}^{*}\right) \models "\left(\forall x \in \bigcup_{\varepsilon \leq i} A_{\varepsilon} \cup\left\{\alpha^{*}\right\}\right)\left(d\left(x, f^{*}\left(j_{i}\right)\right)=g^{*}\left(j_{i}\right)\right) " .
$$

Note that

$$
\bigcup_{\varepsilon \leq i} A_{\varepsilon} \cup\left\{\alpha^{*}\right\}, g^{*}\left(j_{i}\right), d, \lambda_{j_{i}} \in M_{\alpha^{*}, j_{i}} \quad \text { and } \quad f^{*}\left(j_{i}\right) \in \lambda_{j_{i}} \backslash \sup \left(M_{\alpha^{*}, j_{i}} \cap \lambda_{j_{i}}\right) .
$$

Hence the set

$$
B_{i}:=\left\{y<\lambda_{j_{i}}:\left(\forall x \in \bigcup_{\varepsilon \leq i} A_{\varepsilon} \cup\left\{\alpha^{*}\right\}\right)\left(d(x, y)=g^{*}\left(j_{i}\right)\right)\right\}
$$

has to be unbounded in $\lambda_{j_{i}}$. It is easy to check that j_{i}, A_{i}, B_{i} satisfy clauses $(\alpha)-(\kappa)$.

Thus we have carried out the induction step, finishing the proof of the theorem. $\mathbf{m}_{2.1}$

Theorem 2.2. Suppose μ is a singular limit of measurable cardinals. Then
(1) $\binom{\mu^{+}}{\mu} \rightarrow\binom{\mu}{\mu}_{\theta} \quad$ if $\theta=2$ or at least $\theta<\operatorname{cf}(\mu)$.
(2) Moreover, if $\alpha^{*}<\mu^{+}$and $\theta<\operatorname{cf}(\mu)$ then $\binom{\mu^{+}}{\mu} \rightarrow\binom{\alpha^{*}}{\mu}_{\theta}$.
(3) If $\theta<\mu, \alpha^{*}<\mu^{+}$and d is a function from $\mu^{+} \times \mu$ to θ then for some $A \subseteq \mu^{+}, \operatorname{otp}(A)=\alpha^{*}$, and $B=\bigcup_{i<\operatorname{cf}(\mu)} B_{i} \subseteq \mu, d \upharpoonright A \times B_{i}$ is constant for each $i<\operatorname{cf}(\mu)$.

Proof. Clearly $(3) \Rightarrow(2) \Rightarrow(1)$, so we shall prove part (3).
Let $d: \mu^{+} \times \mu \rightarrow \theta$. Let $\kappa:=\operatorname{cf}(\mu)$. Choose sequences $\left\langle\lambda_{i}: i<\kappa\right\rangle$ and $\left\langle\mu_{i}: i<\kappa\right\rangle$ such that $\left\langle\mu_{i}: i<\kappa\right\rangle$ is increasing continuous, $\mu=\sum_{i<\kappa} \mu_{i}$, $\mu_{0}>\kappa+\theta$, each λ_{i} is measurable and $\mu_{i}<\lambda_{i}<\mu_{i+1}\left(\right.$ for $i<\kappa$). Let D_{i} be a λ_{i}-complete uniform ultrafilter on λ_{i}. For $\alpha<\mu^{+}$define $g_{\alpha} \in{ }^{\kappa} \theta$ by $g_{\alpha}(i)=\gamma$ iff $\left\{\beta<\lambda_{i}: d(\alpha, \beta)=\gamma\right\} \in D$ (as $\theta<\lambda_{i}$ it exists). The number of such functions is $\theta^{\kappa}<\mu$ (as μ is necessarily strong limit), so for some $g^{*} \in{ }^{\kappa} \theta$ the set $A:=\left\{\alpha<\mu^{+}: g_{\alpha}=g^{*}\right\}$ is unbounded in μ^{+}. For each $i<\kappa$ we define an equivalence relation e_{i} on μ^{+}:

$$
\alpha e_{i} \beta \quad \text { iff } \quad\left(\forall \gamma<\lambda_{i}\right)[d(\alpha, \gamma)=d(\beta, \gamma)] .
$$

So the number of e_{i}-equivalence classes is $\leq^{\lambda_{i}} \theta<\mu$. Hence we can find an increasing continuous sequence $\left\langle\alpha_{\zeta}: \zeta<\mu^{+}\right\rangle$of ordinals $<\mu^{+}$such that:
(*) for each $i<\kappa$ and e_{i}-equivalence class X, either $X \cap A \subseteq \alpha_{0}$, or for every $\zeta<\mu^{+},\left(\alpha_{\zeta}, \alpha_{\zeta+1}\right) \cap X \cap A$ has cardinality μ.
Let $\alpha^{*}=\bigcup_{i<\kappa} a_{i},\left|a_{i}\right|=\mu_{i},\left\langle a_{i}: i<\kappa\right\rangle$ pairwise disjoint. Now, by induction on $i<\kappa$, we choose A_{i}, B_{i} such that:
(a) $A_{i} \subseteq \bigcup\left\{\left(\alpha_{\zeta}, \alpha_{\zeta+1}\right): \zeta \in a_{i}\right\} \cap A$ and each $A_{i} \cap\left(\alpha_{\zeta}, \alpha_{\zeta+1}\right)$ is a singleton,
(b) $B_{i} \in D_{i}$,
(c) if $\alpha \in A_{i}, \beta \in B_{j}, j \leq i$ then $d(\alpha, \beta)=g^{*}(j)$.

Now, at stage $i,\left\langle\left(A_{\varepsilon}, B_{\varepsilon}\right): \varepsilon<i\right\rangle$ are already chosen. Let us choose A_{ε}. For each $\zeta \in a_{i}$ choose $\beta_{\zeta} \in\left(\alpha_{\zeta}, \alpha_{\zeta+1}\right) \cap A$ such that if $i>0$ then for some
$\beta^{\prime} \in A_{0}, \beta_{\zeta} e_{i} \beta^{\prime}$, and let $A_{i}=\left\{\beta_{\zeta}: \zeta \in a_{i}\right\}$. Now clause (a) is immediate, and the relevant part of clause (c), i.e. $j<i$, is O.K. Next, as $\bigcup_{j \leq i} A_{j} \subseteq A$, the set

$$
B_{i}:=\bigcap_{j \leq i \beta \in A_{j}}\left\{\gamma<\lambda_{i}: d(\beta, \gamma)=g^{*}(i)\right\}
$$

is the intersection of $\leq \mu_{i}<\lambda_{i}$ sets from D_{i} and hence $B_{i} \in D_{i}$. Clearly clause (b) and the remaining part of clause (c) (i.e. $j=i$) holds. So we can carry out the induction and hence finish the proof. $\mathbf{m}_{2.2}$

References

[EHR] P. Erdős, A. Hajnal and R. Rado, Partition relations for cardinal numbers, Acta Math. Acad. Sci. Hungar. 16 (1965), 93-196.
[BH] J. Baumgartner and A. Hajnal, Polarized partition relations, preprint, 1995.
[J] T. Jech, Set Theory, Academic Press, New York, 1978.
[Sh:g] S. Shelah, Cardinal Arithmetic, Oxford Logic Guides 29, Oxford Univ. Press, 1994.
[Sh 430] -, Further cardinal arithmetic, Israel J. Math. 95 (1996), 61-114.
[Sh 420] -, Advances in cardinal arithmetic, in: Finite and Infinite Combinatorics in Sets and Logic, N. W. Sauer et al. (eds.), Kluwer Acad. Publ., 1993, 355-383.
[Sh 108] -, On successors of singular cardinals, in: Logic Colloquium '78 (Mons, 1978), Stud. Logic Found. Math. 97, North-Holland, Amsterdam, 1979, 357-380.

Institute of Mathematics
The Hebrew University
91904 Jerusalem, Israel
E-mail: shelah@math.huji.ac.il

Department of Mathematics
Rutgers University
New Brunswick, New Jersey 08903
U.S.A.

[^0]: 1991 Mathematics Subject Classification: Primary 03E05, 04A20, 04A30.
 Research partially supported by "Basic Research Foundation" administered by The Israel Academy of Sciences and Humanities. Publication 586.

