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The fixed-point property for
deformations of tree-like continua

by

Charles L. H a g o p i a n (Sacramento, Calif.)

Abstract. Let f be a map of a tree-like continuum M that sends each arc-component
of M into itself. We prove that f has a fixed point. Hence every tree-like continuum has
the fixed-point property for deformations (maps that are homotopic to the identity). This
result answers a question of Bellamy. Our proof resembles an old argument of Brouwer
involving uncountably many tangent curves. The curves used by Brouwer were originally
defined by Peano. In place of these curves, we use rays that were originally defined by
Borsuk.

1. Introduction. In 1909, Brouwer [Br] proved that every continu-
ous tangent vector field on a 2-sphere must vanish at some point. This
classical theorem has a variety of scientific applications. For example, in
electromagnetic-wave theory, it is used to show that there are no isotropic
antennas [M]. It also explains why most magnetic plasma containers are
tori instead of spheres [C], [A, p. 198]. In many elementary topology books,
Brouwer’s theorem appears as a corollary to the following fixed-point theo-
rem.

Theorem 1.1. Let f be a map of a 2-sphere S2 into S2 that is homotopic
to the identity. Then f has a fixed point.

The map f is called a deformation of S2. In 1923, Lefschetz [L] gen-
eralized Theorem 1.1 to every polyhedron that has a nonzero Euler char-
acteristic. Thus many structurally well-behaved continua (including all the
even-dimensional spheres) have the fixed-point property for deformations.
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However, Lefschetz’s theory does not extend to general classes of continua
that are more pathological than ANR’s [Bo1].

A fixed-point theorem for deformations should include at least one con-
tinuum that admits a fixed-point-free map. Note that for Theorem 1.1, the
antipodal map moves each point of S2. In 1978, Bellamy [B] constructed
a tree-like continuum without the fixed-point property. Shortly thereafter,
Bellamy [Le, p. 369] asked if every deformation of a tree-like continuum
must have a fixed point.

In 1960, Young [Y] had defined a uniquely-arcwise-connected contin-
uum that admits a fixed-point-free map. The author [H3] in 1986 used a
dog-chases-rabbit argument on a Borsuk ray to show that every uniquely-
arcwise-connected continuum has the fixed-point property for deformations.

It is not known if every plane continuum that does not separate the plane
has the fixed-point property [Bi2]. However, the author [H4], [H8] showed
that every deformation of a nonseparating plane continuum has a fixed point.
This was accomplished by considering a more general class of maps—those
that send each arc-component into itself. We shall use the same strategy to
answer Bellamy’s question. In Section 3 below, we give a dog-chases-rabbit
argument that proves the following theorem.

Theorem 1.2. Suppose f is a map of a tree-like continuum M that sends
each arc-component of M into itself. Then f has a fixed point.

This result answers a question raised by the author [H4], [H7]. A special
case of Theorem 1.2, when M does not contain uncountably many disjoint
triods, was proved in [H4]. Since every continuous image of an arc is arc-
wise connected, deformations send arc-components into themselves. Hence
Theorem 1.2 has the following corollary which answers Bellamy’s question.

Corollary 1.3. Every tree-like continuum has the fixed-point property
for deformations.

Special cases of Corollary 1.3 were established in [H5] and [H6]. Corol-
lary 1.3 should also be compared with Minc’s example [Mi1] of a tree-like
continuum that admits fixed-point-free maps arbitrarily close to the identity
(see also [Mi2] and [OR]).

2. Definitions. A map is a continuous function.
A map f of a space X is a deformation if there exists a map H of

X × [0, 1] onto X such that H(p, 0) = p and H(p, 1) = f(p) for each point
p of X.

A space X has the fixed-point property (fixed-point property for defor-
mations) if for each map (deformation) f of X into X, there is a point p of
X such that f(p) = p.
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A chain is a finite collection A = {A1, . . . , An} of open sets such that
Ai∩Aj 6= ∅ if and only if |i− j| ≤ 1. The elements A1 and An are called end
links of A. Each element of A \ {A1, An} is called an interior link of A. If
n > 2 and A1 also intersects An, the collection A is called a circular chain.

A collection B of sets is coherent if, for each nonempty proper subcollec-
tion C of B, there is an element of C that intersects an element of B \ C.

A finite coherent collection T of open sets is a tree chain if no three
elements of T have a point in common and no subcollection of T is a circular
chain.

A continuum is a nondegenerate compact connected metric space.
A continuum M is tree-like if for each positive number ε, there is a tree

chain with mesh less than ε covering M [Bi1, p. 653].
A continuum is unicoherent if it is not the union of two subcontinua

whose intersection is disconnected. A continuum is hereditarily unicoher-
ent if each of its subcontinua is unicoherent. Every tree-like continuum is
hereditarily unicoherent.

3. Proof of Theorem 1.2. Assume f moves each point of M . Let % be
a metric on M .

By the compactness of M and the continuity of f , there is a positive
number ε such that for each point x of M ,

(3.1) %(x, f(x)) > 12ε.

For each point x of M , let A(x) denote the arc-component of M that
contains x. Since M is hereditarily unicoherent, A(x) does not contain a
simple closed curve.

Let y and z be distinct points of A(x). We denote the unique arc, half-
open arc, and open arc in A(x) with end points y and z by [y, z], [y, z), and
(y, z), respectively. We define [y, y] to be {y}.

For each point x of M , Borsuk [Bo2] showed there exists a unique se-
quence a1, a2, . . . of points in A(x) such that a1 = x and for each positive
integer n,

(3.2) %(an, an+1) = ε [Bo2, p. 19, (4n)],

(3.3) if y ∈ [an, an+1), then %(an, y) < ε [Bo2, p. 19, (5n)],

(3.4) [x, an] ∩ [an, an+1] = {an} [Bo2, p. 19, (11)], and

(3.5) an ∈ [x, f(an)] [Bo2, p. 19, (7n)].

For each positive integer n, let gn be a homeomorphism of the half-
open real line interval [n − 1, n) onto [an, an+1). For each nonnegative real
number r, let g(r) = gn(r) if n− 1 ≤ r < n.
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Let P (x) =
⋃{[x, an) : n = 2, 3, . . .}. By (3.4), g is a one-to-one map of

the nonnegative real line onto P (x). The map g determines a linear ordering
� of P (x) with x as the first point. The set P (x) is called a Borsuk ray .

In [Bi2], Bing described P (x) as an endless path on which a dog is chasing
a rabbit. When the dog is at a point y of P (x), the rabbit is at f(y). The dog
starts at x and constantly moves forward on P (x). The rabbit may start at
a point of M \P (x) but eventually goes to P (x). The rabbit may leave P (x)
but always returns to its point of departure and moves forward on P (x)
before the dog gets to that point. If the rabbit is forced to come within 12ε
of the dog during the chase, then f has a fixed point.

By [H3, (3.6)],

(3.6) P (x) = {y ∈ A(x) : [x, y] ∩ [y, f(y)] = {y}}.
For each point y of P (x), the Borsuk ray P (y) is the set {z ∈ P (x) : y = z

or y � z}.
We denote the closure of a given set S relative to M by ClS.
Let L(x) =

⋂{ClP (y) : y ∈ P (x)}. By (3.2), L(x) is not degenerate.
Hence L(x) is a subcontinuum of ClP (x).

Note that

(3.7) L(x) ⊂ f(L(x)).

To see this, let z be a point of L(x). By [H2, p. 99, (8)], there exist sequences
of points y1, y2, . . . and z1, z2, . . . in P (x) such that

(1) z1, z2, . . . converges to z and
(2) an � yn � zn and f(yn) = zn for each positive integer n.

Let y be a point of L(x)∩Cl{yn : n = 1, 2, . . .}. Then f(y) = z. Hence (3.7)
is true.

For each point p of P (x),

(3.8) if r is a point of P (p) and the diameter of [p, r] is less than 12ε, then
r ∈ [p, f(p)].

To see this, assume r 6∈ [p, f(p)]. Let q be the last point of [p, r] that belongs
to [p, f(p)]. By (3.1), [q, r]∩f([p, r]) = ∅. By (3.6), [q, r]∩[r, f(r)] = {r}. Thus
the intersection of [q, r] and the continuum [q, f(p)] ∪ [r, f(r)] ∪ f([p, r]) is
the disconnected set {q, r}, contradicting the hereditary unicoherence of M .
Hence (3.8) is true.

Definition 3.9. An arc [p, q] is directed if there is a point x of M such
that [p, q] ⊂ P (x) and p� q.

Definition 3.10. Let δ be a positive number. An arc [p, s] is δ-folded
if there exist points q and r of [p, s] such that q ∈ [p, r), %(p, q) > ε, and
%(p, r) < δ.
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Proposition 3.11. There does not exist a point x of M such that x ∈
L(x).

P r o o f. Assume there is a point x of M such that x ∈ L(x). Since M is
hereditarily unicoherent, P (x) ⊂ L(x).

For each positive integer n, let B(n) = {p ∈ L(x) : [p, f(p)] is not (1/n)-
folded}. Note that L(x) =

⋃{B(n) : n = 1, 2, . . .}. By the Baire category
theorem, there is a positive integer λ such that ClB(λ) contains a nonempty
open subset Ω of L(x).

By (3.1) and (3.7), the diameter of L(x) is greater than 12ε. Thus there
exist two points y and z of P (x) such that y � z, %(y, z) > 5ε, and z ∈ Ω.
It follows from (3.6) that z ∈ [y, f(z)].

Continuing the proof of Proposition 3.11, we show

(3.12) there exists a tree chain T with mesh less than ε and 1/(2λ) cov-
ering M that contains a chain {C1, . . . , Cν} such that

(1) z ∈ C1,
(2) L(x) ∩ ClC1 ⊂ Ω,
(3) f(z) ∈ Cν ,
(4) [z, f(z)] ⊂ ⋃{Ci : 1 ≤ i ≤ ν}, and
(5) [y, z] ∩⋃{Ci : 2 ≤ i ≤ ν} = ∅.

To accomplish this, let κ be the minimum of ε, 1/(2λ), and %(z, L(x) \Ω).
Let {p1, . . . , pn} be a partition of [z, f(z)] (z = p1 < . . . < pn = f(z)) such
that for each positive integer i less than n, the diameter of [pi, pi+1] is less
than κ/3. For each positive integer i less than n−1, let Ji be the y-component
of [y, f(z)] \ (pi, pi+1), let Ki be the pn-component of [y, f(z)] \ (pi, pi+1),
and let δi = %(Ji,Ki). Let δ be the smallest number in {δi : 1 ≤ i < n− 1}.
Let R be a tree chain with mesh less than δ/2 and κ/3 covering M . Let
S = {R ∈ R : R ∩ [z, f(z)] 6= ∅}. For each positive integer i less than n, let
Ci be the union of all elements of S that intersect [pi, pi+1]. Let T be the
tree chain (R\S)∪{C1, . . . , Cn−1}. Let ν = n− 1 and (3.12) is established.

Let U be the largest tree chain in T \ {C1} such that C2 ∈ U .
We denote the boundary of a given set S relative to M by BdS.
Note that

(3.13) Bd
⋃
U ⊂ C1.

Lemma 3.14. Let Z be a tree chain covering M that refines T . Suppose
there exist a point p of L(x) and a chain A = {A1, . . . , An} in Z such that
p ∈ A1 ∩ClC1 and f(p) ∈ An ⊂

⋃U . Suppose Aχ is a link of A that lies in⋃
(T \ U). Then %(A1, Aχ) < ε.

P r o o f. Assume there is a link Aχ of A in
⋃

(T \U) and %(A1, Aχ) ≥ ε.
Since Z refines T and An ⊂

⋃U , there is an integer τ such that χ < τ < n
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and Aτ ⊂ C1. Since p ∈ Ω and f is continuous, there exists a point b of
A1 ∩ B(λ) such that f(b) ∈ An. Since Z does not contain a circular chain,
[b, f(b)] intersects each link of A. Furthermore, a point c of Aχ ∩ [b, f(b)]
precedes a point d of Aτ ∩ [b, f(b)] with respect to the order of [b, f(b)].
Since %(b, c) > ε and %(b, d) < 1/λ, this contradicts the fact that b belongs
to B(λ). Hence Lemma 3.14 is true.

Lemma 3.15. Let [p, q] be a directed arc in
⋃

(T \U). Suppose p ∈ L(x)∩
ClC1 and f(p) ∈ ⋃U . Then %(p, q) < 3ε.

P r o o f. Assume %(p, q) ≥ 3ε. Let r be the first point of [p, q] such that
%(p, r) = 3ε. By (3.8), r ∈ [p, f(p)]. Let Z be a tree chain covering M that
refines T and contains a chain {A1, . . . , Aχ, . . . , An} such that

(1) p ∈ A1,
(2) r ∈ Aχ ⊂

⋃
(T \ U), and

(3) f(p) ∈ An ⊂
⋃U .

Since the mesh of Z is less than ε, it follows that %(A1, Aχ) > ε and this
contradicts Lemma 3.14. Hence Lemma 3.15 is true.

Let V be a tree chain covering M that refines T such that

(3.16) z belongs to only one element D of V,

(3.17) C1 contains D, and

(3.18) the image of each element of V under f lies in an element of T .

Since z ∈ C1, f(z) ∈ Cν , and ν > 2, it follows from (3.18) that f(D) ⊂⋃U .
Let W be the largest tree chain in V such that D ∈ W and

⋃W ⊂⋃
(T \ U). Let E = {E ∈ W : E ⊂ C1}.

Lemma 3.19. If I is a continuum in M \⋃ E that intersects the bound-
aries of two distinct elements of E , then I ⊂ ⋃W.

P r o o f. Assume Ei and Ej are distinct elements of E whose boundaries
intersect I. Let F be the chain in W that has Ei and Ej as end links.
Since I ∩ ⋃ E = ∅ and V does not contain a circular chain,

⋃F contains
I ∩ Bd(Ei ∪ Ej). Thus I intersects each interior link of F .

Note that I∩⋃F ⊂ ⋃W. To complete the proof of Lemma 3.19, suppose
there is a point p of I that does not belong to

⋃F . Let G = {G1, . . . , Gm}
be a chain in V \ F such that p ∈ G1 and Gm ∩

⋃F 6= ∅. Let F be the link
of F that intersects Gm. Since F ∈ W, there is a chain H = {H1, . . . , Hn}
in W such that H1 = D and Hn = F . Since V does not contain a circular
chain, I intersects each link of G. Consequently, no link of G belongs to E .
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Therefore
⋃G ⊂ ⋃(T \ U). It follows that G ∪H is a tree chain in W. Thus

p ∈ ⋃W. Hence I ⊂ ⋃W and Lemma 3.19 is true.

Let E∗ = {E ∈ E : E ∩ L(x) 6= ∅}.
For each element E of E∗,

(3.20) f(E) ⊂
⋃
U .

To establish (3.20), first note that P (z) intersects each element of E∗.
Let E1, . . . , En be a list of the elements of E∗ that has the following order

property.

Property 3.21. For each pair of integers i and j with 1 ≤ i < j ≤ n,
there is a point u of Ei ∩ P (z) such that [z, u] ∩ Ej = ∅.

Now assume that (3.20) is false. Let Em be the first element of E1, . . . , En
such that f(Em) 6⊂ ⋃U . By (3.16) and (3.17), D = E1. Since f(D) ⊂ ⋃U ,
it follows that m > 1. By (3.1) and (3.13), (

⋃U)\ClC1 contains f(Cl
⋃{Ei :

1 ≤ i < m}). Note that ClEm and Cl
⋃{Ei : 1 ≤ i < m} are disjoint; for

otherwise, it follows from (3.18) that f(Em) is in an element of U and this
contradicts the definition of Em.

By Property 3.21, there is a point u of Em−1 ∩ P (z) such that [z, u] ∩
Em = ∅. Let w be the first point of P (u) in ClEm. By Property 3.21,
[u,w] ∩ ⋃{Ei : m ≤ i ≤ n} = ∅. Let p be the last point of [u,w] in
Cl
⋃{Ei : 1 ≤ i < m}. Since [p, w] ⊂ L(x), it follows that [p, w] ∩⋃ E = ∅.

Thus, by Lemma 3.19, [p, w] ⊂ ⋃W. Hence [p, w] ⊂ ⋃(T \ U).
By (3.1), f(p) 6∈ C1. Let Ei be the element of E∗ such that p ∈ BdEi.

Since f(Ei) ⊂
⋃U , it follows from (3.13) that f(p) ∈ ⋃U .

Observe that

(3.22) f(w) ∈
⋃
U .

To see this, assume the contrary. Let q be the first point of [p, w] such that
f(q) 6∈ ⋃U . By (3.13), f(q) ∈ C1. By (3.1), %(q, f(q)) > 12ε. Since p ∈ ClC1

and the diameter of C1 is less than ε, it follows that %(p, q) > 11ε. Since [p, q]
is a directed arc in

⋃
(T \ U), this contradicts Lemma 3.15. Hence (3.22) is

true.
By (3.1), f(w) 6∈ ClC1. Since w ∈ BdEm, it follows from (3.18) and

(3.22) that f(Em) ⊂ ⋃U , and this contradicts the definition of Em. Hence
(3.20) is true.

Since z ∈ D, [y, z]∩C2 = ∅, and V refines T , it follows that [y, z] ⊂ ⋃W.
Let W be an element of W that contains y. Since y ∈ L(x), there exists
a directed arc [p, q] in

⋃W such that p ∈ ⋃ E∗ and q ∈ W . By (3.20),
f(p) ∈ ⋃U . Since %(y, z) > 5ε and the diameters of W and C1 are less
than ε, it follows that %(p, q) > 3ε, and this contradicts Lemma 3.15. Hence
Proposition 3.11 is true.
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Let Σ denote the set of nonempty subsets of M . By the Axiom of Choice,
there is a function k of Σ into M such that k(S) ∈ S for each element S
of Σ.

Let x = k(M). Define L1 = L(x) and x1 = k(L1).
Let ω1 denote the first uncountable ordinal. For each pair of ordinals α

and σ (α < σ ≤ ω1), we let Q[α,σ] denote the continuum Cl
⋃{P (xγ) : α ≤

γ < σ}. We define Q[α,α] = {xα}.
For each ordinal σ (1 < σ ≤ ω1), we define a continuum Lσ and a point

xσ as follows:
If σ is not a limit ordinal, let Lσ = L(xσ−1) and xσ = k(Lσ).
If σ is a limit ordinal, let Lσ =

⋂{Q[α,σ] : α < σ} and xσ = k(Lσ).
By Proposition 3.11 and the hereditary unicoherence of M , for each pair

of ordinals α and σ (α < σ ≤ ω1),

(3.23) every subcontinuum of M that contains {xβ : α ≤ β ≤ σ} contains
Q[α,σ].

Proposition 3.24. If α and σ are ordinals and α < σ ≤ ω1, then
xα 6∈ Lσ.

P r o o f. Assume there exist ordinals α and σ such that α < σ ≤ ω1 and
xα ∈ Lσ. By Proposition 3.11, α+ 1 < σ.

Note that

(3.25) there exist ordinals β and µ such that α ≤ β < µ ≤ σ and {xγ :
β ≤ γ ≤ µ} ⊂ Lµ.

To see this, assume the contrary. By (3.23), there is an ordinal α(1) such
that

(1) α ≤ α(1) < σ,
(2) {xγ : α ≤ γ ≤ α(1)} ⊂ Lσ, and
(3) xα(1)+1 6∈ Lσ.

By the hereditary unicoherence of M and Proposition 3.11, α(1) + 2 < σ.
We must show

(3.26) there exists an ordinal σ(1) such that α(1) + 1 < σ(1) < σ and
xα(1)+1 ∈ Lσ(1).

Assume (3.26) is false. For each positive number δ, let N(δ) = {p ∈ M :
%(p, xα(1)+1) < δ}. Since xα(1)+1 6∈ Lσ, there exist an ordinal γ(1) and a
positive number δ1 such that α(1) + 1 < γ(1) < σ and N(δ1)∩Q[γ(1),σ] = ∅.
We repeat this process if γ(1) 6= α(1) + 2. Since xα(1)+1 6∈ Lγ(1), there exist
an ordinal γ(2) and a positive number δ2 such that

(1) α(1) + 1 < γ(2) < γ(1),
(2) δ2 < δ1, and
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(3) N(δ2) ∩Q[γ(2),γ(1)] = ∅.
Again we repeat this process if γ(2) 6= α(1) + 2. Since each γ(i) is greater
than γ(i + 1), this process can only be repeated finitely many times. Thus
there exists a positive number δ such that N(δ) ∩ Q[α(1)+2,σ] = ∅. By
Proposition 3.11, we can assume without loss of generality that N(δ) ∩
Lα(1)+2 = ∅. Let [p, q] be an arc in N(δ) ∩ P (xα(1)). By Proposition 3.11,
[p, q] ∩ Lα(1)+1 = ∅. It follows from the hereditary unicoherence of M that
[p, q] ∩ P (xα(1)+1) = ∅. Since {xγ : α ≤ γ ≤ α(1)} ⊂ Lσ, by (3.23),⋃{P (xγ) : α ≤ γ ≤ α(1)} ⊂ Lσ. Thus [p, q] ∩ Q[α,α(1)] = ∅. Consequently,
[p, q] and Q[α,σ] \ [p, q] are continua whose intersection is {p, q}, and this
contradicts the fact that Q[α,σ] is unicoherent. Hence (3.26) is true.

We proceed inductively. For each integer n greater than 1, define ordinals
α(n) and σ(n) such that

(1) α(n− 1) < α(n) < σ(n) < σ(n− 1),
(2) xα(n) ∈ Lσ(n), and
(3) xα(n)+1 6∈ Lσ(n).

Since {σ(n) : n = 1, 2, . . .} has no first element, this is impossible. Hence
(3.25) is true.

It follows from Proposition 3.11 and (3.25) that µ is a limit ordinal.
By (3.23) and (3.25),

(3.27) Q[β,µ] ⊂ Lµ.
For each positive integer n, let B(n) = {p ∈ Lµ : [p, f(p)] is not (1/n)-

folded}. Since Lµ =
⋃{B(n) : n = 1, 2, . . .}, there is a positive integer λ

such that ClB(λ) contains a nonempty open subset Ω of Lµ.
Note that

(3.28) there exist an ordinal ψ and a subcontinuum Y of Lµ with points
y and z such that

(1) β ≤ ψ < µ,
(2) z ∈ Ω ∩ P (xψ),
(3) %(y, z) > 5ε, and
(4) Y ∩ [z, f(z)] = {z}.

To see this, we consider two cases.

Case 1. Suppose Lβ+1∩Ω 6= ∅. By (3.1) and (3.7), the diameter of Lβ+1

is greater than 12ε. By (3.27), P (xβ) ⊂ Lµ. Thus there exist two points y
and z of P (xβ) such that y � z, %(y, z) > 5ε, and z ∈ Ω. In this case, (3.28)
is established by letting ψ = β and Y = [y, z].

Case 2. Suppose Lβ+1 ∩ Ω = ∅. Let ∆ be a nonempty open subset
of Ω that has diameter less than ε. Since the diameter of Lβ+1 is greater
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than 12ε, there exists a point y of Lβ+1 such that %(y,∆) > 5ε. Let ψ be
the first ordinal larger than β such that P (xψ) ∩ ∆ 6= ∅. Let z be a point
of P (xψ) ∩ ∆. Note that %(y, z) > 5ε. For each ordinal γ (β < γ ≤ ψ), it
follows from the definition of ψ that Lγ ∩∆ = ∅. Thus z 6∈ Lβ+1 ∪Q[β+1,ψ].
Let p be the last point of P (xψ) that belongs to Lβ+1 ∪ Q[β+1,ψ]. Define
Y = Lβ+1 ∪ Q[β+1,ψ] ∪ [p, z]. By (3.27), Y ⊂ Lµ. Condition (4) of (3.28)
follows from (3.6) and the hereditary unicoherence of M. Hence (3.28) is
established.

Let T be a tree chain with mesh less than ε and 1/(2λ) covering M that
contains a chain {C1, . . . , Cν} such that

(1) z ∈ C1,
(2) Lµ ∩ ClC1 ⊂ Ω,
(3) f(z) ∈ Cν ,
(4) [z, f(z)] ⊂ ⋃{Ci : 1 ≤ i ≤ ν}, and
(5) Y ∩⋃{Ci : 2 ≤ i ≤ ν} = ∅.
Let U be the largest tree chain in T \ {C1} such that C2 ∈ U .
Let V be a tree chain covering M that refines T and satisfies

(3.29) z belongs to only one element D of V,

(3.30) C1 contains D, and

(3.31) the image of each element of V under f lies in an element of T .

Since z ∈ C1, f(z) ∈ Cν , and ν > 2, it follows from (3.31) that f(D) ⊂⋃U .
Let W be the largest tree chain in V such that D ∈ W and

⋃W ⊂⋃
(T \ U). Let E = {E ∈ W : E ⊂ C1}.

Note that (3.13) and Lemmas 3.14, 3.15, and 3.19, which are stated for
L(x), also hold for Lµ.

Let E∗ = {E ∈ E : E ∩ Lµ 6= ∅}.
For each element E of E∗,

(3.32) f(E) ⊂
⋃
U .

To establish (3.32), define zψ = z. For each ordinal γ (ψ < γ < µ), define
zγ = xγ .

Note that by the definition of Lµ, the set
⋃{P (zγ) : ψ ≤ γ < µ} inter-

sects each element of E∗.
Let E1, . . . , En be a list of the elements of E∗ that has the following order

property.

Property 3.33. For each integer m (1 ≤ m ≤ n), let γ(m) be the first
ordinal such that ψ ≤ γ(m) < µ and P (zγ(m))∩Em 6= ∅. Then for each pair
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of integers i and j with 1 ≤ i < j ≤ n, either γ(i) < γ(j) or γ(i) = γ(j) and
there is a point u of Ei ∩ P (zγ(i)) such that [zγ(i), u] ∩ Ej = ∅.

Now assume that (3.32) is false. Let Em be the first element of E1, . . . , En
such that f(Em) 6⊂ ⋃U . By (3.29) and (3.30), D = E1. Since f(D) ⊂ ⋃U ,
it follows that m > 1. By (3.1) and (3.13), (

⋃U)\ClC1 contains f(Cl
⋃{Ei :

1 ≤ i < m}). Note that ClEm and Cl
⋃{Ei : 1 ≤ i < m} are disjoint; for

otherwise, by (3.31), f(Em) is in an element of U and this contradicts the
definition of Em.

We must eliminate two cases.

Case 1. Suppose γ(m−1) = γ(m). Then P (zγ(m)) intersects both Em−1

and Em. By Property 3.33, there is a point u of Em−1 ∩P (zγ(m)) such that
[zγ(m), u] ∩ Em = ∅. As in the argument for (3.20), let w be the first point
of P (u) in ClEm. By Property 3.33, [u,w] ∩ ⋃{Ei : m < i ≤ n} = ∅. Let
p be the last point of [u,w] in Cl

⋃{Ei : 1 ≤ i < m}. By the argument for
(3.20), both f(p) and f(w) belong to

⋃U . By (3.1), f(w) 6∈ ClC1. Since
w ∈ BdEm, it follows from (3.31) that f(Em) ⊂ ⋃U , and this contradicts
the definition of Em. Hence Case 1 is impossible.

Case 2. Suppose γ(m − 1) < γ(m). Since zγ(m) ∈ Lγ(m), by Prop-
erty 3.33, zγ(m)) 6∈ Em. Let w be the first point of P (zγ(m)) in ClEm. Let v
be the last point of [zγ(m), w] in Lγ(m).

For each pair of ordinals θ and ξ (ψ ≤ θ < ξ ≤ µ), let R[θ,ξ] denote
the continuum Cl

⋃{P (zγ) : θ ≤ γ < ξ} and let R[θ,θ] be {zθ}. Note that
R[θ,ξ] = Q[θ,ξ] if θ is greater than ψ.

By Property 3.33, R[ψ,γ(m)] ∪ [v, w] and
⋃{Ei : m ≤ i ≤ n} are disjoint.

Furthermore, by the argument given in Case 1, [v, w] and
⋃{Ei : 1 ≤ i < m}

are disjoint.
Let θ be the first ordinal such that γ(m− 1) < θ ≤ γ(m) and R[θ,γ(m)] ∩⋃{Ei : 1 ≤ i < m} = ∅.
For each ordinal γ (γ(m− 1) < γ < θ),

(3.34) R[γ,θ] ∩
⋃
{Ei : 1 ≤ i < m} 6= ∅.

Let I denote the w-component of (R[γ(m−1),γ(m)] ∪ [v, w]) \⋃{Ei : 1 ≤
i < m}. By (3.34), I ∩ Bd

⋃{Ei : 1 ≤ i < m} 6= ∅ [W, p. 16, (10.1)]. Since
w ∈ BdEm, by Lemma 3.19, I ⊂ ⋃W. Let J denote the continuum I ∩Lθ.

For a given set S and a positive number δ, we denote {p ∈ M : %(p, S)
< δ} by N(S, δ).

Note that

(3.35) J ⊂ ClN(C1, 5ε) if θ is not a limit ordinal.

To see this, assume θ is not a limit ordinal and there is a point t of J such
that %(t, C1) ≥ 5ε. By (3.34) and the definition of Lθ, there exists a directed
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arc [p, q] in P (zθ−1) \⋃{Ei : 1 ≤ i < m} such that

(1) p ∈ Bd
⋃{Ei : 1 ≤ i < m},

(2) f(p) ∈ ⋃U ,
(3) %(q, t) < ε, and
(4) [p, q] ⊂ ⋃W.

Since Bd
⋃{Ei : 1 ≤ i < m} ⊂ ClC1, it follows that %(p, q) > 3ε, and this

contradicts Lemma 3.15. Hence (3.35) is true.
Observe that

(3.36) J ∩ Bd
⋃
{Ei : 1 ≤ i < m} 6= ∅.

To see this, assume the contrary. Then J = Lθ. Note that θ is a limit ordinal;
for otherwise, it follows from (3.1) and (3.7) that the diameter of J is greater
than 12ε and this contradicts (3.35). Therefore Lθ =

⋂{R[γ,θ] : γ(m− 1) <
γ < θ}. Thus, by (3.34), Lθ ∩Bd

⋃{Ei : 1 ≤ i < m} 6= ∅. Since J = Lθ, this
is a contradiction. Hence (3.36) is true.

Next we show

(3.37) J ⊂ ClN(C1, 5ε) if θ is a limit ordinal.

To accomplish this, let Y be the largest tree chain in W \ E∗ such that
J ⊂ ⋃Y. Let K = (

⋃Y) \ (
⋃ E∗). By the definition of θ, there exists an

ordinal η less than θ such that P (zη) 6⊂ K. Since J ⊂ K, there exist an
ordinal γ and points p and q such that

(1) η ≤ γ < θ,
(2) {p, q} ⊂ P (zγ),
(3) p� q,
(4) p ∈ Bd

⋃{Ei : 1 ≤ i < m}, and
(5) q ∈ K.

By Lemma 3.15, every directed arc in P (p) ∩ K that starts at a point of
Bd
⋃{Ei : 1 ≤ i < m} is in N(C1, 5ε).
Therefore

(3.38γ+1) Lγ+1 ∩K ⊂ ClN(C1, 5ε).

We must show

(3.39γ+1) P (zγ+1) ∩K ⊂ ClN(C1, 5ε).

If P (zγ+1) ⊂ Lγ+1, then (3.39γ+1) follows immediately from (3.38γ+1).
Thus we assume P (zγ+1) 6⊂ Lγ+1. Let pγ+1 be the last point of P (zγ+1)
that belongs to Lγ+1.

Note that

(3.40γ+1) if pγ+1 belongs to K, then every directed arc in P (pγ+1) ∩K
that starts at pγ+1 is in N(C1, 5ε).
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To see this, assume the contrary. Let r be the first point of P (pγ+1) such
that %(r, C1) = 5ε. Then [pγ+1, r] ⊂ K. Let L denote the pγ+1-component
of Lγ+1∩K. By the argument for (3.36), L∩Bd

⋃{Ei : 1 ≤ i < m} 6= ∅. Let
b be a point of L ∩ Bd

⋃{Ei : 1 ≤ i < m}. Since L ⊂ Lγ+1, by (3.38γ+1),
L ⊂ ClN(C1, 5ε). Since the diameter of C1 is less than ε, the diameter of
[pγ+1, r] is less than 11ε. Thus, by (3.8), r ∈ [pγ+1, f(pγ+1)].

Let Z be a tree chain covering M that refines V and contains a chain
A = {A1, . . . , Am′ , . . . , An′} such that

(1) b ∈ A1,
(2) pγ+1 ∈ Am′ ,
(3) f(pγ+1) ∈ An′ , and
(4) [pγ+1, f(pγ+1)] ⊂ ⋃{Ai : m′ ≤ i ≤ n′}.

There is an integer χ such that m′ ≤ χ < n′ and r ∈ Aχ. Since r ∈ K,
it follows that Aχ ⊂

⋃
(T \U). Since L ⊂ ClN(C1, 5ε), by (3.1), %(f(L), C1)

> ε. Since b ∈ Bd
⋃{Ei : 1 ≤ i < m}, it follows that f(b) ∈ ⋃U . By

the connectivity of L and (3.13), f(L) ⊂ ⋃U . Let B be the tree chain
consisting of the elements of Z that intersect f(L). Since

⋃B ⊂ ⋃U and
L ∪ [pγ+1, r] ⊂ K, there is a chain C in A ∪ B such that

(1) A1 is one end link of C,
(2) the other end link of C contains f(b), and
(3) Aχ is an interior link of C.

Since %(r, C1) = 5ε, it follows that %(A1, Aχ) > ε, and this contradicts
Lemma 3.14. Hence (3.40γ+1) is true.

By Lemma 3.15,

(3.41γ+1) every directed arc in P (pγ+1) ∩ K that starts at a point of
Bd
⋃{Ei : 1 ≤ i < m} is in N(C1, 5ε).

Statement (3.39γ+1) follows from (3.40γ+1) and (3.41γ+1).
Note that (3.39γ+1) implies (3.38γ+2). Statement (3.39γ+2) follows from

(3.38γ+2) and the arguments given for (3.40γ+1) and (3.41γ+1). In fact, if ϕ
(γ < ϕ ≤ θ) is an ordinal and, for each ordinal ζ (γ < ζ < ϕ), statements
(3.38ζ) and (3.39ζ) are true, then statements (3.38ϕ) and (3.39ϕ) are true.
Thus, by transfinite induction, for each ordinal ϕ (γ < ϕ ≤ θ), statements
(3.38ϕ) and (3.39ϕ) are true. Since J ⊂ Lθ ∩K, it follows from (3.38θ) that
(3.37) is true.

By (3.35) and (3.37), J ⊂ ClN(C1, 5ε). Thus, by (3.1), f(J) ∩ C1 = ∅.
By (3.36), there is a point q of J in Bd

⋃{Ei : 1 ≤ i < m}. Since f(
⋃{Ei :

1 ≤ i < m}) ⊂ ⋃U , it follows from (3.1) and (3.13) that f(q) ∈ ⋃U .
By (3.13), f(J) ⊂ ⋃U .
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Note that

(3.42) θ 6= γ(m).

To see this, assume the contrary. Then v ∈ Lθ. Since [v, w] ∩ ⋃{Ei :
1 ≤ i ≤ m} = ∅, it follows that v ∈ J . By the argument for (3.40γ+1),
[v, w] ⊂ N(C1, 5ε). Since f(v) ∈ ⋃U , by (3.1) and (3.13), f(w) ∈ ⋃U .
Thus, by (3.13), f(Em) ⊂ ⋃U , and this contradicts the definition of Em.
Hence (3.42) is true.

By (3.42), θ < γ(m). It follows from the definition of θ that P (zθ)∩
⋃{Ei :

1 ≤ i ≤ m} = ∅. Therefore P (zθ) ⊂ I. Thus zθ ∈ J . By (3.1) and (3.7), the
diameter of Lθ+1 is greater than 12ε. Note that P (zθ) 6⊂ J ; for otherwise,
Lθ+1 ⊂ J and this contradicts (3.35) and (3.37). Let p be the last point of
P (zθ) that belongs to J . By the argument for (3.40γ+1), P (p) ⊂ N(C1, 5ε).
Since the diameter of Lθ+1 is greater than 12ε, this is a contradiction. Thus
Case 2 is impossible. Hence (3.32) is true.

Since z ∈ D, Y ∩C2 = ∅, and V refines T , it follows that Y ⊂ ⋃W. Let
W be an element of W that contains y. According to (3.28), y ∈ Lµ. Thus
there exists a directed arc [p, q] in

⋃W such that p ∈ ⋃ E∗ and q ∈ W .
By (3.32), f(p) ∈ ⋃U . Since %(y, z) > 5ε and the diameters of W and C1

are less than ε, it follows that %(p, q) > 3ε, and this contradicts Lemma 3.15.
Hence Proposition 3.24 is true.

By Proposition 3.24, {xβ : 1 ≤ β < ω1} is uncountable. Thus {xβ : 1 ≤
β < ω1} contains a condensation point xα [W, p. 4, (3.8)]. Let γ1, γ2, . . .
be an increasing sequence of ordinals such that α < γ1 and xγ1 , xγ2 , . . .
converges to xα. Let σ be the first ordinal larger than every ordinal in
γ1, γ2, . . . It follows that xα ∈ Lσ and this contradicts Proposition 3.24.
Hence Theorem 1.2 is true.

4. Disk-like continua. It follows from results of Borsuk [Bo2], Cook
[Co], and Young [Y] that every arcwise connected tree-like continuum has the
fixed-point property. Note that this theorem also follows from Theorem 1.2.

A map f of a continuum M is an ε-map if for each point y of f(M), the
diameter of f−1(y) is less than ε. A continuum M is disk -like if for each
positive number ε, there exists an ε-map of M onto a disk. Every tree-like
continuum is disk-like.

The following question was asked in [H1].

Question 4.1. Does every arcwise connected disk-like continuum have
the fixed-point property?

Bennett [Be] proved that no locally connected disk-like continuum ad-
mits a fixed-point-free map. He accomplished this by showing that all such
continua are embeddable in the plane. Simple examples of nonplanar arc-
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wise connected disk-like continua indicate that Bennett’s strategy cannot
be applied to Question 4.1.

Question 4.2. Let f be a map of a disk-like continuum M that sends
each arc-component of M into itself. Must f have a fixed point?

Question 4.3. Does every disk-like continuum have the fixed-point prop-
erty for deformations?
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