Self-homeomorphisms of the 2 -sphere which fix pointwise a nonseparating continuum

by
Paul Fabel (Mississippi State, Ms.)

Abstract

We prove that the space of orientation preserving homeomorphisms of the 2 -sphere which fix pointwise a nontrivial nonseparating continuum is a contractible absolute neighborhood retract homeomorphic to the separable Hilbert space l_{2}.

1. Introduction. Mason [10] proved that the space of self-homeomorphisms of the closed unit disk which fix pointwise the disk's boundary is an absolute retract homeomorphic to the separable Hilbert space l_{2}. In this paper we prove the following generalization:

Theorem 1.1. If F is a nondegenerate nonseparating proper subcontinuum of the 2-sphere S^{2} and if H denotes the group of orientation preserving homeomorphisms of S^{2} which pointwise fix F, then H is an absolute retract homeomorphic to the separable Hilbert space l_{2}.

For a closed subset F of an n-manifold M^{n} let $H\left(M^{n}, F\right)$ and $H\left(M^{n}, F\right.$, id_{F}) denote respectively the self-homeomorphisms of M^{n} which leave F invariant and which leave F pointwise fixed. Let $H_{0}\left(M^{n}, F\right)$ denote the path component of id in $H\left(M^{n}, F\right)$.

Three natural questions are:

1. Under what conditions is $H\left(M^{n}, F\right), H\left(M^{n}, F, \operatorname{id}_{F}\right)$, or $H_{0}\left(M^{n}, F\right)$ an ANR?
2. What is the homotopy type (or homeomorphism type) of $H\left(M^{n}, F\right.$, $\left.\mathrm{id}_{F}\right)$, or $H_{0}\left(M^{n}, F\right) ?$
3. What is the mapping class group of M^{n} relative to F ?

When $n=2$ it has long been known that $H\left(M^{2}, \emptyset\right)$ is an ANR [9], and the homeomorphism type [6] and mapping class group [8] of $H\left(M^{2}, \emptyset\right)$ are

[^0]understood when M^{2} is closed. Other than cases in which F is a finite point set or the finite union of disjoint simple closed curves [12], there has been little attempt to address these questions when $F \neq \emptyset$. In this paper we consider the case where $M^{2}=S^{2}$ and $F \subset S^{2}$ is a nondegenerate nonseparating continuum and we prove $H\left(M^{n}, F, \mathrm{id}_{F}\right)$ is an absolute retract.

The paper is divided into 9 sections. We begin in Section 2 with some definitions. The main result, Theorem 1.1, is proved in Section 3. The proof depends on Theorems 3.1, 3.2, and 3.3, which are proved in Sections 7, 8, and 9 respectively. Section 4 consists of lemmas and remarks useful elsewhere in the paper. In Section 5 we examine the behavior of members of $H\left(M^{n}, F, \operatorname{id}_{F}\right)$ near F. In Section 6 we construct a well behaved contraction of a closed PL disk D and use it to gain control of the associated Alexander isotopy.

I am grateful for the help of Alec Norton and Jim West.
2. Definitions. Let $F \subset S^{2}$ denote a nondegenerate nonseparating continuum, let $U=S^{2} \backslash F$, and let $\partial U=\bar{U} \backslash U$. By an l_{2}-manifold we mean a space which is locally homeomorphic to l_{2}, the Hilbert space of square summable sequences. The space Y is said to dominate the space X if there exist maps $\phi: X \rightarrow Y$ and $\psi: Y \rightarrow X$ such that the map $\psi \phi: X \rightarrow X$ is homotopic to the identity map id : $X \rightarrow X$. A homotopy $h_{t}: X \rightarrow X$ is said to be a deformation if $h_{0}=$ id. If $\{x, y\} \subset X$ then a path from x to y is the image of a map $\alpha:[0,1] \rightarrow X$ such that $\alpha(0)=x$ and $\alpha(1)=y$. By an arc we mean any space homeomorphic to $[0,1]$. A disk is any space homeomorphic to the planar closed unit disk.

We consider S^{2} to be the union of two Euclidean 2-simplices σ_{1} and σ_{2} attached along their common boundary as follows. Let T be a planar equilateral triangle subdivided into four equiltateral triangles. We define a quotient map $q: T \rightarrow S^{2}$ by folding each of the three corner triangles onto the center triangle. We identify those triples of points (one point from each of the three corner triangles) which touch after folding. Thus σ_{2} is the center triangle and σ_{1} is the image of each of the three corner triangles under q. Furthermore, q induces a metric on S^{2} as follows: $d(x, y)=\min \{|w-z| \mid$ $q(w)=x$ and $q(z)=y\}$. Thus both σ_{1} and σ_{2} inherit the Euclidean geometry of a 2 -simplex.

Definition 2.1. If $X \subset S^{2}$ or \mathbb{R}^{2} then H_{X} denotes the self-homeomorphisms of $S^{2}\left(\right.$ resp. $\left.\mathbb{R}^{2}\right)$ which fix the complement of X pointwise. If d_{X} is a bounded metric on X we endow H_{X} with the metric $d_{H_{X}}(h, g)=$ $\sup _{x \in X} d_{X}(h(x), g(x))$.

Definition 2.2. Suppose $Y \subset S^{2}$ is connected and locally path connected with metric d_{Y}. We define a metric $d_{Y}^{*}: Y \times Y \rightarrow \mathbb{R}^{+}$as follows:

$$
d_{Y}^{*}(x, y)=\inf _{C}\{\operatorname{diam}(C) \mid C \text { is a path in } Y \text { from } x \text { to } y\}
$$

We let Y^{*} denote the set Y together with the metric d_{Y}^{*}.
Let G denote the space of continuous endomorphisms of H_{U}. We endow G with the compact-open topology. If $D \subset \bar{U}$ is a closed disk such that $\operatorname{int}(D) \subset U$ and $\partial U \cap \partial D$ has at least two points, then by $\operatorname{mesh}(D)$ we mean $\sup \{\operatorname{diam}(\alpha) \mid \alpha$ is a component of $\partial D \cap U\}$. If $\alpha \subset \mathbb{R}^{2}$ is a closed arc and $x \neq y$ and $x, y \in \alpha$, then let $\alpha_{x y}$ denote the closed subarc of α with endpoints $\{x, y\}$. We let ANR and AR denote absolute neighborhood retract and absolute retract respectively.

3. Proof of Theorem 1.1

Outline. Let H_{U} denote the orientation preserving homeomorphisms of S^{2} which are supported on \bar{U} where $U=S^{2} \backslash F$. Hanner [5], p. 405, has proved the following. Suppose $X_{1} \subset X_{2} \subset \ldots \subset X$ and for each n, X_{n} is an AR. Then if $\Psi: X \times[0,1] \rightarrow X$ is a deformation such that $\Psi_{t}(X) \subset X_{n}$ for $t \leq 1 / n$ then X is also an AR. Dobrowolski and Toruńczyk [3] have shown that every completely metrizable non-locally-compact separable ANR which admits a group structure is an l_{2}-manifold. D. Henderson [7] has shown that l_{2} manifolds are determined by their homotopy type. Consequently, it suffices to prove that H_{U} is contractible and dominated by a sequence of ARs in the fashion described above in order to conclude that H_{U} is homeomorphic to l_{2}.

We construct a contraction Ψ_{s} of H_{U} as follows. We express \bar{U} as the nested union of a sequence of closed disks P_{n}. With the aid of a conformal $\operatorname{map} \psi: U \rightarrow \operatorname{int}\left(D^{2}\right)$ we then construct maps $\Phi_{n}: H_{U} \rightarrow H_{P_{n}}$ converging to $\mathrm{ID}_{H_{U}}$. Finally, we string together Alexander-like isotopies between $H_{P_{n}}$ and $H_{P_{n+1}}$ taking great care that the process is well behaved as $n \rightarrow \infty$. The difficulty is that in general ∂U is not locally connected and consequently there is no small homeomorphism from ∂P_{n} onto ∂P_{n+1}.

The following theorems are essential to the proof of Theorem 1.1.
Theorem 3.1. Suppose $V \subset S^{2}$ and $\phi: U^{*} \rightarrow V$ is a homeomorphism. Then ϕ is uniformly continuous if and only if for each $h \in H_{U}$ the homeomorphism $g=\phi h \phi^{-1}: V \rightarrow V$ can be extended to a homeomorphism $\bar{g} \in H_{V}$.

ThEOREM 3.2. There exists a sequence of closed disks $D_{1} \subset D_{2} \subset \ldots$ together with a uniformly equicontinuous sequence $\phi_{n}: U^{*} \hookrightarrow U$ of embeddings such that $\phi_{n} \rightarrow \mathrm{id}$ uniformly on compact sets and such that $\operatorname{im}\left(\phi_{n}\right)=$ $\operatorname{int}\left(D_{n}\right)$.

THEOREM 3.3. Suppose $\phi_{n}: U^{*} \hookrightarrow U$ is a uniformly equicontinuous sequence of embeddings such that $\phi_{n} \rightarrow \mathrm{id}$ uniformly on compact sets. Then $\Phi_{n} \in G$ and $\Phi_{n} \rightarrow \mathrm{ID} \in G$ where $\Phi_{n}: H_{U} \rightarrow H_{U}$ is defined as follows:

$$
\Phi_{n}(h)(x)= \begin{cases}\phi_{n} h \phi_{n}^{-1}(x) & \text { if } x \in \operatorname{im}\left(\phi_{n}\right) \\ x & \text { otherwise } .\end{cases}
$$

Proof of Main Theorem (The space H_{U} is homeomorphic to l_{2}). We first show that H_{U} is contractible. Without loss of generality we may assume that $\operatorname{int}\left(\sigma_{2}\right) \subset U$ and that the vertices of σ_{2} belong to ∂U. Construct as in Theorem 3.2 a sequence of closed disks $D_{1} \subset D_{2} \subset \ldots$ together with a sequence $\psi_{n}: U^{*} \hookrightarrow U$ of uniformly equicontinuous embeddings such that $\psi_{n} \rightarrow i d$ uniformly on compact sets and such that $\operatorname{im}\left(\psi_{n}\right)=\operatorname{int}\left(D_{n}\right)$ and $\sigma_{2} \subset D_{1}$. Choose a sequence of closed PL disks P_{n} and homeomorphisms $h_{n}: D_{n} \rightarrow P_{n}$ such that $\sigma_{2} \subset P_{1}, P_{n} \subset D_{n}, P_{n} \subset P_{n+1}$, and $\left|h_{n}(x)-x\right|<$ $1 / n$. Let $\phi_{n}=h_{n}\left(\psi_{n}\right)$. Let G denote the space of continuous endomorphisms of H_{U}. By Theorem 3.3 the sequence $\Phi_{n}: H_{U} \rightarrow H_{U}$ defined by

$$
\Phi_{n}(h)(x)= \begin{cases}\phi_{n} h \phi_{n}^{-1}(x) & \text { if } x \in \operatorname{im}\left(\phi_{n}\right) \\ x & \text { otherwise }\end{cases}
$$

satisfies $\Phi_{n} \in G$ and $\Phi_{n} \rightarrow \mathrm{ID} \in G$ in the compact-open topology.
We observe that $\operatorname{im}\left(\Phi_{n-1}\right) \subset H_{P_{n-1}^{*}} \subset H_{P_{n}^{*}}$. It follows from Lemma 4.3 and Corollary 6.6 that we may construct a homotopy $F_{n, t}: H_{P_{n}^{*}} \times H_{P_{n}^{*}} \rightarrow$ $H_{P_{n}^{*}}$ satisfying $F_{n, 0}(f, g)=f$ for $f \in H_{P_{n}^{*}}, F_{n, 1}(f, g)=g$ for $g \in H_{P_{n}^{*}}$, and $d_{H_{P_{n}^{*}}}\left(F_{n, t}(f, g), g\right) \leq d_{H_{P_{n}^{*}}}(f, g)$ for $(f, g) \in H_{P_{n}^{*}} \times H_{P_{n}^{*}}$. For $n \in\{2,3, \ldots\}$ and $t \in[0,1]$ define a function $\Psi_{n+t}: H_{U} \rightarrow H_{U}$ by the rule $\Psi_{n+t}(h)=$ $F_{n, t}\left(\Phi_{n-1}(h), \Phi_{n}(h)\right)$. We observe that

$$
\begin{aligned}
\Psi_{n+1}(h) & =F_{n, 1}\left(\Phi_{n-1}(h), \Phi_{n}(h)\right)=\Phi_{n}(h) \\
& =F_{n, 0}\left(\Phi_{n}(h), \Phi_{n+1}(h)\right)=\Psi_{(n+1)+0}(h)
\end{aligned}
$$

Thus Ψ_{n+t} is well defined and $\Psi_{n+1}=\Phi_{n}$. Consequently, $\Psi_{n} \rightarrow$ ID in the compact-open topology. Continuity of Φ_{n-1}, Φ_{n}, and $F_{n, t}$ ensures that Ψ_{n+t} is continuous. Furthermore, Ψ_{s} varies continuously with s since the homotopy $F_{n, t}$ varies continuously with t. We observe that for $h \in H_{U}$ we have by definition

$$
d_{H_{U}}\left(\Psi_{n+t}(h), \Psi_{n+1}(h)\right) \leq d_{H_{U^{*}}}\left(\Psi_{n+t}(h), \Psi_{n+1}(h)\right)
$$

By Lemma 4.2,

$$
\begin{aligned}
d_{H_{U^{*}}}\left(\Psi_{n+t}(h), \Psi_{n+1}(h)\right) & \leq d_{H_{P_{n}^{*}}}\left(\Psi_{n+t}(h), \Psi_{n+1}(h)\right) \\
& =d_{H_{P_{n}^{*}}}\left(F_{n, t}\left(\Phi_{n-1}(h), \Phi_{n}(h)\right), \Phi_{n}(h)\right. \\
& \leq d_{H_{P_{n}^{*}}}\left(\Phi_{n-1}(h), \Phi_{n}(h)\right) .
\end{aligned}
$$

By Lemma 6.1,

$$
\begin{aligned}
d_{H_{P_{n}^{*}}^{*}}\left(\Phi_{n-1}(h), \Phi_{n}(h)\right) & \leq 4 d_{H_{P_{n}}}\left(\Phi_{n-1}(h), \Phi_{n}(h)\right)=4 d_{H_{P_{n}}}\left(\Psi_{n}(h), \Psi_{n+1}(h)\right) \\
& =4 d_{H_{U}}\left(\Psi_{n}(h), \Psi_{n+1}(h)\right) .
\end{aligned}
$$

Combining these inequalities yields

$$
d_{H_{U}}\left(\Psi_{n+t}(h), \Psi_{n+1}(h)\right) \leq 4 d_{H_{U}}\left(\Psi_{n}(h), \Psi_{n+1}(h)\right) \quad \text { for all } n, t, h
$$

This establishes that $\Psi_{s_{n}} \rightarrow$ ID whenever $s_{n} \rightarrow \infty$.
We have thus constructed a deformation Ψ_{s} of H_{U} (parameterized by $[2, \infty])$ into $H_{P_{1}^{*}}$ such that $\Psi_{s}\left(H_{U}\right) \subset H_{P_{n}^{*}}$ if $s \geq n+1$. By the title theorem of Mason [10], ${\stackrel{1}{P_{n}^{*}}}$ is an AR. Thus H_{U} is dominated by a sequence of ARs in the sense of Theorem 7.2, p. 405 of Hanner [5], and therefore H_{U} is an AR. Also H_{U} admits a complete metric since it is a closed subspace of the full homeomorphism group of the compact space S^{2}, and the homeomorphism group of any compactum admits a complete metric (p. 25 of [13]). Hence H_{U} is an l_{2}-manifold by the title theorem of [3] since H_{U} is a completely metrizable non-locally-compact separable metric space admitting a group structure. Thus H_{U} is a contractible l_{2}-manifold, and (Corollary 3, p. 759 of [7]) l_{2}-manifolds are determined up to homeomorphism by their homotopy type. Therefore H_{U} is homeomorphic to l_{2}.

4. Lemmas and remarks

REMARK 4.1. If $\phi_{n}: G \rightarrow H$ is a sequence of continuous homomorphisms between metrizable topological groups then ϕ_{n} converges in the compactopen topology if and only if ϕ_{n} converges uniformly on each sequence $g_{k} \rightarrow$ id $\in G$.

LEMMA 4.1. If $\phi: U^{*} \rightarrow U$ is uniformly continuous then $\phi: U^{*} \rightarrow U^{*}$ is uniformly continuous.

Proof. Suppose $\varepsilon>0$. Choose $\delta>0$ so that for all $x, y \in U$ if $d^{*}(x, y)<$ δ then $d(\phi(x), \phi(y))<\varepsilon$. Suppose $d^{*}(x, y)<\delta$. Choose a path $\alpha \subset U$ connecting x and y such that $\operatorname{diam}(\alpha)<\delta$. Suppose $\phi(w), \phi(z) \in \phi(\alpha)$. Because $d^{*}(w, z)<\delta$ it follows that $d(\phi(w), \phi(z))<\varepsilon$. Hence $\operatorname{diam}(\phi(\alpha))$ $<\varepsilon$. Furthermore, $\phi(\alpha)$ is a path which connects $\phi(x)$ and $\phi(y)$. This shows $d^{*}(\phi(x), \phi(y))<\varepsilon$.

Remark 4.2. For a fixed map $g \in H_{X}$ the self-map of H_{X} defined by the rule $h \mapsto h(g)$ is an isometry.

REMARK 4.3. It is shown in [4] that orientation preserving homeomorphisms of S^{2} are isotopic to id. If $h: S^{2} \rightarrow S^{2}$ is an orientation preserving homeomorphism which fixes $\{w, y, z\}$ pointwise then there exists an isotopy between h and id which fixes $\{w, y, z\}$ at all times.

Lemma 4.2. Suppose $D \subset S^{2}$ is a closed disk such that $\operatorname{int}(D) \subset U$. Then ID : $H_{D^{*}} \hookrightarrow H_{U^{*}}$ is a contraction mapping in the sense that $d_{H_{U^{*}}}(f, g)$ $\leq d_{H_{D^{*}}}(f, g)$ for $f, g \in H_{D^{*}}$.

Because $\operatorname{int}(D) \subset U$ it follows that $H_{D^{*}} \subset H_{U^{*}}$ and thus ID is well defined. Suppose $f, g \in H_{D^{*}}$. Suppose $x \in \operatorname{int}(D)$ and $\varepsilon>0$. Choose a path $\alpha \subset D$ such that $\operatorname{diam}(\alpha)<d_{D}^{*}(f(x), g(x))+\varepsilon / 2$. Choose a path $\beta \subset \operatorname{int}(D)$ such that $\operatorname{diam}(\beta)<\operatorname{diam}(\alpha)+\varepsilon / 2$. Thus $d_{U}^{*}(f(x), g(x)) \leq \operatorname{diam}(\beta)<$ $d_{D}^{*}(f(x), g(x))+\varepsilon$. Hence $d_{H_{U^{*}}}(f, g) \leq d_{H_{D^{*}}}(f, g)$ for $f, g \in H_{D^{*}}$.

Lemma 4.3. Suppose $D \subset S^{2}$ is a closed disk such that σ_{2} is inscribed in D (i.e. $\sigma_{2} \subset D$ and the vertices of σ_{2} belong to ∂D). Then D^{*} can be canonically isometrically embedded in the plane.

Proof. Recall from our definition of S^{2} the quotient map $q: T \rightarrow S^{2}$. We observe that $D=\sigma_{2} \cup D_{1} \cup D_{2} \cup D_{3}$ where $D_{i} \subset \sigma_{1}(i=1,2,3)$ are the three 2-cells attached to σ_{2} along the edges of σ_{2}. Hence we can "unfold" D along each edge of σ_{2}. In other words, if σ_{2} is inscribed in D then there exists a unique isometric lifting $s: D^{*} \hookrightarrow T$ such that $q(s)=\operatorname{id}_{D}$.
5. Behavior near ∂U. We examine the behavior of a convergent sequence $\left\{h_{n}\right\} \subset H_{U}$ near ∂U. We prove in Lemma 5.1 that if $x \in U$ is near ∂U then x and $h_{n}(x)$ can be connected by a uniformly short arc in U.

Lemma 5.1. Suppose h_{n} is a convergent sequence in H_{U}. Then for each $\varepsilon>0$ there exists a compact set $D \subset U^{*}$ such that $d_{U}^{*}\left(x, h_{n}(x)\right)<\varepsilon$ for all $n \in \mathbb{Z}^{+}$and $x \in U^{*} \backslash D$.

Proof. Because S^{2} is compact it suffices to prove the lemma for any metric which generates the usual topology on S^{2}. For convenience we consider S^{2} to be the unit sphere in \mathbb{R}^{3}. Suppose $1>\varepsilon>0$. By uniform equicontinuity of h_{n} choose $\delta<\varepsilon / 2$ such that if $d(x, y)<2 \delta$ then $\left|h_{n}(x)-h_{n}(y)\right|<\varepsilon / 2$. Choose $\gamma<\delta$ such that if $|x-y|<\gamma$ then $\left|h_{n}(x)-h_{n}(y)\right|<\delta$. Let $D=\bar{U} \backslash \bigcup_{x \in \partial U} B(x, \gamma)$. Suppose $x \in U \backslash D$ and $n \in \mathbb{Z}^{+}$. There exists $y \in \partial U$ with $|x-y|<\gamma$. So $\left|h_{n}(x)-h_{n}(y)\right|=\left|h_{n}(x)-y\right|<\delta$ and hence

$$
\left|h_{n}(x)-x\right| \leq\left|h_{n}(x)-y\right|+|y-x|<\delta+\gamma<2 \delta
$$

Choose a simple closed curve $\alpha \subset \mathbb{R}^{2}$ such that $\operatorname{diam}(\alpha)<2 \delta$ and $\left\{x, h_{n}(x)\right\}$ $\subset \alpha$. If $\alpha \cap F=\emptyset$ or if $\alpha \cap F=\{y\}$ then α contains an arc in U connecting x and y and establishes in these cases that $d_{U}^{*}\left(x, h_{n}(x)\right) \leq \operatorname{diam}(\alpha)<2 \delta<\varepsilon$.

If $\alpha \cap F$ contains at least two points then let β denote the closure of the component of $U \cap \alpha$ which contains x. Let $\{w, z\}$ denote the endpoints of β. Thus $\{w, z\}=F \cap \beta$. Let C denote the curve $\beta \cup h_{n}(\beta)$. We observe that $\operatorname{diam}\left(h_{n}(\beta)\right)<\varepsilon / 2$. Consequently, $\operatorname{diam}(C)=\operatorname{diam}\left(\beta \cup h_{n}(\beta)\right)<$ $2 \delta+\varepsilon / 2=\varepsilon$. If $\beta \cap h_{n}(\beta) \neq\{w, z\}$ then there is a point $y \in \beta \cap h_{n}(\beta) \cap U$.

Hence $C \backslash\{w, z\}$ is path connected in U and it follows in this case that $d_{U}^{*}\left(x, h_{n}(x)\right)<\varepsilon$.

Finally, suppose that $\beta \cap h_{n}(\beta)=\{w, z\}$. In this case C is a simple closed curve. Let D denote the closed disk bounded by C. We will show that h_{n} has no fixed points on $\operatorname{int}(D)$. Suppose in order to obtain a contradiction that h_{n} has a fixed point y in the interior of D. Let ω denote the space of paths from w to z inside the space $\mathbb{R}^{2} \backslash y$. Because C is a simple closed curve, β and $h_{n}(\beta)$ belong to different homotopy classes in ω. On the other hand, h_{n} is orientation preserving and hence by Remark 4.3, h_{n} is isotopic to the identity via an isotopy which leaves w, z, and y fixed at all times. This shows that β and $h_{n}(\beta)$ belong to the same homotopy class in ω and we have a contradiction. Therefore h_{n} must be fixed point free on $\operatorname{int}(D)$. Hence $D \backslash\{w, z\}$ is path connected in U and $\{x, h(x)\} \subset D \backslash\{w, z\}$. Furthermore, $\operatorname{diam}(D \backslash\{w, z\})=\operatorname{diam}(C)$ since the diameter of a small closed disk in S^{2} is achieved on its boundary. This establishes that $d_{U}^{*}\left(x, h_{n}(x)\right)<\varepsilon$.

Corollary 5.2. If $h_{n} \in H_{U}$ and $h_{n} \rightarrow$ id then $h_{n} \rightarrow$ id uniformly in $H_{U^{*}}$.

Proof. Suppose $\varepsilon>0$. By Theorem 5.1 choose a compact set $D \subset U$ such that $d_{U}^{*}\left(x, h_{n}(x)\right)<\varepsilon$ for all $n \in \mathbb{Z}^{+}$and $x \in U \backslash D$. Choose $\delta<\varepsilon$ such that $\bigcup_{x \in D} B(x, \delta) \subset U$. Choose $N \in \mathbb{Z}^{+}$such that if $n \geq N$ then $d\left(h_{n}(x), x\right)<\delta$. Suppose $x \in U^{*}$ and $n \geq N$. If $x \notin D$ then $d_{U}^{*}\left(x, h_{n}(x)\right)<\varepsilon$. If $x \in D$ then $B(x, \delta) \subset U$. Thus $d_{U}^{*}\left(h_{n}(x), x\right)=d\left(h_{n}(x), x\right)<\delta<\varepsilon$.

Lemma 5.3. Suppose $\phi_{n}: U^{*} \hookrightarrow U$ is a uniformly equicontinuous sequence of embeddings. Suppose $h_{k} \in H_{U}$ and $h_{k} \rightarrow \mathrm{id}$ uniformly. Then the doubly indexed sequence $\phi_{n} h_{k} \phi_{n}^{-1}$ enjoys the following convergence property: for each $\varepsilon>0$ there is $N \in \mathbb{Z}^{+}$such that if $k, n \geq N$ and $x \in \operatorname{im}\left(\phi_{n}\right)$ then $d\left(\phi_{n} h_{k} \phi_{n}^{-1}(x), x\right)<\varepsilon$.

Proof. Suppose $\varepsilon>0$. By uniform equicontinuity of $\left\{\phi_{n}\right\}$ choose $\delta>0$ so that if $d^{*}(x, y)<\delta$ then $d\left(\phi_{n}(x), \phi_{n}(y)\right)<\varepsilon$ for all n. By Corollary 5.2 choose $N \in \mathbb{Z}^{+}$such that $k \geq N \Rightarrow d^{*}\left(x, h_{k}(x)\right)<\delta$. Suppose that $k \geq N$ and $x \in \operatorname{im}\left(\phi_{n}\right)$. Let $x=\phi_{n}(y)$. Thus $d\left(\phi_{n} h_{k} \phi_{n}^{-1}(x), x\right)=d\left(\phi_{n} h_{k}(y), \phi_{n}(y)\right)$ $<\varepsilon$.
6. The geometry of planar $\mathbf{P L}$ disks. Suppose $D \subset \mathbb{R}^{2}$ is a closed PL disk. We will construct a contraction π_{t} of D which monotonically shrinks the diameter of each path in D. This is achieved by triangulating D and almost collapsing successive 2 -simplices. The contraction π_{t} is not conjugate to the radial contraction since the orbits are not injective. However, π_{t} is $1-1$ for each $t \in[0,1)$, and the "Alexander isotopy" determined by π_{t} is well behaved in a sense which does not depend on D. This enables us to
canonically connect pairs of points h and g in $H_{D^{*}}$ by a path whose diameter is controlled only by the distance between h and g.

Lemma 6.1. If $h \in H_{D^{*}}$ then $d_{H_{D^{*}}}(h, \mathrm{id}) \leq 4 d_{H_{D}}(h, \mathrm{id})$.
Proof. Suppose $|h(x)-x|<\varepsilon$ for $x \in D$. Suppose $x \in D$. If the straight line segment $[x, h(x)] \subset D$ then $d^{*}(x, h(x))=|h(x)-x|<\varepsilon<$ 4ε. Otherwise let $z \in[x, h(x)] \cap \partial D$. We observe that $[x, z] \cup h([z, x])$ is a path in D connecting x and $h(x)$. Suppose $v, w \in[x, z]$. Then $\mid h(v)-$ $h(w)|\leq|h(v)-v|+|v-w|+|w-h(w)|$. Thus diam $(h([x, z])) \leq 3 \varepsilon$. Hence $\operatorname{diam}([x, z] \cup h([z, x])) \leq 4 \varepsilon$. This shows $d_{H_{D^{*}}}(h, \mathrm{id}) \leq 4 d_{H_{D}}(h, \mathrm{id})$.

Definition 6.1. Suppose $D, E \subset \mathbb{R}^{2}$ are closed PL disks. We endow D and E with the respective metrics d_{D}^{*} and d_{E}^{*}. Suppose $E \subset D$. By a careful deformation of D into E we mean a homotopy $H: D \times[0,1] \rightarrow D$ such that

1. $H(x, 0)=x \forall x \in D$. $\left(H_{0}=\mathrm{id}\right)$
2. $\forall t \in[0,1], \forall x, y \in D, H(x, t)=H(y, t)$ iff $x=y$. (H_{t} is one-to-one)
3. $H(x, 1) \in E \forall x \in D$. $\left(\operatorname{im}\left(H_{1}\right) \subset E\right)$
4. $d_{E}^{*}(x, y)=d_{D}^{*}(x, y) \forall x, y \in E$. (minimal paths in E are also minimal in D)
5. $d_{D}^{*}(H(x, t), H(y, t)) \leq d_{D}^{*}(x, y) \forall x, y \in D, \forall t \in[0,1]$. $(x$ and y are never further apart than their initial positions)

Lemma 6.2. If P is a convex $P L$ disk with a side c such that the interior angles of P are acute at the endpoints of c then for each $\varepsilon>0$ there exists a careful deformation of P into a convex $P L$ disk W such that $c \subset W$ and the angles in W at each endpoint of c are less than ε. We call such a deformation a fundamental move of W towards c.

Proof. Embed P in the plane isometrically so that $c \subset x$-axis. For ε sufficiently small and $t \in[0,1-\varepsilon]$, the deformation is realized by the linear maps determined by the matrices $\left[\begin{array}{cc}1 & 0 \\ 0 & 1-t\end{array}\right]$ acting on P.

Lemma 6.3. Suppose T is a 2 -simplex with vertices x, y, and z. Suppose $W_{x z}$ and $W_{y z}$ are convex PL disks such that $W_{x z} \cap T=[x, z], W_{y z} \cap T=$ $[y, z]$, and $W_{x z} \cap W_{y z}=z$. Suppose furthermore that the interior angles in $W_{x z}$ and $W_{y z}$ are acute at the endpoints of $[x, z]$ and $[y, z]$ respectively. Let $P=T \cup W_{x z} \cup W_{y z}$. Then there exists a careful deformation of P into T such that $H_{1}(P)$ is convex, $[x, y] \subset H_{1}(P)$ and the interior angles of $H_{1}(P)$ are acute at x and y.

Proof. If the angles of T at x and y are both acute then apply fundamental moves of $W_{x z}$ and $W_{y z}$ respectively towards $[x, z]$ and $[y, z]$ as in Lemma 6.2 until the resulting PL disk is convex with acute angles at x and y. Now apply a fundamental move towards $[x, y]$ until the resulting body is inside T. Suppose on the other hand that the angle of T at x is nonacute.

See Figure 1. Choose $w \in[y, z]$ such that that $|x-z|=|w-z|$. Hence the triangle $[x, w, z]$ has acute angles at x and w, and the triangle $[x, w, y]$ has acute angles at x and y.

Fig. 1. Carefully deforming $T \cup W_{x z} \cup W_{y z}$ into T
Apply fundamental moves of $W_{x z}$ and $W_{y z}$ respectively towards $[x, z]$ and $[y, z]$ as in Lemma 6.2 until the resulting PL disk is the union of two acute convex disks T_{1} and T_{2} joined along a common side $\left[x, w^{\prime}\right]$ such that $[x, w] \subset\left[x, w^{\prime}\right]$, and such that the interior angles of T_{1} are acute at x and y and the interior angles of T_{2} are acute at x and w^{\prime}. Now apply a fundamental move of T_{2} towards $\left[x, w^{\prime}\right]$ until the resulting disk is convex and has convex angles at both x and y. Apply another fundamental move towards $[x, y]$ until the resulting body is contained in T.

Lemma 6.4. Suppose $D \subset \mathbb{R}^{2}$ is a closed $P L$ disk. There exists a contraction $\pi_{t}: D^{*} \rightarrow D^{*}$ such that $\pi_{t_{[0,1-\varepsilon]}}$ is a careful deformation for each $\varepsilon>0$.

Proof. Triangulate D with 2-simplices T_{1}, \ldots, T_{n} such that T_{i} has two free edges in the PL disk $\bigcup_{k=1}^{i} T_{k}$. For the existence of such a triangulation see p. 23 of Bing [1]. Let $c_{i}=T_{i} \cap \bigcup_{k=1}^{i-1} T_{k}$. Starting with $i=n$ and working backwards towards $i=1$, carefully deform T_{i} and the attached convex 2 -cells towards c_{i} as in Lemma 6.3. After $n-1$ moves we are left with a starlike disk inside of which T_{1} is inscribed. Perform fundamental moves on the convex cells attached to the edges of T_{1} until the resulting disk is convex. Now contract radially to a point.

Corollary 6.5. There exists a contraction $\Pi_{t}: H_{D^{*}} \rightarrow H_{D^{*}}$ such that for all $t \in[0,1]$ and all $g \in H_{D^{*}}, d_{H_{D^{*}}}\left(\Pi_{t}(g), \mathrm{id}\right) \leq d_{H_{D^{*}}}(g, \mathrm{id})$.

Proof. Let $\pi_{t}: D^{*} \rightarrow D^{*}$ be a contraction as in Lemma 6.4. Define $\Pi_{t}: H_{D^{*}} \rightarrow H_{D^{*}}$ as follows:

$$
\Pi_{t}(g)(x)= \begin{cases}\pi_{t} g \pi_{t}^{-1}(x) & \text { if } x \in \operatorname{im}\left(\pi_{t}\right) \\ x & \text { otherwise }\end{cases}
$$

It follows from Theorem 3.1 that Π_{t} is well defined. Continuity of π_{t} ensures continuity of Π_{t}. If $x \notin \operatorname{im}\left(\pi_{t}\right)$ then $d_{D}^{*}\left(\Pi_{t}(g)(x), \operatorname{id}(x)\right)=d_{D}^{*}(x, x)=0$. If $x \in \operatorname{im}\left(\pi_{t}\right)$ then $x=\pi_{t}(y)$. Thus

$$
d_{D}^{*}\left(\Pi_{t}(g)(x), \operatorname{id}(x)\right)=d_{D}^{*}\left(\pi_{t} g \pi_{t}^{-1}(x), x\right)=d_{D}^{*}\left(\pi_{t} g(y), \pi_{t}(y)\right)
$$

But by Lemma 6.4,

$$
d_{D}^{*}\left(\pi_{t} g(y), \pi_{t}(y)\right) \leq d_{D}^{*}(g(y), y) \leq d_{H_{D^{*}}}(g, \mathrm{id})
$$

Thus $d_{H_{D^{*}}}\left(\Pi_{t}(g), \mathrm{id}\right) \leq d_{H_{D^{*}}}(g, \mathrm{id})$.
Corollary 6.6. There exists a homotopy $F_{t}: H_{D^{*}} \times H_{D^{*}} \rightarrow H_{D^{*}}$ satisfying

1. $F_{0}(f, g)=f \forall f \in H_{D^{*}}$.
2. $F_{1}(f, g)=g \forall g \in H_{D^{*}}$.
3. $d_{H_{D^{*}}}\left(F_{t}(f, g), g\right) \leq d_{H_{D^{*}}}(f, g) \forall(f, g) \in H_{D^{*}} \times H_{D^{*}}$.

Proof. Let $F_{t}(f, g)=\Pi_{t}\left(f g^{-1}\right) g$ where $\Pi_{t}: H_{D^{*}} \rightarrow H_{D^{*}}$ is constructed as in Corollary 6.5. Thus

$$
\begin{aligned}
d_{H_{D^{*}}}\left(F_{t}(f, g), g\right) & =d_{H_{D^{*}}}\left(\Pi_{t}\left(f g^{-1}\right) g, g\right)=d_{H_{D^{*}}}\left(\Pi_{t}\left(f g^{-1}\right) g, g\right) \\
& =d_{H_{D^{*}}}\left(\Pi_{t}\left(f g^{-1}\right), \mathrm{id}\right)
\end{aligned}
$$

(by Remark 4.2). But $d_{H_{D^{*}}}\left(\Pi_{t}\left(f g^{-1}\right)\right.$, id) $\leq d_{H_{D^{*}}}\left(f g^{-1}, \mathrm{id}\right)=d_{H_{D^{*}}}(f, g)$ (by Corollary 6.5). Thus $d_{H_{D^{*}}}\left(F_{t}(f, g), g\right) \leq d_{H_{D^{*}}}(f, g)$.
7. Proof of Theorem 3.1. \Rightarrow It suffices to check continuity of \bar{g} at ∂V. Suppose $x_{n} \rightarrow x$ where $x \in \partial V$ and $x_{n} \in V$. Let $y_{n}=\phi^{-1}\left(x_{n}\right)$. We will first observe that $\lim _{n \rightarrow \infty} d\left(y_{n}, \partial U\right)=0$. Otherwise for some $\varepsilon>0$ and for some subsequence $\left\{z_{n}\right\}$ of $\left\{y_{n}\right\}$ we would have $d\left(z_{n}, \partial U\right) \geq \varepsilon$. Hence by compactness of $\bar{U},\left\{z_{k}\right\}$ has a convergent subsequence $\left\{w_{n}\right\}$ such that $\lim _{n \rightarrow \infty} w_{n} \in U$. It follows that $\lim _{n \rightarrow \infty} \phi\left(w_{n}\right) \in V$. This contradicts $\lim _{n \rightarrow \infty} \phi\left(w_{n}\right)=x \in \partial V$, and establishes that $\lim _{n \rightarrow \infty} d\left(y_{n}, \partial U\right)=0$.

We will next observe that $\lim _{n \rightarrow \infty} d^{*}\left(y_{n}, h\left(y_{n}\right)\right)=0$. Suppose, in order to obtain a contradiction, that $d^{*}\left(z_{n}, h\left(z_{n}\right) \geq \gamma\right.$ for some $\gamma>0$ and some subsequence $\left\{z_{n}\right\}$ of $\left\{y_{n}\right\}$. Because \bar{U} is compact, $\left\{z_{n}\right\}$ has a convergent subsequence $\left\{w_{n}\right\}$. Let $w=\lim _{n \rightarrow \infty} w_{n}$. We have $w \in \partial U$ since $\lim _{n \rightarrow \infty} d\left(y_{n}, \partial U\right)=0$. Hence by Lemma 5.1, $\lim _{n \rightarrow \infty} d^{*}\left(w_{n}, h\left(w_{n}\right)\right)=0$.

This contradicts $d^{*}\left(w_{n}, h\left(w_{n}\right) \geq \gamma\right.$ and establishes that $\lim _{n \rightarrow \infty} d^{*}\left(y_{n}, h\left(y_{n}\right)\right)$ $=0$.

Suppose $\varepsilon>0$. By uniform continuity of ϕ choose $\delta>0$ such that if $\{w, z\} \subset U^{*}$ and $d^{*}(w, z)<\delta$ then $d(\phi(w), \phi(z))<\varepsilon / 2$. Choose $N \in \mathbb{Z}^{+}$ such that if $n \geq N$ then $d^{*}\left(y_{n}, h\left(y_{n}\right)\right)<\delta$ and $d\left(x_{n}, x\right)<\varepsilon / 2$. Suppose $n \geq N$. Then

$$
\begin{aligned}
d\left(\bar{g}(x), \bar{g}\left(x_{n}\right)\right) & =d\left(x, g\left(x_{n}\right)\right) \leq d\left(x, x_{n}\right)+d\left(x_{n}, g\left(x_{n}\right)\right) \\
& =d\left(x, x_{n}\right)+d\left(x_{n}, \phi h \phi^{-1}\left(x_{n}\right)\right)
\end{aligned}
$$

Furthermore,

$$
d\left(x_{n},(\phi h \phi)^{-1}\left(x_{n}\right)\right)=d\left(\phi \phi^{-1}\left(x_{n}\right), \phi h \phi^{-1}\left(x_{n}\right)\right)=d\left(\phi\left(y_{n}\right), \phi h\left(y_{n}\right)\right)<\varepsilon / 2
$$

Thus $d\left(\bar{g}(x), \bar{g}\left(x_{n}\right)\right)<\varepsilon / 2+\varepsilon / 2$.
\Leftarrow Suppose that ϕ is not uniformly continuous. We will construct a homeomorphism $h \in H_{U}$ such that $\phi h \phi^{-1}$ cannot be extended to a homeomorphism in H_{V}. Choose $\varepsilon>0$ together with a sequence $\delta_{n} \rightarrow 0$ and points $x_{n}, y_{n} \in U^{*}$ such that $d^{*}\left(x_{n}, y_{n}\right)<\delta_{n}$ but $d\left(\phi\left(x_{n}\right), \phi\left(y_{n}\right)\right) \geq \varepsilon$. Because \bar{U} is compact $\left\{x_{n}\right\}$ has a convergent subsequence $\left\{x_{n_{k}}\right\}$ which converges in \bar{U} to some point $x \in \partial U$. (Otherwise if $x \in U$ it would follow from continuity of ϕ over U that $d\left(\phi\left(x_{n_{k}}\right), \phi\left(y_{n_{k}}\right)\right) \rightarrow 0$.)

Let α_{k} be a closed arc in U^{*} which connects $x_{n_{k}}$ and $y_{n_{k}}$ such that $\operatorname{diam}\left(\alpha_{k}\right) \rightarrow 0$. Let $\alpha_{k_{j}}$ be a subsequence of α_{k} of disjoint closed arcs. In order to avoid so many indices we may assume to begin with that we have obtained a sequence of disjoint closed arcs α_{n} in U with endpoints x_{n} and y_{n} such that $\operatorname{diam}\left(\alpha_{n}\right) \rightarrow 0$ and $d\left(\phi\left(x_{n}\right), \phi\left(y_{n}\right)\right) \geq \varepsilon$. Choose a sequence of disjoint closed disks D_{n} such that $\alpha_{n} \subset \operatorname{int}\left(D_{n}\right) \subset U$ and $\operatorname{diam}\left(D_{n}\right) \rightarrow 0$. Choose a sequence of closed disks E_{n} such that $x_{n} \in E_{n} \subset \operatorname{int}\left(D_{n}\right)$ and $\operatorname{diam}\left(\phi\left(E_{n}\right)\right) \rightarrow 0$. Let $z_{n} \in E_{n}$ such that $z_{n} \neq x_{n}$. Let $h_{n}: D_{n} \rightarrow D_{n}$ be a homeomorphism fixing ∂D_{n} pointwise such that $h_{n}\left(x_{n}\right)=x_{n}$ and $h_{n}\left(z_{n}\right)=y_{n}$. Define $h: \bar{U} \rightarrow \bar{U}$ as follows:

$$
h(x)= \begin{cases}h_{n}(x) & \text { if } x \in D_{n} \\ x & \text { otherwise }\end{cases}
$$

Let $w_{n}=\phi\left(x_{n}\right)$ and let $v_{n}=\phi\left(z_{n}\right)$.
We know that $d\left(w_{n}, v_{n}\right) \rightarrow 0$ since $\operatorname{diam}\left(\phi\left(E_{n}\right)\right) \rightarrow 0$. On the other hand, $d\left(\phi h \phi^{-1}\left(w_{n}\right), \phi h \phi^{-1}\left(v_{n}\right)\right)=d\left(\phi h\left(x_{n}\right), \phi h\left(z_{n}\right)\right)=d\left(\phi\left(x_{n}\right), \phi\left(y_{n}\right)\right) \geq \varepsilon$. Thus $\phi h \phi^{-1}$ is not uniformly continuous over V and consequently does not admit a continuous extension to \bar{V}.
8. Proof of Theorem 3.2. Construct a sequence of closed disks $D_{1} \subset$ $D_{2} \subset \ldots \subset \bar{U}$ such that $\operatorname{int}\left(D_{n}\right) \subset U, U=\bigcup_{n \in \mathbb{Z}^{+}} \operatorname{int}\left(D_{n}\right), D_{n} \cap \partial U$ is finite and contains at least three points, and $\operatorname{mesh}\left(D_{n}\right)<1 / n$.

Let $E_{n} \subset D_{n}$ be a closed disk such that $\partial E_{n} \cap \partial D_{n}=D_{n} \cap \partial U$ and such that each component of $D_{n} \backslash E_{n}$ has diameter less than $1 / n$. Let $\psi: U^{*} \rightarrow \operatorname{int}\left(D^{2}\right)$ be conformal. It is well known ([2], p. 634) that if h is a self-homeomorphism of \bar{U} such that $h(U)=U$, then $\psi^{-1} h \psi$ extends to a self-homeomorphism of D^{2}. In particular, by Theorem 3.1, ψ is uniformly continuous. It is also known ([11], p. 29) that ψ admits a continuous extension $\bar{\psi}: U \cup D_{n}$ such that $\psi_{\mid D_{n}}$ is one-to-one. Let $K_{n}=\bar{\psi}\left(E_{n}\right)$. Extend $\left(\bar{\psi}^{-1}\right)_{\mid K_{n}}$ to a homeomorphism $\kappa_{n}: D^{2} \rightarrow D_{n}$. Let $\phi_{n}=\kappa_{n} \psi$. Thus ϕ_{n} is one-to-one and uniformly continuous since it is the composition of uniformly continuous one-to-one functions.

To see that $\left\{\phi_{n}\right\}$ is uniformly equicontinuous suppose $\varepsilon>0$. Choose $N>3 / \varepsilon$. Choose $\delta<\varepsilon / 3$ so that if $d^{*}(x, y)<\delta$ and $n<N$ then $d\left(\phi_{n}(x), \phi_{n}(y)\right)<\varepsilon$. Suppose $n \geq N$ and $d^{*}(x, y)<\delta$. Choose a closed $\operatorname{arc} \alpha \subset U$ connecting x and y such that $\operatorname{diam}(\alpha)<\delta$.

If $\alpha \cap E_{n}=\emptyset$ then α is contained in some component of $U \backslash E_{n}$. It follows that $\phi_{n}(\alpha)$ is contained in some component of $D_{n} \backslash E_{n}$ since $\phi_{n}\left(E_{n}\right)=E_{n}$. Thus $d\left(\phi_{n}(x), \phi_{n}(y)\right)<\operatorname{diam}\left(\phi_{n}(\alpha)\right) \leq 1 / n \leq 1 / N<\varepsilon / 3<\varepsilon$.

Finally, suppose that $\alpha \cap E_{n} \neq \emptyset$. Let w and z be the first and last points respectively on $E_{n} \cap \alpha$ starting from x. Since $w, z \in E_{n}$ we have $d\left(\phi_{n}(w), \phi_{n}(z)\right)=d(w, z) \leq \operatorname{diam}(\alpha)<\delta<\varepsilon / 3$. If $x \neq w$ then $\operatorname{int}\left(\alpha_{x w}\right)$ is contained in some component of $U \backslash E_{n}$. Hence

$$
d\left(\phi_{n}(x), \phi_{n}(w)\right) \leq \operatorname{diam}\left(\phi_{n}\left(\alpha_{x w}\right)\right) \leq 1 / n<\varepsilon / 3 .
$$

Similarly it follows that $d\left(\phi_{n}(y), \phi_{n}(z)\right)<\varepsilon / 3$. Thus by the triangle inequality we have
$d\left(\phi_{n}(x), \phi_{n}(y)\right) \leq d\left(\phi_{n}(x), \phi_{n}(w)\right)+d\left(\phi_{n}(w), \phi_{n}(z)\right)+d\left(\phi_{n}(z), \phi_{n}(y)\right)<\varepsilon$.
Suppose $C \subset U$ is compact and $\varepsilon>0$. Choose $N>1 / \varepsilon$ so that if $n \geq N$ then $C \subset D_{n}$. Suppose $n \geq N$ and $x \in C$. If $x \in E_{n}$ then $\phi_{n}(x)=x$. If $x \in D_{n} \backslash E_{n}$ then $\left|\phi_{n}(x)-x\right|<1 / n<\varepsilon$ since each component of $D_{n} \backslash E_{n}$ maps into itself under ϕ_{n} and has diameter less than $1 / n$. This shows that $\phi_{n} \rightarrow$ id uniformly on compact sets.
9. Proof of Theorem 3.3. It follows from Theorem 3.1 that Φ_{n} is well defined. It is immediate from the definition that Φ_{n} is a homomorphism. Thus we need only check that each Φ_{n} is a continuous function, and that $\Phi_{n} \rightarrow$ ID uniformly on compact sets. To verify that Φ_{n} is a continuous function it suffices to check that Φ_{n} is continuous at id $\in H_{U}$ since Φ_{n} is a homomorphism between topological groups. Suppose $\varepsilon>0$, $n \in \mathbb{Z}^{+}$and $h_{n} \rightarrow \mathrm{id}$. By uniform continuity of ϕ_{n} choose $\delta>0$ such that $d_{U}^{*}(a, b)<\delta \Rightarrow d\left(\phi_{n}(a), \phi_{n}(b)\right)<\varepsilon$. By Corollary 5.2 choose $N \in \mathbb{Z}^{+}$such that if $n \geq N$ then $d_{U}^{*}\left(y, h_{n}(y)\right)<\delta$ for all $y \in U^{*}$. If $x \notin \operatorname{im}\left(\phi_{n}\right)$ then
$d\left(\Phi_{n}\left(h_{n}(x)\right), \Phi_{n}(\operatorname{id}(x))\right)=d(x, x)=0<\varepsilon$. Suppose $x \in \operatorname{im}\left(\phi_{n}\right)$ and $n \geq N$.
Let $x=\phi_{n}(y)$. We observe that

$$
d\left(\Phi_{n}\left(h_{n}(x)\right), \Phi_{n}(\operatorname{id}(x))\right)=d\left(\phi_{n} h_{n} \phi_{n}^{-1}(x), x\right)=d\left(\phi_{n} h_{n}(y), \phi_{n}(y)\right)<\varepsilon .
$$

Thus Φ_{n} is a continuous function for all $n \in \mathbb{Z}^{+}$.
Now we show $\Phi_{n} \rightarrow$ ID pointwise. Suppose $h \in H_{U}$ and $\varepsilon>0$. By uniform continuity of h and uniform equicontinuity of $\left\{\phi_{n}\right\}$ choose $\delta<\varepsilon / 2$ such that if $d(y, x)<\delta$ then $d(h(x), h(y))<\varepsilon / 2$ and such that if $d_{U}^{*}(x, y)<\delta$ then $d\left(\phi_{n}(x), \phi_{n}(y)\right)<\varepsilon / 2$. By Lemma 5.1 choose a compact set $D \subset U$ such that $d_{U}^{*}(x, h(x))<\delta$ for $x \in U \backslash D$. Choose a compact set E such that $D \cup h(D) \subset \operatorname{int}(E) \subset E \subset U$. By uniform continuity of $\left\{\phi_{n}\right\}$ on $E \cup h(E)$ choose $N \in \mathbb{Z}^{+}$such that if $n \geq N$ then $\phi_{n}^{-1}(D) \subset E \subset \operatorname{im}\left(\phi_{n}\right)$ and $d\left(\phi_{n}(x), x\right)<\delta$ for all $x \in E \cup h(E)$. Suppose $N \geq n$ and $x \in \bar{U}$. If $x \notin \operatorname{im}\left(\phi_{n}\right)$ then $x \notin D$. Hence

$$
d\left(\Phi_{n} h(x), \operatorname{ID} h(x)\right)=d(x, h(x)) \leq d_{U}^{*}(x, h(x))<\varepsilon / 2<\varepsilon .
$$

Suppose $x \in \operatorname{im}\left(\phi_{n}\right)$. Let $\phi_{n}(y)=x$. Then

$$
d\left(\Phi_{n} h(x), \operatorname{ID} h(x)\right)=d\left(\phi_{n} h \phi_{n}^{-1}(x), h(x)\right)=d\left(\phi_{n} h(y), h \phi_{n}(y)\right) .
$$

If $y \in E$ then $h(y) \in E \cup h(E)$ and $d\left(y, \phi_{n}(y)\right)<\delta$. Thus

$$
d\left(\phi_{n} h(y), h \phi_{n}(y)\right) \leq d\left(\phi_{n} h(y), h(y)\right)+d\left(h(y), h \phi_{n}(y)\right)<\varepsilon / 2+\varepsilon / 2=\varepsilon .
$$

If $y \notin E$ then $y \notin D$, and hence $d_{U}^{*}(x, h(x))<\delta$. Furthermore, $\phi_{n}(y) \notin D$ since $\phi_{n}^{-1}(D) \subset E$. Thus

$$
d\left(\phi_{n} h(y), h \phi_{n}(y)\right) \leq d\left(\phi_{n} h(y), \phi_{n}(y)\right)+d\left(\phi_{n}(y), h \phi_{n}(y)\right)<\varepsilon / 2+\varepsilon / 2=\varepsilon .
$$

This establishes that $\Phi_{n} \rightarrow$ ID pointwise. We now show that $\Phi_{n} \rightarrow$ ID uniformly on compact sets. By Remark 4.1 it suffices to show Φ_{n} converges uniformly on each sequence $h_{k} \rightarrow$ id $\in H_{U}$. Suppose $\varepsilon>0$. By uniform convergence of $\left\{h_{k}\right\}$ choose $K \in \mathbb{Z}^{+}$so that if $k \geq K$ then $d\left(h_{k}(x), x\right)<\varepsilon$ for all $x \in \bar{U}$. By Lemma 5.3 choose $M \geq K$ such that if $k, n \geq M$ and $x \in \operatorname{im}\left(\phi_{n}\right)$ then $d\left(\phi_{n} h_{k} \phi_{n}^{-1}(x), x\right)<\varepsilon$. By pointwise convergence of $\left\{\Phi_{n}\right\}$ on $\left\{h_{1}, \ldots, h_{M-1}\right\}$ choose $N \geq M$ such that if $n \geq N$ and $k<M$ then $d\left(\Phi_{n} h_{k}(x), \operatorname{ID} h(x)\right)<\varepsilon$ for all $x \in \bar{U}$. Suppose $n \geq N$ and $x \in \bar{U}$. If $k<M$ then $d\left(\Phi_{n} h_{k}(x)\right.$, $\left.\operatorname{ID} h(x)\right)<\varepsilon$. If $k \geq M$ and $x \in \operatorname{im}\left(\phi_{n}\right)$ then $d\left(\Phi_{n} h_{k}(x), \operatorname{ID} h(x)\right)=d\left(\phi_{n} h_{k} \phi_{n}^{-1}(x), x\right)<\varepsilon$. If $k \geq M$ and $x \notin \operatorname{im}\left(\phi_{n}\right)$ then $d\left(\Phi_{n} h_{k}(x), \operatorname{ID} h_{k}(x)\right)=d\left(x, h_{k}(x)\right)<\varepsilon$. Thus $\Phi_{n} \rightarrow$ ID uniformly on compact sets.

References

[1] R. H. Bing, The Geometric Topology of 3-Manifolds, Amer. Math. Soc., Providence, R.I., 1983.
[2] B. L. Brechner, On stable homeomorphisms and imbeddings of the pseudo-arc, Illinois J. Math. 22 (1978), 630-661.
[3] T. Dobrowolski and H. Toruńczyk, Separable complete ANR's admitting a group structure are Hilbert manifolds, Topology Appl. 12 (1981), 229-235.
[4] B. Friberg, A topological proof of a theorem of Kneser, Proc. Amer. Math. Soc. 39 (1973), 421-426.
[5] O. Hanner, Some theorems on absolute neighborhood retracts, Ark. Mat. 1 (1951), 389-408.
[6] W. Haver, Topological description of the space of homeomorphisms on closed 2manifolds, Illinois J. Math. 19 (1975), 632-635.
[7] D. Henderson, Infinite-dimensional manifolds are open subsets of Hilbert space, Topology 9 (1970), 25-33.
[8] W. B. R. Lickorish, A finite set of generators for the homeotopy group of a 2manifold, Proc. Cambridge Philos. Soc. 60 (1964), 769-778.
[9] R. Luke and W. K. Mason, The space of homeomorphisms on a compact twomanifold is an absolute neighborhood retract, Trans. Amer. Math. Soc. 164 (1972), 273-285.
[10] W. K. Mason, The space of all self-homeomorphisms of a 2-cell which fix the cell's boundary is an absolute retract, ibid. 161 (1971), 185-205.
[11] C. Pommerenke, Boundary Behavior of Conformal Maps, Springer, Berlin, 1991.
[12] D. J. Sprows, Isotopy groups of bounded 2-manifolds, Kumamoto J. Sci. (Math.) 15 (1983), 73-77.
[13] J. van Mill, Infinite Dimensional Topology, North-Holland, Amsterdam, 1989.

Department of Mathematics and Statistics

Drawer MA

Mississippi State University
Mississippi State, Mississippi 39762
U.S.A.

E-mail: fabel@math.msstate.edu

[^0]: 1991 Mathematics Subject Classification: Primary 58D05, 57S25; Secondary 58B05, 57S05.

