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Self-homeomorphisms of the 2-sphere
which fix pointwise a nonseparating continuum

by

Paul F a b e l (Mississippi State, Ms.)

Abstract. We prove that the space of orientation preserving homeomorphisms of
the 2-sphere which fix pointwise a nontrivial nonseparating continuum is a contractible
absolute neighborhood retract homeomorphic to the separable Hilbert space l2.

1. Introduction. Mason [10] proved that the space of self-homeomor-
phisms of the closed unit disk which fix pointwise the disk’s boundary is
an absolute retract homeomorphic to the separable Hilbert space l2. In this
paper we prove the following generalization:

Theorem 1.1. If F is a nondegenerate nonseparating proper subcontin-
uum of the 2-sphere S2 and if H denotes the group of orientation preserving
homeomorphisms of S2 which pointwise fix F, then H is an absolute retract
homeomorphic to the separable Hilbert space l2.

For a closed subset F of an n-manifold Mn let H(Mn, F ) and H(Mn, F,
idF ) denote respectively the self-homeomorphisms of Mn which leave F
invariant and which leave F pointwise fixed. Let H0(Mn, F ) denote the
path component of id in H(Mn, F ).

Three natural questions are:

1. Under what conditions is H(Mn, F ),H(Mn, F, idF ), or H0(Mn, F )
an ANR?

2. What is the homotopy type (or homeomorphism type) of H(Mn, F,
idF ), or H0(Mn, F )?

3. What is the mapping class group of Mn relative to F?

When n = 2 it has long been known that H(M2, ∅) is an ANR [9], and
the homeomorphism type [6] and mapping class group [8] of H(M2, ∅) are
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understood when M2 is closed. Other than cases in which F is a finite point
set or the finite union of disjoint simple closed curves [12], there has been
little attempt to address these questions when F 6= ∅. In this paper we con-
sider the case where M2 = S2 and F ⊂ S2 is a nondegenerate nonseparating
continuum and we prove H(Mn, F, idF ) is an absolute retract.

The paper is divided into 9 sections. We begin in Section 2 with some
definitions. The main result, Theorem 1.1, is proved in Section 3. The proof
depends on Theorems 3.1, 3.2, and 3.3, which are proved in Sections 7, 8,
and 9 respectively. Section 4 consists of lemmas and remarks useful else-
where in the paper. In Section 5 we examine the behavior of members of
H(Mn, F, idF ) near F . In Section 6 we construct a well behaved contraction
of a closed PL disk D and use it to gain control of the associated Alexander
isotopy.

I am grateful for the help of Alec Norton and Jim West.

2. Definitions. Let F ⊂ S2 denote a nondegenerate nonseparating con-
tinuum, let U = S2 \ F , and let ∂U = U \ U . By an l2-manifold we mean
a space which is locally homeomorphic to l2, the Hilbert space of square
summable sequences. The space Y is said to dominate the space X if there
exist maps φ : X → Y and ψ : Y → X such that the map ψφ : X → X
is homotopic to the identity map id : X → X. A homotopy ht : X → X is
said to be a deformation if h0 = id. If {x, y} ⊂ X then a path from x to
y is the image of a map α : [0, 1] → X such that α(0) = x and α(1) = y.
By an arc we mean any space homeomorphic to [0, 1]. A disk is any space
homeomorphic to the planar closed unit disk.

We consider S2 to be the union of two Euclidean 2-simplices σ1 and
σ2 attached along their common boundary as follows. Let T be a planar
equilateral triangle subdivided into four equiltateral triangles. We define a
quotient map q : T → S2 by folding each of the three corner triangles onto
the center triangle. We identify those triples of points (one point from each
of the three corner triangles) which touch after folding. Thus σ2 is the center
triangle and σ1 is the image of each of the three corner triangles under q.
Furthermore, q induces a metric on S2 as follows: d(x, y) = min{|w − z| |
q(w) = x and q(z) = y}. Thus both σ1 and σ2 inherit the Euclidean geom-
etry of a 2-simplex.

Definition 2.1. If X ⊂ S2 or R2 then HX denotes the self-homeo-
morphisms of S2 (resp. R2) which fix the complement of X pointwise. If
dX is a bounded metric on X we endow HX with the metric dHX (h, g) =
supx∈X dX(h(x), g(x)).

Definition 2.2. Suppose Y ⊂ S2 is connected and locally path con-
nected with metric dY . We define a metric d∗Y : Y × Y → R+ as follows:
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d∗Y (x, y) = inf
C
{diam(C) | C is a path in Y from x to y}.

We let Y ∗ denote the set Y together with the metric d∗Y .

Let G denote the space of continuous endomorphisms of HU . We endow
G with the compact-open topology. If D ⊂ U is a closed disk such that
int(D) ⊂ U and ∂U ∩ ∂D has at least two points, then by mesh(D) we
mean sup{diam(α) | α is a component of ∂D ∩ U}. If α ⊂ R2 is a closed
arc and x 6= y and x, y ∈ α, then let αxy denote the closed subarc of α with
endpoints {x, y}. We let ANR and AR denote absolute neighborhood retract
and absolute retract respectively.

3. Proof of Theorem 1.1

Outline. Let HU denote the orientation preserving homeomorphisms of
S2 which are supported on U where U = S2 \ F . Hanner [5], p. 405, has
proved the following. Suppose X1 ⊂ X2 ⊂ . . . ⊂ X and for each n, Xn is an
AR. Then if Ψ : X × [0, 1]→ X is a deformation such that Ψt(X) ⊂ Xn for
t ≤ 1/n then X is also an AR. Dobrowolski and Toruńczyk [3] have shown
that every completely metrizable non-locally-compact separable ANR which
admits a group structure is an l2-manifold. D. Henderson [7] has shown
that l2 manifolds are determined by their homotopy type. Consequently,
it suffices to prove that HU is contractible and dominated by a sequence
of ARs in the fashion described above in order to conclude that HU is
homeomorphic to l2.

We construct a contraction Ψs of HU as follows. We express U as the
nested union of a sequence of closed disks Pn. With the aid of a conformal
map ψ : U → int(D2) we then construct maps Φn : HU → HPn converging
to IDHU . Finally, we string together Alexander-like isotopies between HPn

and HPn+1 taking great care that the process is well behaved as n → ∞.
The difficulty is that in general ∂U is not locally connected and consequently
there is no small homeomorphism from ∂Pn onto ∂Pn+1.

The following theorems are essential to the proof of Theorem 1.1.

Theorem 3.1. Suppose V ⊂ S2 and φ : U∗ → V is a homeomorphism.
Then φ is uniformly continuous if and only if for each h ∈ HU the homeo-
morphism g = φhφ−1 : V → V can be extended to a homeomorphism
g ∈ HV .

Theorem 3.2. There exists a sequence of closed disks D1 ⊂ D2 ⊂ . . .
together with a uniformly equicontinuous sequence φn : U∗ ↪→ U of embed-
dings such that φn → id uniformly on compact sets and such that im(φn) =
int(Dn).
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Theorem 3.3. Suppose φn : U∗ ↪→ U is a uniformly equicontinuous
sequence of embeddings such that φn → id uniformly on compact sets. Then
Φn ∈ G and Φn → ID ∈ G where Φn : HU → HU is defined as follows:

Φn(h)(x) =
{
φnhφ

−1
n (x) if x ∈ im(φn),

x otherwise.

Proof of Main Theorem (The space HU is homeomorphic to l2). We first
show that HU is contractible. Without loss of generality we may assume
that int(σ2) ⊂ U and that the vertices of σ2 belong to ∂U . Construct as
in Theorem 3.2 a sequence of closed disks D1 ⊂ D2 ⊂ . . . together with a
sequence ψn : U∗ ↪→ U of uniformly equicontinuous embeddings such that
ψn → id uniformly on compact sets and such that im(ψn) = int(Dn) and
σ2 ⊂ D1. Choose a sequence of closed PL disks Pn and homeomorphisms
hn : Dn → Pn such that σ2 ⊂ P1, Pn ⊂ Dn, Pn ⊂ Pn+1, and |hn(x)− x| <
1/n. Let φn = hn(ψn). Let G denote the space of continuous endomorphisms
of HU . By Theorem 3.3 the sequence Φn : HU → HU defined by

Φn(h)(x) =
{
φnhφ

−1
n (x) if x ∈ im(φn),

x otherwise,

satisfies Φn ∈ G and Φn → ID ∈ G in the compact-open topology.
We observe that im(Φn−1) ⊂ HP∗

n−1
⊂ HP∗n . It follows from Lemma 4.3

and Corollary 6.6 that we may construct a homotopy Fn,t : HP∗n ×HP∗n →
HP∗n satisfying Fn,0(f, g) = f for f ∈ HP∗n , Fn,1(f, g) = g for g ∈ HP∗n , and
dHP∗n

(Fn,t(f, g), g) ≤ dHP∗n
(f, g) for (f, g) ∈ HP∗n ×HP∗n . For n ∈ {2, 3, . . .}

and t ∈ [0, 1] define a function Ψn+t : HU → HU by the rule Ψn+t(h) =
Fn,t(Φn−1(h), Φn(h)). We observe that

Ψn+1(h) = Fn,1(Φn−1(h), Φn(h)) = Φn(h)

= Fn,0(Φn(h), Φn+1(h)) = Ψ(n+1)+0(h).

Thus Ψn+t is well defined and Ψn+1 = Φn. Consequently, Ψn → ID in the
compact-open topology. Continuity of Φn−1, Φn, and Fn,t ensures that Ψn+t

is continuous. Furthermore, Ψs varies continuously with s since the homo-
topy Fn,t varies continuously with t. We observe that for h ∈ HU we have
by definition

dHU (Ψn+t(h), Ψn+1(h)) ≤ dHU∗ (Ψn+t(h), Ψn+1(h)).

By Lemma 4.2,

dHU∗ (Ψn+t(h), Ψn+1(h)) ≤ dHP∗n (Ψn+t(h), Ψn+1(h))

= dHP∗n
(Fn,t(Φn−1(h), Φn(h)), Φn(h)

≤ dHP∗n (Φn−1(h), Φn(h)).
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By Lemma 6.1,

dHP∗n
(Φn−1(h), Φn(h)) ≤ 4dHPn (Φn−1(h), Φn(h)) = 4dHPn (Ψn(h), Ψn+1(h))

= 4dHU (Ψn(h), Ψn+1(h)).

Combining these inequalities yields

dHU (Ψn+t(h), Ψn+1(h)) ≤ 4dHU (Ψn(h), Ψn+1(h)) for all n, t, h.

This establishes that Ψsn → ID whenever sn →∞.
We have thus constructed a deformation Ψs of HU (parameterized by

[2,∞]) into HP∗1 such that Ψs(HU ) ⊂ HP∗n if s ≥ n+ 1. By the title theorem
of Mason [10], HP∗n is an AR. Thus HU is dominated by a sequence of ARs in
the sense of Theorem 7.2, p. 405 of Hanner [5], and therefore HU is an AR.
Also HU admits a complete metric since it is a closed subspace of the full
homeomorphism group of the compact space S2, and the homeomorphism
group of any compactum admits a complete metric (p. 25 of [13]). Hence
HU is an l2-manifold by the title theorem of [3] since HU is a completely
metrizable non-locally-compact separable metric space admitting a group
structure. Thus HU is a contractible l2-manifold, and (Corollary 3, p. 759 of
[7]) l2-manifolds are determined up to homeomorphism by their homotopy
type. Therefore HU is homeomorphic to l2.

4. Lemmas and remarks

Remark 4.1. If φn : G→ H is a sequence of continuous homomorphisms
between metrizable topological groups then φn converges in the compact-
open topology if and only if φn converges uniformly on each sequence gk →
id ∈ G.

Lemma 4.1. If φ : U∗ → U is uniformly continuous then φ : U∗ → U∗ is
uniformly continuous.

P r o o f. Suppose ε > 0. Choose δ > 0 so that for all x, y ∈ U if d∗(x, y) <
δ then d(φ(x), φ(y)) < ε. Suppose d∗(x, y) < δ. Choose a path α ⊂ U
connecting x and y such that diam(α) < δ. Suppose φ(w), φ(z) ∈ φ(α).
Because d∗(w, z) < δ it follows that d(φ(w), φ(z)) < ε. Hence diam(φ(α))
< ε. Furthermore, φ(α) is a path which connects φ(x) and φ(y). This shows
d∗(φ(x), φ(y)) < ε.

Remark 4.2. For a fixed map g ∈ HX the self-map of HX defined by
the rule h 7→ h(g) is an isometry.

Remark 4.3. It is shown in [4] that orientation preserving homeomor-
phisms of S2 are isotopic to id. If h : S2 → S2 is an orientation preserving
homeomorphism which fixes {w, y, z} pointwise then there exists an isotopy
between h and id which fixes {w, y, z} at all times.
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Lemma 4.2. Suppose D ⊂ S2 is a closed disk such that int(D) ⊂ U . Then
ID : HD∗ ↪→ HU∗ is a contraction mapping in the sense that dHU∗ (f, g)
≤ dHD∗ (f, g) for f, g ∈ HD∗ .

Because int(D) ⊂ U it follows that HD∗ ⊂ HU∗ and thus ID is well
defined. Suppose f, g ∈ HD∗ . Suppose x ∈ int(D) and ε > 0. Choose a path
α ⊂ D such that diam(α) < d∗D(f(x), g(x))+ε/2. Choose a path β ⊂ int(D)
such that diam(β) < diam(α) + ε/2. Thus d∗U (f(x), g(x)) ≤ diam(β) <
d∗D(f(x), g(x)) + ε. Hence dHU∗ (f, g) ≤ dHD∗ (f, g) for f, g ∈ HD∗ .

Lemma 4.3. Suppose D ⊂ S2 is a closed disk such that σ2 is inscribed
in D (i.e. σ2 ⊂ D and the vertices of σ2 belong to ∂D). Then D∗ can be
canonically isometrically embedded in the plane.

P r o o f. Recall from our definition of S2 the quotient map q : T → S2.
We observe that D = σ2 ∪D1 ∪D2 ∪D3 where Di ⊂ σ1 (i = 1, 2, 3) are the
three 2-cells attached to σ2 along the edges of σ2. Hence we can “unfold”
D along each edge of σ2. In other words, if σ2 is inscribed in D then there
exists a unique isometric lifting s : D∗ ↪→ T such that q(s) = idD .

5. Behavior near ∂U . We examine the behavior of a convergent se-
quence {hn} ⊂ HU near ∂U . We prove in Lemma 5.1 that if x ∈ U is near
∂U then x and hn(x) can be connected by a uniformly short arc in U.

Lemma 5.1. Suppose hn is a convergent sequence in HU . Then for each
ε > 0 there exists a compact set D ⊂ U∗ such that d∗U (x, hn(x)) < ε for all
n ∈ Z+ and x ∈ U∗ \D.

P r o o f. Because S2 is compact it suffices to prove the lemma for any met-
ric which generates the usual topology on S2. For convenience we consider S2

to be the unit sphere in R3. Suppose 1 > ε > 0. By uniform equicontinuity
of hn choose δ < ε/2 such that if d(x, y) < 2δ then |hn(x) − hn(y)| < ε/2.
Choose γ < δ such that if |x − y| < γ then |hn(x) − hn(y)| < δ. Let
D = U \ ⋃x∈∂U B(x, γ). Suppose x ∈ U \ D and n ∈ Z+. There exists
y ∈ ∂U with |x− y| < γ. So |hn(x)− hn(y)| = |hn(x)− y| < δ and hence

|hn(x)− x| ≤ |hn(x)− y|+ |y − x| < δ + γ < 2δ.

Choose a simple closed curve α ⊂ R2 such that diam(α) < 2δ and {x, hn(x)}
⊂ α. If α∩F = ∅ or if α∩F = {y} then α contains an arc in U connecting x
and y and establishes in these cases that d∗U (x, hn(x)) ≤ diam(α) < 2δ < ε.

If α ∩ F contains at least two points then let β denote the closure of
the component of U ∩ α which contains x. Let {w, z} denote the endpoints
of β. Thus {w, z} = F ∩ β. Let C denote the curve β ∪ hn(β). We observe
that diam(hn(β)) < ε/2. Consequently, diam(C) = diam(β ∪ hn(β)) <
2δ + ε/2 = ε. If β ∩ hn(β) 6= {w, z} then there is a point y ∈ β ∩ hn(β)∩U .
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Hence C \ {w, z} is path connected in U and it follows in this case that
d∗U (x, hn(x)) < ε.

Finally, suppose that β∩hn(β) = {w, z}. In this case C is a simple closed
curve. Let D denote the closed disk bounded by C. We will show that hn
has no fixed points on int(D). Suppose in order to obtain a contradiction
that hn has a fixed point y in the interior of D. Let ω denote the space
of paths from w to z inside the space R2 \ y. Because C is a simple closed
curve, β and hn(β) belong to different homotopy classes in ω. On the other
hand, hn is orientation preserving and hence by Remark 4.3, hn is isotopic
to the identity via an isotopy which leaves w, z, and y fixed at all times. This
shows that β and hn(β) belong to the same homotopy class in ω and we
have a contradiction. Therefore hn must be fixed point free on int(D). Hence
D \ {w, z} is path connected in U and {x, h(x)} ⊂ D \ {w, z}. Furthermore,
diam(D \ {w, z}) = diam(C) since the diameter of a small closed disk in S2

is achieved on its boundary. This establishes that d∗U (x, hn(x)) < ε.

Corollary 5.2. If hn ∈ HU and hn → id then hn → id uniformly
in HU∗ .

P r o o f. Suppose ε > 0. By Theorem 5.1 choose a compact set D ⊂ U
such that d∗U (x, hn(x)) < ε for all n ∈ Z+ and x ∈ U \ D. Choose δ < ε
such that

⋃
x∈D B(x, δ) ⊂ U . Choose N ∈ Z+ such that if n ≥ N then

d(hn(x), x) < δ. Suppose x ∈ U∗ and n ≥ N . If x /∈ D then d∗U (x, hn(x)) < ε.
If x ∈ D then B(x, δ) ⊂ U . Thus d∗U (hn(x), x) = d(hn(x), x) < δ < ε.

Lemma 5.3. Suppose φn : U∗ ↪→ U is a uniformly equicontinuous se-
quence of embeddings. Suppose hk ∈ HU and hk → id uniformly. Then the
doubly indexed sequence φnhkφ−1

n enjoys the following convergence property :
for each ε > 0 there is N ∈ Z+ such that if k, n ≥ N and x ∈ im(φn) then
d(φnhkφ−1

n (x), x) < ε.

P r o o f. Suppose ε > 0. By uniform equicontinuity of {φn} choose δ > 0
so that if d∗(x, y) < δ then d(φn(x), φn(y)) < ε for all n. By Corollary 5.2
choose N ∈ Z+ such that k ≥ N ⇒ d∗(x, hk(x)) < δ. Suppose that k ≥ N
and x ∈ im(φn). Let x = φn(y). Thus d(φnhkφ−1

n (x), x) = d(φnhk(y), φn(y))
< ε.

6. The geometry of planar PL disks. Suppose D ⊂ R2 is a closed PL
disk. We will construct a contraction πt of D which monotonically shrinks
the diameter of each path in D. This is achieved by triangulating D and
almost collapsing successive 2-simplices. The contraction πt is not conjugate
to the radial contraction since the orbits are not injective. However, πt is
1-1 for each t ∈ [0, 1), and the “Alexander isotopy” determined by πt is
well behaved in a sense which does not depend on D. This enables us to
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canonically connect pairs of points h and g in HD∗ by a path whose diameter
is controlled only by the distance between h and g.

Lemma 6.1. If h ∈ HD∗ then dHD∗ (h, id) ≤ 4dHD (h, id).

P r o o f. Suppose |h(x) − x| < ε for x ∈ D. Suppose x ∈ D. If the
straight line segment [x, h(x)] ⊂ D then d∗(x, h(x)) = |h(x) − x| < ε <
4ε. Otherwise let z ∈ [x, h(x)] ∩ ∂D. We observe that [x, z] ∪ h([z, x]) is
a path in D connecting x and h(x). Suppose v, w ∈ [x, z]. Then |h(v) −
h(w)| ≤ |h(v)− v|+ |v −w|+ |w− h(w)|. Thus diam(h([x, z])) ≤ 3ε. Hence
diam([x, z] ∪ h([z, x])) ≤ 4ε. This shows dHD∗ (h, id) ≤ 4dHD (h, id).

Definition 6.1. Suppose D,E ⊂ R2 are closed PL disks. We endow D
and E with the respective metrics d∗D and d∗E . Suppose E ⊂ D. By a careful
deformation of D into E we mean a homotopy H : D× [0, 1]→ D such that

1. H(x, 0) = x ∀x ∈ D. (H0 = id)
2. ∀t ∈ [0, 1], ∀x, y ∈ D, H(x, t) = H(y, t) iff x = y. (Ht is one-to-one)
3. H(x, 1) ∈ E ∀x ∈ D. (im(H1) ⊂ E)
4. d∗E(x, y) = d∗D(x, y) ∀x, y ∈ E. (minimal paths in E are also minimal

in D)
5. d∗D(H(x, t),H(y, t)) ≤ d∗D(x, y) ∀x, y ∈ D, ∀t ∈ [0, 1]. (x and y are

never further apart than their initial positions)

Lemma 6.2. If P is a convex PL disk with a side c such that the interior
angles of P are acute at the endpoints of c then for each ε > 0 there exists a
careful deformation of P into a convex PL disk W such that c ⊂W and the
angles in W at each endpoint of c are less than ε. We call such a deformation
a fundamental move of W towards c.

P r o o f. Embed P in the plane isometrically so that c ⊂ x-axis. For ε
sufficiently small and t ∈ [0, 1− ε], the deformation is realized by the linear
maps determined by the matrices

[ 1 0
0 1−t

]
acting on P .

Lemma 6.3. Suppose T is a 2-simplex with vertices x, y, and z. Suppose
Wxz and Wyz are convex PL disks such that Wxz ∩ T = [x, z], Wyz ∩ T =
[y, z], and Wxz ∩Wyz = z. Suppose furthermore that the interior angles in
Wxz and Wyz are acute at the endpoints of [x, z] and [y, z] respectively. Let
P = T ∪Wxz ∪Wyz. Then there exists a careful deformation of P into T
such that H1(P ) is convex , [x, y] ⊂ H1(P ) and the interior angles of H1(P )
are acute at x and y.

P r o o f. If the angles of T at x and y are both acute then apply fun-
damental moves of Wxz and Wyz respectively towards [x, z] and [y, z] as in
Lemma 6.2 until the resulting PL disk is convex with acute angles at x and
y. Now apply a fundamental move towards [x, y] until the resulting body is
inside T . Suppose on the other hand that the angle of T at x is nonacute.
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See Figure 1. Choose w ∈ [y, z] such that that |x− z| = |w − z|. Hence the
triangle [x,w, z] has acute angles at x and w, and the triangle [x,w, y] has
acute angles at x and y.

Fig. 1. Carefully deforming T ∪Wxz ∪Wyz into T

Apply fundamental moves of Wxz and Wyz respectively towards [x, z]
and [y, z] as in Lemma 6.2 until the resulting PL disk is the union of two
acute convex disks T1 and T2 joined along a common side [x,w′] such that
[x,w] ⊂ [x,w′], and such that the interior angles of T1 are acute at x and y
and the interior angles of T2 are acute at x and w′. Now apply a fundamental
move of T2 towards [x,w′] until the resulting disk is convex and has convex
angles at both x and y. Apply another fundamental move towards [x, y] until
the resulting body is contained in T .

Lemma 6.4. Suppose D ⊂ R2 is a closed PL disk. There exists a con-
traction πt : D∗ → D∗ such that πt[0,1−ε] is a careful deformation for each
ε > 0.

P r o o f. Triangulate D with 2-simplices T1, . . . , Tn such that Ti has two
free edges in the PL disk

⋃i
k=1 Tk. For the existence of such a triangulation

see p. 23 of Bing [1]. Let ci = Ti∩
⋃i−1
k=1 Tk. Starting with i = n and working

backwards towards i = 1, carefully deform Ti and the attached convex 2-cells
towards ci as in Lemma 6.3. After n−1 moves we are left with a starlike disk
inside of which T1 is inscribed. Perform fundamental moves on the convex
cells attached to the edges of T1 until the resulting disk is convex. Now
contract radially to a point.
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Corollary 6.5. There exists a contraction Πt : HD∗ → HD∗ such that
for all t ∈ [0, 1] and all g ∈ HD∗ , dHD∗ (Πt(g), id) ≤ dHD∗ (g, id).

P r o o f. Let πt : D∗ → D∗ be a contraction as in Lemma 6.4. Define
Πt : HD∗ → HD∗ as follows:

Πt(g)(x) =
{
πtgπ

−1
t (x) if x ∈ im(πt),

x otherwise.
It follows from Theorem 3.1 that Πt is well defined. Continuity of πt ensures
continuity of Πt. If x /∈ im(πt) then d∗D(Πt(g)(x), id(x)) = d∗D(x, x) = 0. If
x ∈ im(πt) then x = πt(y). Thus

d∗D(Πt(g)(x), id(x)) = d∗D(πtgπ−1
t (x), x) = d∗D(πtg(y), πt(y)).

But by Lemma 6.4,

d∗D(πtg(y), πt(y)) ≤ d∗D(g(y), y) ≤ dHD∗ (g, id).

Thus dHD∗ (Πt(g), id) ≤ dHD∗ (g, id).

Corollary 6.6. There exists a homotopy Ft : HD∗ × HD∗ → HD∗

satisfying

1. F0(f, g) = f ∀f ∈ HD∗ .
2. F1(f, g) = g ∀g ∈ HD∗ .
3. dHD∗ (Ft(f, g), g) ≤ dHD∗ (f, g) ∀(f, g) ∈ HD∗ ×HD∗ .

P r o o f. Let Ft(f, g) = Πt(fg−1)g where Πt : HD∗ → HD∗ is constructed
as in Corollary 6.5. Thus

dHD∗ (Ft(f, g), g) = dHD∗ (Πt(fg−1)g, g) = dHD∗ (Πt(fg−1)g, g)

= dHD∗ (Πt(fg−1), id)

(by Remark 4.2). But dHD∗ (Πt(fg−1), id) ≤ dHD∗ (fg−1, id) = dHD∗ (f, g)
(by Corollary 6.5). Thus dHD∗ (Ft(f, g), g) ≤ dHD∗ (f, g).

7. Proof of Theorem 3.1. ⇒ It suffices to check continuity of g at
∂V . Suppose xn → x where x ∈ ∂V and xn ∈ V . Let yn = φ−1(xn). We
will first observe that limn→∞ d(yn, ∂U) = 0. Otherwise for some ε > 0
and for some subsequence {zn} of {yn} we would have d(zn, ∂U) ≥ ε.
Hence by compactness of U , {zk} has a convergent subsequence {wn} such
that limn→∞ wn ∈ U . It follows that limn→∞ φ(wn) ∈ V . This contradicts
limn→∞ φ(wn) = x ∈ ∂V, and establishes that limn→∞ d(yn, ∂U) = 0.

We will next observe that limn→∞ d∗(yn, h(yn)) = 0. Suppose, in or-
der to obtain a contradiction, that d∗(zn, h(zn) ≥ γ for some γ > 0 and
some subsequence {zn} of {yn}. Because U is compact, {zn} has a con-
vergent subsequence {wn}. Let w = limn→∞ wn. We have w ∈ ∂U since
limn→∞ d(yn, ∂U) = 0. Hence by Lemma 5.1, limn→∞ d∗(wn, h(wn)) = 0.
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This contradicts d∗(wn, h(wn)≥ γ and establishes that limn→∞ d∗(yn, h(yn))
= 0.

Suppose ε > 0. By uniform continuity of φ choose δ > 0 such that if
{w, z} ⊂ U∗ and d∗(w, z) < δ then d(φ(w), φ(z)) < ε/2. Choose N ∈ Z+

such that if n ≥ N then d∗(yn, h(yn)) < δ and d(xn, x) < ε/2. Suppose
n ≥ N . Then

d(g(x), g(xn)) = d(x, g(xn)) ≤ d(x, xn) + d(xn, g(xn))

= d(x, xn) + d(xn, φhφ−1(xn)).

Furthermore,

d(xn, (φhφ)−1(xn)) = d(φφ−1(xn), φhφ−1(xn)) = d(φ(yn), φh(yn)) < ε/2.

Thus d(g(x), g(xn)) < ε/2 + ε/2.
⇐ Suppose that φ is not uniformly continuous. We will construct a

homeomorphism h ∈ HU such that φhφ−1 cannot be extended to a homeo-
morphism in HV . Choose ε > 0 together with a sequence δn → 0 and points
xn, yn ∈ U∗ such that d∗(xn, yn) < δn but d(φ(xn), φ(yn)) ≥ ε. Because U
is compact {xn} has a convergent subsequence {xnk} which converges in U
to some point x ∈ ∂U . (Otherwise if x ∈ U it would follow from continuity
of φ over U that d(φ(xnk), φ(ynk))→ 0.)

Let αk be a closed arc in U∗ which connects xnk and ynk such that
diam(αk) → 0. Let αkj be a subsequence of αk of disjoint closed arcs. In
order to avoid so many indices we may assume to begin with that we have
obtained a sequence of disjoint closed arcs αn in U with endpoints xn and
yn such that diam(αn) → 0 and d(φ(xn), φ(yn)) ≥ ε. Choose a sequence of
disjoint closed disks Dn such that αn ⊂ int(Dn) ⊂ U and diam(Dn) → 0.
Choose a sequence of closed disks En such that xn ∈ En ⊂ int(Dn) and
diam(φ(En)) → 0. Let zn ∈ En such that zn 6= xn. Let hn : Dn → Dn

be a homeomorphism fixing ∂Dn pointwise such that hn(xn) = xn and
hn(zn) = yn. Define h : U → U as follows:

h(x) =
{
hn(x) if x ∈ Dn,
x otherwise.

Let wn = φ(xn) and let vn = φ(zn).
We know that d(wn, vn) → 0 since diam(φ(En)) → 0. On the other

hand, d(φhφ−1(wn), φhφ−1(vn)) = d(φh(xn), φh(zn)) = d(φ(xn), φ(yn))≥ ε.
Thus φhφ−1 is not uniformly continuous over V and consequently does not
admit a continuous extension to V .

8. Proof of Theorem 3.2. Construct a sequence of closed disks D1 ⊂
D2 ⊂ . . . ⊂ U such that int(Dn) ⊂ U , U =

⋃
n∈Z+ int(Dn), Dn∩∂U is finite

and contains at least three points, and mesh(Dn) < 1/n.
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Let En ⊂ Dn be a closed disk such that ∂En ∩ ∂Dn = Dn ∩ ∂U and
such that each component of Dn \ En has diameter less than 1/n. Let
ψ : U∗ → int(D2) be conformal. It is well known ([2], p. 634) that if h
is a self-homeomorphism of U such that h(U) = U , then ψ−1hψ extends to
a self-homeomorphism of D2. In particular, by Theorem 3.1, ψ is uniformly
continuous. It is also known ([11], p. 29) that ψ admits a continuous ex-
tension ψ : U ∪Dn such that ψ|Dn is one-to-one. Let Kn = ψ(En). Extend
(ψ−1)|Kn to a homeomorphism κn : D2 → Dn. Let φn = κnψ. Thus φn is
one-to-one and uniformly continuous since it is the composition of uniformly
continuous one-to-one functions.

To see that {φn} is uniformly equicontinuous suppose ε > 0. Choose
N > 3/ε. Choose δ < ε/3 so that if d∗(x, y) < δ and n < N then
d(φn(x), φn(y)) < ε. Suppose n ≥ N and d∗(x, y) < δ. Choose a closed
arc α ⊂ U connecting x and y such that diam(α) < δ.

If α∩En = ∅ then α is contained in some component of U \En. It follows
that φn(α) is contained in some component of Dn \En since φn(En) = En.
Thus d(φn(x), φn(y)) <diam(φn(α)) ≤ 1/n ≤ 1/N < ε/3 < ε.

Finally, suppose that α ∩ En 6= ∅. Let w and z be the first and last
points respectively on En ∩ α starting from x. Since w, z ∈ En we have
d(φn(w), φn(z)) = d(w, z) ≤ diam(α) < δ < ε/3. If x 6= w then int(αxw) is
contained in some component of U \ En. Hence

d(φn(x), φn(w)) ≤ diam(φn(αxw)) ≤ 1/n < ε/3.

Similarly it follows that d(φn(y), φn(z)) < ε/3. Thus by the triangle inequal-
ity we have

d(φn(x), φn(y)) ≤ d(φn(x), φn(w)) + d(φn(w), φn(z)) + d(φn(z), φn(y)) < ε.

Suppose C ⊂ U is compact and ε > 0. Choose N > 1/ε so that if n ≥ N
then C ⊂ Dn. Suppose n ≥ N and x ∈ C. If x ∈ En then φn(x) = x. If
x ∈ Dn \ En then |φn(x) − x| < 1/n < ε since each component of Dn \ En
maps into itself under φn and has diameter less than 1/n. This shows that
φn → id uniformly on compact sets.

9. Proof of Theorem 3.3. It follows from Theorem 3.1 that Φn is
well defined. It is immediate from the definition that Φn is a homomor-
phism. Thus we need only check that each Φn is a continuous function,
and that Φn → ID uniformly on compact sets. To verify that Φn is a
continuous function it suffices to check that Φn is continuous at id ∈ HU

since Φn is a homomorphism between topological groups. Suppose ε > 0,
n ∈ Z+ and hn → id. By uniform continuity of φn choose δ > 0 such that
d∗U (a, b) < δ ⇒ d(φn(a), φn(b)) < ε. By Corollary 5.2 choose N ∈ Z+ such
that if n ≥ N then d∗U (y, hn(y)) < δ for all y ∈ U∗. If x /∈ im(φn) then
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d(Φn(hn(x)), Φn(id(x))) = d(x, x) = 0 < ε. Suppose x ∈ im(φn) and n ≥ N .
Let x = φn(y). We observe that

d(Φn(hn(x)), Φn(id(x))) = d(φnhnφ−1
n (x), x) = d(φnhn(y), φn(y)) < ε.

Thus Φn is a continuous function for all n ∈ Z+.
Now we show Φn → ID pointwise. Suppose h ∈ HU and ε > 0. By

uniform continuity of h and uniform equicontinuity of {φn} choose δ < ε/2
such that if d(y, x) < δ then d(h(x), h(y)) < ε/2 and such that if d∗U (x, y) < δ
then d(φn(x), φn(y)) < ε/2. By Lemma 5.1 choose a compact set D ⊂ U
such that d∗U (x, h(x)) < δ for x ∈ U \ D. Choose a compact set E such
that D ∪ h(D) ⊂ int(E) ⊂ E ⊂ U . By uniform continuity of {φn} on
E ∪ h(E) choose N ∈ Z+ such that if n ≥ N then φ−1

n (D) ⊂ E ⊂ im(φn)
and d(φn(x), x) < δ for all x ∈ E ∪ h(E). Suppose N ≥ n and x ∈ U . If
x /∈ im(φn) then x /∈ D. Hence

d(Φnh(x), IDh(x)) = d(x, h(x)) ≤ d∗U (x, h(x)) < ε/2 < ε.

Suppose x ∈ im(φn). Let φn(y) = x. Then

d(Φnh(x), IDh(x)) = d(φnhφ−1
n (x), h(x)) = d(φnh(y), hφn(y)).

If y ∈ E then h(y) ∈ E ∪ h(E) and d(y, φn(y)) < δ. Thus

d(φnh(y), hφn(y)) ≤ d(φnh(y), h(y)) + d(h(y), hφn(y)) < ε/2 + ε/2 = ε.

If y /∈ E then y /∈ D, and hence d∗U (x, h(x)) < δ. Furthermore, φn(y) /∈ D
since φ−1

n (D) ⊂ E. Thus

d(φnh(y), hφn(y)) ≤ d(φnh(y), φn(y)) + d(φn(y), hφn(y)) < ε/2 + ε/2 = ε.

This establishes that Φn → ID pointwise. We now show that Φn → ID
uniformly on compact sets. By Remark 4.1 it suffices to show Φn converges
uniformly on each sequence hk → id ∈ HU . Suppose ε > 0. By uniform
convergence of {hk} choose K ∈ Z+ so that if k ≥ K then d(hk(x), x) < ε
for all x ∈ U . By Lemma 5.3 choose M ≥ K such that if k, n ≥ M and
x ∈ im(φn) then d(φnhkφ−1

n (x), x) < ε. By pointwise convergence of {Φn}
on {h1, . . . , hM−1} choose N ≥ M such that if n ≥ N and k < M then
d(Φnhk(x), IDh(x)) < ε for all x ∈ U . Suppose n ≥ N and x ∈ U . If
k < M then d(Φnhk(x), IDh(x)) < ε. If k ≥ M and x ∈ im(φn) then
d(Φnhk(x), IDh(x)) = d(φnhkφ−1

n (x), x) < ε. If k ≥ M and x /∈ im(φn)
then d(Φnhk(x), IDhk(x)) = d(x, hk(x)) < ε. Thus Φn → ID uniformly on
compact sets.
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