When a partial Borel order is linearizable

by

Vladimir Kanovei (Moscow)

Abstract

We prove a classification theorem of the "Glimm-Effros" type for Borel order relations: a Borel partial order on the reals either is Borel linearizable or includes a copy of a certain Borel partial order \leq_{0} which is not Borel linearizable.

Notation. A binary relation \preccurlyeq on a set X is a partial quasi-order, or p.q.-o. in brief, on X, iff $x \preccurlyeq y \wedge y \preccurlyeq z \Rightarrow x \preccurlyeq z$, and $x \preccurlyeq x$ for any $x \in X$. In this case, \approx is the associated equivalence relation, i.e. $x \approx y$ iff $x \preccurlyeq y \wedge y \preccurlyeq x$.

If in addition $x \approx x \Rightarrow x=x$ for any x then \preccurlyeq is a partial order, or p.o., so that, say, forcing relations are p.q.-o.'s, but, generally speaking, not p.o.'s in this terminology.

A p.o. is linear (l.o.) iff we have $x \preccurlyeq y \vee y \preccurlyeq x$ for all $x, y \in X$.
Let \preccurlyeq and \preccurlyeq^{\prime} be p.q.-o.'s on resp. X and X^{\prime}. A map $h: X \rightarrow X^{\prime}$ will be called half order preserving, or h.o.p., iff $x \preccurlyeq y \Rightarrow h(x) \preccurlyeq^{\prime} h(y)$.

Definition 1. A Borel p.q.-o. $\langle X ; \preccurlyeq\rangle$ is Borel linearizable iff there is a Borel l.o. $\left\langle X^{\prime} ; \preccurlyeq^{\prime}\right\rangle$ and a Borel h.o.p. map $h: X \rightarrow X^{\prime}$ (called a linearization map) satisfying $x \approx y \Leftrightarrow h(x)=h(y)\left({ }^{1}\right)$.

Introduction. Harrington, Marker, and Shelah [2] proved several theorems on Borel partial order relarions, mainly concerning thin p.q.-o.'s, i.e. those which do not admit uncountable pairwise incomparable subsets. In particular, they demonstrated that any such Borel p.q.-o. is Borel linearizable, and moreover the corresponding l.o. $\left\langle X^{\prime} ; \preccurlyeq^{\prime}\right\rangle$ can be chosen as a suborder of $\left\langle 2^{\alpha} ; \leq_{\text {lex }}\right\rangle$ for some $\alpha<\omega_{1}$, where $\leq_{\text {lex }}$ is the lexicographical order.

Key words and phrases: Borel partial order, Borel linear order.
1991 Mathematics Subject Classification: 03E15, 04A15.
This paper was accomplished during my visit to Caltech in April 1997. I thank Caltech for support and A. S. Kechris and J. Zapletal for useful information and interesting discussions relevant to the topic of this paper during the visit.
$\left({ }^{1}\right)$ The equivalence cannot be dropped in this definition as otherwise a one-element set X^{\prime} works in any case.

As elementary examples show that thinness is not a necessary condition for Borel linearizability, this result leaves open the problem of linearization of non-thin Borel p.q.-o.'s. Harrington et al. wrote in [2] that "there is little to say about nonthin orderings", although there are many interesting among them like the dominance order on ω^{ω}.

Our main result will say that not all Borel p.q.-o.'s are Borel linearizable, and there exists a minimal one, in a certain sense, among them.

Definition 2. Let $a, b \in 2^{\omega}$. We define $a \leq_{0} b$ iff either $a=b$ or $a \mathrm{E}_{0} b\left(^{2}\right)$ and $a\left(k_{0}\right)<b\left(k_{0}\right)$ where k_{0} is the largest k such that $a(k) \neq b(k)\left(^{3}\right)$.

The relation \leq_{0} is a Borel p.q.-o. on 2^{ω} which orders every E_{0}-class similarly to the integers \mathbb{Z} (except for the class $[\omega \times\{0\}]_{\mathrm{E}_{0}}$ ordered as ω and the class $[\omega \times\{1\}]_{\mathrm{E}_{0}}$ ordered as ω^{*}, the inverted order) but leaves any two E_{0}-inequivalent reals incomparable.

The following is the main result of the paper.
Theorem 3. Suppose that \preccurlyeq is a Borel p.q.-o. on $\mathcal{N}=\omega^{\omega}$. Then exactly one of the following two conditions is satisfied:
(I) \preccurlyeq is Borel linearizable; moreover $\left(^{4}\right)$, there exist an ordinal $\alpha<\omega_{1}$ and a Borel linearization map $h:\langle\mathcal{N} ; \preccurlyeq\rangle \rightarrow\left\langle 2^{\alpha} ; \leq_{\text {lex }}\right\rangle$.
(II) there exists a continuous 1-1 map $F: 2^{\omega} \rightarrow \mathcal{N}$ such that we have $a \leq_{0} b \Rightarrow F(a) \preccurlyeq F(b)$ while $a \mathbb{Z}_{0} b$ implies that $F(a)$ and $F(b)$ are $\preccurlyeq-$ incomparable $\left({ }^{5}\right)$.

The theorem resembles the case of Borel equivalence relations where a necessary and sufficient condition for a Borel equivalence relation E to be smooth is that E_{0} (which is not smooth) does not continuously embed in E (Harrington, Kechris and Louveau [1]). (\leq_{0} itself is not Borel linearizable.)

The proof is essentially a combination of ideas and techniques in [1, 2].

1. Incompatibility. Let us first prove that (I) and (II) are incompatible.
[^0]Suppose otherwise. The superposition of the maps F and h is then a Borel h.o.p. map $\phi:\left\langle 2^{\omega} ; \leq_{0}\right\rangle \rightarrow\left\langle 2^{\alpha} ; \leq_{\text {lex }}\right\rangle$ satisfying the following: $\phi(a)=\phi(b)$ implies that $a \mathrm{E}_{0} b$, i.e. a and b are \leq_{0} comparable.

Therefore, as any E_{0}-class is \leq_{0}-ordered similarly to \mathbb{Z}, ω, or ω^{*}, the ϕ-image $X_{a}=\phi "[a]_{\mathrm{E}_{0}}$ of the E_{0}-class of any $a \in 2^{\omega}$ is $\leq_{\text {lex }}$-ordered similarly to a subset of \mathbb{Z}. If $X_{a}=\left\{x_{a}\right\}$ is a singleton then put $\psi(a)=x_{a}$.

Assume now that X_{a} contains at least two points. In this case we can effectively pick an element in X_{a} ! Indeed, there is a maximal sequence $u \in 2^{<\alpha}$ such that $u \subseteq x$ for each $x \in X_{a}$. Then the set $X_{a}^{\text {left }}=\{x \in X$: $\left.u^{\wedge} 0 \subseteq x\right\}$ contains a $\leq_{\text {lex }}$-largest element, which we denote by $\psi(a)$.

To conclude, ψ is a Borel reduction of E_{0} to the equality on 2^{α}, i.e. $a \mathrm{E}_{0} b$ iff $\psi(a)=\psi(b)$, which is impossible because E_{0} is not a smooth Borel equivalence relation (see [1]).
2. The dichotomy. As usual, it will be assumed that the p.q.-o. \preccurlyeq of Theorem 3 is a Δ_{1}^{1} relation. Let \approx denote the associated equivalence.

Following [2] let, for $\alpha<\omega_{1}^{\mathrm{CK}}, \mathcal{F}_{\alpha}$ be the family of all h.o.p. Δ_{1}^{1} functions $f:\langle\mathcal{N} ; \preccurlyeq\rangle \rightarrow\left\langle 2^{\alpha} ; \leq_{\text {lex }}\right\rangle$. Then $\mathcal{F}=\bigcup_{\alpha<\omega_{1}^{\mathrm{CK}}} \mathcal{F}_{\alpha}$ is a (countable) Π_{1}^{1} set, in a suitable coding system for functions of this type. (See [2] for details.)

Define, for $x, y \in \mathcal{N}, x \equiv y$ iff $f(x)=f(y)$ for any $f \in \mathcal{F}$.
Lemma 4 (see [2]). \equiv is a Σ_{1}^{1} equivalence relation including \approx.
Proof. As \preccurlyeq is Δ_{1}^{1}, one gets by a rather standard argument a Π_{1}^{1} set $N \subseteq \omega$ and a function $f_{n} \in \mathcal{F}$ for any $n \in N$ so that $\mathcal{F}=\left\{f_{n}: n \in N\right\}$ and the relations $n \in N \wedge f_{n}(x) \leq_{\text {lex }} f_{n}(y)$ and $n \in N \wedge f_{n}(x)<_{\text {lex }} f_{n}(y)$ are presentable in the form $n \in N \wedge \mathcal{O}(x, y)$ and $n \in N \wedge \mathcal{O}^{\prime}(x, y)$ where $\mathcal{O}, \mathcal{O}^{\prime}$ are Σ_{1}^{1} relations. Now $x \equiv y$ iff $\forall n\left(n \in N \Rightarrow f_{n}(x)=f_{n}(y)\right)$, as required.

CASE $1: \equiv$ coincides with \approx. Let us show how this implies (I) of Theorem 3. The set

$$
P=\left\{\langle x, y, n\rangle: x \not \approx y \wedge f_{n}(x) \neq f_{n}(y)\right\}
$$

is Π_{1}^{1} and, by the assumption of Case 1 , its projection on x, y coincides with the complement of \approx. Let $Q \subseteq P$ be a Π_{1}^{1} set uniformizing P in the sense of $\mathcal{N}^{2} \times \omega$. Then Q is Δ_{1}^{1} because

$$
Q(x, y, n) \Leftrightarrow x \not \approx y \wedge \forall n^{\prime} \neq n\left(\neg Q\left(x, y, n^{\prime}\right)\right) .
$$

It follows that $N^{\prime}=\{n: \exists x, y Q(x, y, n)\} \subseteq N$ is Σ_{1}^{1}. Therefore by the Σ_{1}^{1} separation theorem there is a Δ_{1}^{1} set M such that $N^{\prime} \subseteq M \subseteq N\left({ }^{6}\right)$.

Consider a Δ_{1}^{1} enumeration $M=\left\{n_{l}: l \in \omega\right\}$. For any $l, f_{n_{l}} \in$ \mathcal{F}_{α} for some ordinal $\alpha=\alpha_{l}<\omega_{1}^{\mathrm{CK}}$. Another standard argument (see

[^1][2]) shows that in this case (e.g. when $M \subseteq N$ is a Δ_{1}^{1} set) the ordinals α_{l} are bounded by some $\alpha<\omega_{1}^{\mathrm{CK}}$. It follows that the function $h(x)=$ $f_{n_{0}}(x)^{\wedge} f_{n_{1}}(x)^{\wedge} f_{n_{2}}(x)^{\wedge} \ldots f_{n_{l}}(x)^{\wedge} \ldots$ belongs to some $\mathcal{F}_{\beta}, \beta \leq \alpha \cdot \omega$. On the other hand, by the construction we have $x \approx y \Leftrightarrow h(x)=h(y)$, hence h satisfies (I) of Theorem 3.

CASE 2: $\approx \varsubsetneqq \equiv$. Assuming this we work towards (II) of Theorem 3.
3. The domain of singularity. By the assumption the Σ_{1}^{1} set $A=$ $\{x: \exists y(x \approx y \wedge x \not \equiv y)\}$ is non-empty.

Define $X \equiv Y$ iff we have $\forall x \in X \exists y \in Y(x \equiv y)$ and vice versa.
Proposition 5. Let $X, Y \subseteq A$ be non-empty Σ_{1}^{1} sets satisfying $X \equiv Y$. Then the sets

$$
\begin{aligned}
& P_{+}=\{\langle x, y\rangle \in X \times Y: x \equiv y \wedge x \preccurlyeq y\}, \quad \text { and } \\
& P_{-}=\{\langle x, y\rangle \in X \times Y: x \equiv y \wedge x \nprec y\}
\end{aligned}
$$

are non-empty Σ_{1}^{1} sets, their projections $\left(^{7}\right) \mathrm{pr}_{1} P^{+}$and $\mathrm{pr}_{1} P^{-}$are Σ_{1}^{1} dense in $X\left({ }^{8}\right)$, while the projections $\mathrm{pr}_{2} P^{+}$and $\mathrm{pr}_{2} P^{-}$are Σ_{1}^{1}-dense in Y.

Proof. The density easily follows from the non-emptiness, so let us concentrate on the latter. We prove that $P_{+} \neq \emptyset$.

Suppose on the contrary that $P_{+}=\emptyset$. Then there is a single function $f \in \mathcal{F}$ such that the set $\{\langle x, y\rangle \in X \times Y: f(x)=f(y) \wedge x \preccurlyeq y\}$ is empty. (See the reasoning in Case 1 of Section 2.) Define

$$
X_{\infty}=\{x: \forall y \in Y(f(x)=f(y) \Rightarrow x \nprec y)\},
$$

so that X_{∞} is a Π_{1}^{1} set and $X \subseteq X_{\infty}$ but $Y \cap X_{\infty}=\emptyset$. Using separation, we can easily define an increasing sequence of sets

$$
X=X_{0} \subseteq U_{0} \subseteq X_{1} \subseteq U_{1} \subseteq \ldots \subseteq X_{n} \subseteq U_{n} \subseteq \ldots \subseteq X_{\infty}
$$

so that $U_{n}=\left\{x^{\prime}: \exists x \in X_{n}\left(f(x)=f\left(x^{\prime}\right) \wedge x \preccurlyeq x^{\prime}\right)\right\}$ while $X_{n+1} \in \Delta_{1}^{1}$ for all n. (Note that if $X_{n} \subseteq X_{\infty}$ and U_{n} is defined as indicated then $U_{n} \subseteq X_{\infty}$ too.) Moreover, a proper execution of the construction $\left({ }^{9}\right)$ allows getting the final set $U=\bigcup_{n} U_{n}=\bigcup_{n} X_{n}$ in Δ_{1}^{1}. Note that $X \subseteq U$, but $Y \cap U=\emptyset$ since $U \subseteq X_{\infty}$.

Put $f^{\prime}(x)=f(x)^{\wedge} 1$ whenever $x \in U$, and $f^{\prime}(x)=f(x)^{\wedge} 0$ otherwise. We assert that $f^{\prime} \in \mathcal{F}$. Indeed, suppose that $x^{\prime} \preccurlyeq y^{\prime}$; we prove $f^{\prime}\left(x^{\prime}\right) \leq_{\text {lex }} f^{\prime}\left(y^{\prime}\right)$.

[^2]It can be assumed that $f\left(x^{\prime}\right)=f\left(y^{\prime}\right)$. It remains to check that $x^{\prime} \in U \Rightarrow$ $y^{\prime} \in U$, which easily follows from the definition of the sets U_{n}. Thus $f^{\prime} \in \mathcal{F}$.

However, clearly $f^{\prime}(x) \neq f^{\prime}(y)$, hence $x \not \equiv y$, whenever $x \in X$ and $y \in Y$, which contradicts the assumption that $X \equiv Y$.

Now we prove that $P_{-} \neq \emptyset$. Consider first the case $X=Y$. Suppose on the contrary that $P_{-}=\emptyset$. Then, as above, there is a single function $f \in \mathcal{F}$ such that the set $\left\{\langle x, y\rangle \in X^{2}: f(x)=f(y) \wedge x \npreceq y\right\}$ is empty, so that \equiv and \approx coincide on X. Our plan is to find functions $f^{\prime}, f^{\prime \prime} \in \mathcal{F}$ such that

$$
\begin{aligned}
Q^{\prime} & =\left\{\langle x, y\rangle \in X \times \mathcal{N}: f^{\prime}(x)=f^{\prime}(y) \wedge y \npreceq x\right\}, \\
Q^{\prime \prime} & =\left\{\langle x, y\rangle \in X \times \mathcal{N}: f^{\prime \prime}(x)=f^{\prime \prime}(y) \wedge x \nprec y\right\}
\end{aligned}
$$

are empty sets; then $Q=\{\langle x, y\rangle \in X \times \mathcal{N}: x \equiv y \wedge y \not \approx x\}=\emptyset$, which contradicts $\emptyset \neq X \subseteq A$.

Let us find f^{\prime}; the case of the other function is similar. Define

$$
X_{\infty}=\left\{x: \forall x^{\prime} \in X\left(f(x)=f\left(x^{\prime}\right) \Rightarrow x \preccurlyeq x^{\prime}\right)\right\},
$$

so that X_{∞} is Π_{1}^{1} and $X \subseteq X_{\infty}$. As above there is a sequence of sets

$$
X=X_{0} \subseteq U_{0} \subseteq X_{1} \subseteq U_{1} \subseteq \ldots \subseteq X_{n} \subseteq U_{n} \subseteq \ldots \subseteq X_{\infty}
$$

such that $U_{n}=\left\{u: \exists x \in X_{n}(f(x)=f(u) \wedge u \preccurlyeq x)\right\}$ while $X_{n+1} \in \Delta_{1}^{1}$ for all n and the final set $U=\bigcup_{n} U_{n}=\bigcup_{n} X_{n}$ belongs to Δ_{1}^{1}.

Set $f^{\prime}(x)=f(x)^{\wedge} 0$ whenever $x \in U$, and $f^{\prime}(x)=f(x)^{\wedge} 1$ otherwise. Then $f^{\prime} \in \mathcal{F}$. We prove that f^{\prime} witnesses that $Q^{\prime}=\emptyset$. Consider any $x \in X$ and $y \in \mathcal{N}$ such that $f^{\prime}(x)=f^{\prime}(y)$. Then in particular $f(x)=f(y)$ and $x \in U \Leftrightarrow y \in U$, so that $y \in U$ because we know that $x \in X \subseteq U$. Thus $y \in X_{\infty}$, so by definition $y \preccurlyeq x$, as required.

Finally, we prove $P_{-} \neq \emptyset$ in the general case. By the result for the case $X=Y$, the Σ_{1}^{1} set $P^{\prime}=\left\{\left\langle x, x^{\prime}\right\rangle \in X^{2}: x \equiv x^{\prime} \wedge x \npreceq x^{\prime}\right\}$ is non-empty. Let $X^{\prime}=\left\{x^{\prime} \in X: \exists x P^{\prime}\left(x, x^{\prime}\right)\right\}$ and $Y^{\prime}=\left\{y \in Y: \exists x^{\prime} \in X^{\prime}\left(x^{\prime} \equiv y\right)\right\}$, so that X^{\prime}, Y^{\prime} are Σ_{1}^{1} sets satisfying $X^{\prime} \equiv Y^{\prime}$. By the result for P_{+}there exist $x^{\prime} \in X^{\prime}$ and $y \in Y^{\prime}$ satisfying $x^{\prime} \equiv y$ and $y \preccurlyeq x^{\prime}$. Now there is $x \in X$ such that $x \equiv x^{\prime}$ and $x \nprec x^{\prime}$. Then $x \equiv y$ and $x \npreceq y$, as required.
4. The forcing notions involved. Our further strategy will be the following. We shall define a generic extension of the universe \mathbf{V} (where Theorem 3 is being proved) in which there exists a function F which witnesses (II) of Theorem 3. However, as the existence of such a function is a Σ_{2}^{1} statement, we obtain the result for \mathbf{V} by the Shoenfield absoluteness theorem $\left({ }^{10}\right)$.

Definition 6. \mathbb{P} is the collection of all non-empty Σ_{1}^{1} sets $X \subseteq A$.

[^3]It is a standard fact that \mathbb{P} (the Gandy forcing) forces a real which is the only real which belongs to every set in the generic set $G \subseteq \mathbb{P}$. (We identify Σ_{1}^{1} sets in the ground universe \mathbf{V} with their copies in the extension.)

Definition 7. \mathbb{P}_{2}^{+}is the collection of all non-empty Σ_{1}^{1} sets $P \subseteq A^{2}$ such that $P(x, y) \Rightarrow x \equiv y \wedge x \preccurlyeq y$. The collection \mathbb{P}_{2}^{-}is defined similarly but with the requirement $P(x, y) \Rightarrow x \equiv y \wedge x \npreceq y$ instead.

Both \mathbb{P}_{2}^{+}and \mathbb{P}_{2}^{-}are non-empty forcing notions by Proposition 5. Each of them forces a pair of reals $\langle x, y\rangle \in A^{2}$ satisfying resp. $x \preccurlyeq y$ and $x \npreceq y$.

Definition 8. \mathbb{P}_{\equiv}^{2} is the collection of all sets of the form $\Upsilon=X \times Y$ where X, Y are sets in \mathbb{P} satisfying $X \equiv Y$.

Lemma 9. \mathbb{P}_{\equiv}^{2} forces a pair of reals $\langle x, y\rangle$ such that $x \nprec y$.
Proof. Suppose that, on the contrary, a condition $\Upsilon_{0}=X_{0} \times Y_{0}$ in \mathbb{P}_{\equiv}^{2} forces $x \preccurlyeq y$. Consider a more complicated forcing \mathfrak{P} which consists of forcing conditions of the form $\mathfrak{p}=\left\langle\Upsilon, P, \Upsilon^{\prime}, Q\right\rangle$, where $\Upsilon=X \times Y$ and $\Upsilon^{\prime}=X^{\prime} \times Y^{\prime}$ belong to $\mathbb{P}_{\equiv}^{2}, P \in \mathbb{P}_{2}^{+}, P \subseteq Y \times X^{\prime}, Q \in \mathbb{P}_{2}^{-}, Q \subseteq X \times Y^{\prime}$, and the sets $\mathrm{pr}_{1} P \subseteq Y, \mathrm{pr}_{2} P \subseteq X^{\prime}, \mathrm{pr}_{1} Q \subseteq X$ and $\mathrm{pr}_{2} Q \subseteq Y^{\prime}$ are Σ_{1}^{1}-dense in resp. $Y, X^{\prime}, X, Y^{\prime}$.

For instance, setting $P_{0}=\left\{\left\langle y, x^{\prime}\right\rangle \in Y_{0} \times X_{0}: y \equiv x^{\prime} \wedge y \preccurlyeq x^{\prime}\right\}$ and $Q_{0}=\left\{\left\langle x, y^{\prime}\right\rangle \in X_{0} \times Y_{0}: x \equiv y^{\prime} \wedge x \nless y^{\prime}\right\}$, we get a condition $\mathfrak{p}_{0}=$ $\left\langle\Upsilon_{0}, P_{0}, \Upsilon_{0}, Q_{0}\right\rangle \in \mathfrak{P}$ by Proposition 5.

It is the principal fact that if $\mathfrak{p}=\left\langle\Upsilon, P, \Upsilon^{\prime}, Q\right\rangle \in \mathfrak{P}$ and we strengthen one of the components within the corresponding forcing notion then this can be appropriately reflected in the other components. To be concrete assume that, for instance, $P^{*} \in \mathbb{P}_{2}^{+}, P^{*} \subseteq P$, and find a condition $\mathfrak{p}_{1}=\left\langle\Upsilon_{1}, P_{1}, \Upsilon_{1}^{\prime}, Q_{1}\right\rangle \in$ \mathfrak{P} satisfying $\Upsilon_{1} \subseteq \Upsilon, \Upsilon_{1}^{\prime} \subseteq \Upsilon^{\prime}, P_{1} \subseteq P^{*}$, and $Q_{1} \subseteq Q$.

Assume that $\Upsilon=X \times Y$ and $\Upsilon^{\prime}=X^{\prime} \times Y^{\prime}$. Consider the non-empty Σ_{1}^{1} sets $Y_{2}=\mathrm{pr}_{1} P^{*} \subseteq Y$ and $X_{2}=\left\{x \in X: \exists y \in Y_{2}(x \equiv y)\right\}$. It follows from Proposition 5 that $Q_{1}=\left\{\langle x, y\rangle \in Q: x \in X_{2}\right\} \neq \emptyset$, hence Q_{1} is a condition in \mathbb{P}_{2}^{-}and $X_{1}=\operatorname{pr}_{1} Q_{1}$ is a non-empty Σ_{1}^{1} subset of $X_{2} \subseteq X$.

The set $Y_{1}=\left\{y \in Y_{2}: \exists x \in X_{1}(x \equiv y)\right\}$ satisfies $X_{1} \equiv Y_{1}$, therefore $\Upsilon_{1}=X_{1} \times Y_{1} \in \mathbb{P}_{\equiv}^{2}$. Furthermore, $P_{1}=\left\{\langle y, x\rangle \in P^{*}: y \in Y_{1}\right\} \in \mathbb{P}_{2}^{+}$.

Put $X_{1}^{\prime}=\mathrm{pr}_{2} P_{1} \subseteq X^{\prime}$ and $Y_{1}^{\prime}=\mathrm{pr}_{2} Q_{1} \subseteq Y^{\prime}$. Notice that $Y_{1} \equiv X_{1}^{\prime}$ because any condition in \mathbb{P}_{2}^{+}is a subset of \equiv, similarly $X_{1} \equiv Y_{1}^{\prime}$, and $X_{1} \equiv Y_{1}$ (see above). It follows that $X_{1}^{\prime} \equiv Y_{1}^{\prime}$, hence $\Upsilon_{1}^{\prime}=X_{1}^{\prime} \times Y_{1}^{\prime}$ is a condition in \mathbb{P}_{\equiv}^{2}.

Now $\mathfrak{p}_{1}=\left\langle\Upsilon_{1}, P_{1}, \Upsilon_{1}^{\prime}, Q_{1}\right\rangle \in \mathfrak{P}$ as required.
We conclude that \mathfrak{P} forces "quadruples" of reals $\left\langle x, y, x^{\prime}, y^{\prime}\right\rangle$ such that the pairs $\langle x, y\rangle$ and $\left\langle x^{\prime}, y^{\prime}\right\rangle$ are \mathbb{P}_{\equiv}^{2}-generic, hence satisfy $x \preccurlyeq y$ and $x^{\prime} \preccurlyeq y^{\prime}$ provided the generic set contains Υ_{0}-by the assumption above. Furthermore, the pair $\left\langle y, x^{\prime}\right\rangle$ is \mathbb{P}_{2}^{+}-generic, hence $y \preccurlyeq x^{\prime}$, while the pair $\left\langle x, y^{\prime}\right\rangle$ is \mathbb{P}_{2}^{-}-generic, hence $x \nprec y^{\prime}$, which is a contradiction.
5. The splitting construction. Let, in the universe $\mathbf{V}, \kappa=2^{\aleph_{0}}$. Let \mathbf{V}^{+}be a κ-collapse extension of \mathbf{V}.

Our aim is to define, in \mathbf{V}^{+}, a splitting system of sets which leads to a function F satisfying (II) of Theorem 3. Let us fix two points before the construction starts.

First, as the forcing notions involved are countable in \mathbf{V}, there exist, in \mathbf{V}^{+}, enumerations $\{D(n): n \in \omega\},\left\{D_{2}(n): n \in \omega\right\}$, and $\left\{D^{2}(n): n \in \omega\right\}$ of all open dense sets in resp. $\mathbb{P}, \mathbb{P}_{2}^{+}, \mathbb{P}_{\equiv}^{2}$, which (the dense sets) belong to \mathbf{V}, such that $D(n+1) \subseteq D(n)$ etc. for each n.

Second, we introduce the notion of a crucial pair. A pair $\langle u, v\rangle$ of binary sequences $u, v \in 2^{n}$ is called crucial iff $u=1^{k \wedge} 0^{\wedge} w$ and $v=0^{k \wedge} 1^{\wedge} w$ for some $k<n$ and $w \in 2^{n-k-1}$. One easily sees that the graph of all crucial pairs in 2^{n} is actually a chain connecting all members of 2^{n}.

We define, in \mathbf{V}^{+}, a system of sets $X_{u} \in \mathbb{P}$, where $u \in 2^{<\omega}$, and sets $P_{u v} \in \mathbb{P}_{2}^{+},\langle u, v\rangle$ being a crucial pair in some 2^{n}, satisfying the following conditions:
(1) $X_{u} \in D(n)$ whenever $u \in 2^{n} ; X_{u^{\wedge} i} \subseteq X_{u}$;
(2) if $\langle u, v\rangle$ is a crucial pair in 2^{n} then $P_{u v} \in D_{2}(n)$ and $P_{u^{\wedge} i, v^{\wedge} i} \subseteq P_{u v}$;
(3) if $u, v \in 2^{n}$ and $u(n-1) \neq v(n-1)$ then $X_{u} \times X_{v} \in \mathbb{P}_{\equiv}^{2}, X_{u} \times X_{v} \in$ $D^{2}(n)$, and $X_{u} \cap X_{v}=\emptyset ;$
(4) if $\langle u, v\rangle$ is a crucial pair in 2^{n} then $\mathrm{pr}_{1} P_{u v}=X_{u}$ and $\mathrm{pr}_{2} P_{u v}=X_{v}$.

Why does this imply the existence of a required function? First of all for any $a \in 2^{\omega}$ (in \mathbf{V}^{+}) the sequence of sets $X_{a \upharpoonright n}$ is \mathbb{P}-generic over \mathbf{V} by (1), therefore the intersection $\bigcap_{n \in \omega} X_{a \upharpoonright n}$ is a singleton. Let $F(a) \in \mathcal{N}$ be its only element.

It does not take much effort to prove that F is continuous and 1-1.
Consider $a, b \in 2^{\omega}$ satisfying $a \mathbb{Z}_{0} b$. Then $a(n) \neq b(n)$ for infinitely many n, hence the pair $\langle F(a), F(b)\rangle$ is \mathbb{P}_{\equiv}^{2}-generic by (3), thus $F(a)$ and $F(b)$ are \preccurlyeq-incomparable by Lemma 9 .

Consider $a, b \in 2^{\omega}$ satisfying $a \leq_{0} b$. We may assume that a and b are \leq_{0}-neighbours, i.e. $a=1^{k \wedge} 0^{\wedge} c$ while $b=0^{k \wedge} 1^{\wedge} c$ for some $k \in \omega$ and $c \in 2^{\omega}$. Then by (2) the sequence of sets $P_{a \upharpoonright n, b \upharpoonright n}, n>k$, is \mathbb{P}_{2}^{+}-generic, hence it results in a pair of reals satisfying $x \preccurlyeq y$. However, $x=F(a)$ and $y=F(b)$ by (4).

The construction of a splitting system. We argue in \mathbf{V}^{+}.
Suppose that the construction has been completed up to a level n; we will expand it to the next level. From now on s, t will denote sequences in 2^{n} while u, v will denote sequences in 2^{n+1}.

To start with, we set $X_{s^{\wedge} i}=X_{s}$ for all $s \in 2^{n}$ and $i=0,1$, and $P_{s^{\wedge} i, t^{\wedge} i}=$ $P_{s t}$ whenever $i=0,1$ and $\langle s, t\rangle$ is a crucial pair in 2^{n}.

For the "initial" crucial pair $\left\langle 1^{n \wedge} 0,0^{n \wedge} 1\right\rangle$ at this level let $P_{1^{n} \wedge_{0}, 0^{n \wedge}{ }_{1}}=$ $X_{1^{n} \wedge 0} \times X_{0^{n} \wedge 1}=X_{1^{n}} \times X_{0^{n}}$. Then $P_{1^{n} \wedge 0,0^{n} \wedge 1} \in \mathbb{P}_{\equiv \underline{2}}\left({ }^{11}\right)$.

This ends the definition of "initial values" at the $(n+1)$ th level. The plan is to gradually "shrink" the sets in order to fulfill the requirements.

Step 1. We take care of item (1). Consider an arbitrary $u_{0}=s_{0} \wedge i \in$ 2^{n+1}. As $D(n)$ is dense there is a set $X^{\prime} \in D(n)$ with $X^{\prime} \subseteq X_{u_{0}}$. The intention is to take X^{\prime} as the "new" $X_{u_{0}}$. But this change has to be expanded through the chain of crucial pairs, in order to preserve (4).

Thus put $X_{u_{0}}^{\prime}=X^{\prime}$. Suppose that X_{u}^{\prime} has been defined and is included in X_{u}, the "old" version, for some $u \in 2^{n+1}$, and $\langle u, v\rangle$ is a crucial pair, $v \in 2^{n+1}$ being not yet encountered. Define $P_{u v}^{\prime}=\left(X_{u}^{\prime} \times \mathcal{N}\right) \cap P_{u v}$ and $X_{v}^{\prime}=\mathrm{pr}_{2} P_{u v}^{\prime}$. Clearly (4) holds for the "new" sets $X_{u}^{\prime}, X_{v}^{\prime}$, and $P_{u v}^{\prime}$.

The construction describes how the original change from $X_{u_{0}}$ to $X_{u_{0}}^{\prime}$ spreads through the chain of crucial pairs in 2^{n+1}, resulting in a system of new sets, X_{u}^{\prime} and $P_{u v}^{\prime}$, which satisfy (1) for the particular $u_{0} \in 2^{n+1}$. We iterate this construction consecutively for all $u_{0} \in 2^{n+1}$, getting finally a system of sets satisfying (1) (fully) and (4), which we shall denote by X_{u} and $P_{u v}$ from now on.

Step 2. We take care of item (3). Fix a pair of u_{0} and v_{0} in 2^{n+1} such that $u_{0}(n)=0$ and $v_{0}(n)=1$. By the density of $D^{2}(n)$, there is a set $X_{u_{0}}^{\prime} \times X_{v_{0}}^{\prime} \in D^{2}(n)$ included in $X_{u_{0}} \times X_{v_{0}}$. We may assume that $X_{u_{0}}^{\prime} \cap X_{v_{0}}^{\prime}=\emptyset$. (Indeed, it easily follows from Proposition 5, for P_{-}, that there exist reals $x_{0} \in X_{u_{0}}$ and $y_{0} \in X_{v_{0}}$ satisfying $x_{0} \equiv y_{0}$ but $x_{0} \neq y_{0}$, say $x_{0}(k)=0$ while $y_{0}(k)=1$. Define

$$
X=\left\{x \in X_{0}: x(k)=0 \wedge \exists y \in Y_{0}(y(k)=1 \wedge x \equiv y)\right\},
$$

and Y correspondingly; then $X \equiv Y$ and $X \cap Y=\emptyset$.)
Spread the change from $X_{u_{0}}$ to $X_{u_{0}}^{\prime}$ and from $X_{v_{0}}$ to $X_{v_{0}}^{\prime}$ through the chain of crucial pairs in 2^{n+1}, by the method of Step 1, until the wave of spreading from u_{0} meets the wave of spreading from u_{0} at the "meeting" crucial pair $\left\langle 1^{n \wedge} 0,0^{n \wedge} 1\right\rangle$. This leads to a system of sets X_{u}^{\prime} and $P_{u v}^{\prime}$ which satisfy (3) for the particular pair $\left\langle u_{0}, v_{0}\right\rangle$ and still satisfy (4) possibly except for the "meeting" crucial pair $\left\langle 1^{n \wedge} 0,0^{n \wedge} 1\right\rangle$ (for which basically the set $P_{1^{n \wedge 0,0^{n} \wedge 1}}^{\prime}$ is not yet defined at this step).

Note that Step 1 leaves $P_{1^{n} \wedge 0,0^{n} \wedge 1}$ in the form $X_{1^{n} \wedge 0} \times X_{0^{n} \wedge 1}$ (where $X_{1^{n} \wedge 0}$ and $X_{0^{n} \wedge 1}$ are the "versions" at the end of Step 1). We now have the "new" sets, $X_{1^{n} \wedge 0}^{\prime}$ and $X_{0^{n} \wedge 1}^{\prime}$, included in resp. $X_{1^{n} \wedge 0}$ and $X_{0^{n} \wedge 1}$ and satisfying $X_{0^{n} \wedge_{0}}^{\prime} \equiv X_{0^{n \wedge 1}}^{\prime}$ (because we had $X_{u_{0}}^{\prime} \equiv X_{v_{0}}^{\prime}$ at the beginning of

[^4]the change). It remains to define $P_{1^{n \wedge} 0,0^{n \wedge 1}}^{\prime}=X_{1^{n} \wedge 0}^{\prime} \times X_{0^{n \wedge 1}}^{\prime}$. This ends the consideration of the pair $\left\langle u_{0}, v_{0}\right\rangle$.

Applying this construction consecutively for all pairs of $u_{0} \in P_{0}$ and $v_{0} \in P_{1}$ (including the pair $\left\langle 1^{n \wedge} 0,0^{n \wedge} 1\right\rangle$) we finally get a system of sets satisfying (1), (3), and (4), which will be denoted still by X_{u} and $P_{u v}$.

Step 3. We finally take care of (2). Consider a crucial pair $\left\langle u_{0}, v_{0}\right\rangle$ in 2^{n+1}. By density, there exists a set $P_{u_{0}, v_{0}}^{\prime} \in D_{2}(n)$ with $P_{u_{0}, v_{0}}^{\prime} \subseteq P_{u_{0}, v_{0}}$. (In the case when $\left\langle u_{0}, v_{0}\right\rangle$ is the pair $\left\langle 1^{n \wedge} 0,0^{n \wedge} 1\right\rangle$ we rather apply Proposition 5 to obtain the set $P_{u_{0}, v_{0}}^{\prime}$.)

Define $X_{u_{0}}^{\prime}=\operatorname{pr}_{1} P_{u_{0}, v_{0}}^{\prime}$ and $X_{v_{0}}^{\prime}=\operatorname{pr}_{2} P_{u_{0}, v_{0}}^{\prime}$ and spread this change through the chain of crucial pairs in 2^{n+1}. (Note that $X_{u_{0}}^{\prime} \equiv X_{v_{0}}^{\prime}$ as sets in \mathbb{P}_{\equiv}^{2} are included in \equiv. This keeps $X_{u}^{\prime} \equiv X_{v}^{\prime}$ for all $u, v \in 2^{n+1}$ through the spreading.)

Executing this step for all crucial pairs in 2^{n+1}, we finally end the construction, in \mathbf{V}^{+}, of a system of sets satisfying (1) through (4). ©Theorem 3

References

[1] L. A. Harrington, A. S. Kechris and A. Louveau, A Glimm-Effros dichotomy for Borel equivalence relations, J. Amer. Math. Soc. 3 (1990), 903-928.
[2] L. A. Harrington, D. Marker and S. Shelah, Borel orderings, Trans. Amer. Math. Soc. 310 (1988), 293-302.

Department of Mathematics
Moscow Transport Engineering Institute
Obraztsova 15
Moscow 101475, Russia
E-mail: kanovei@mech.math.msu.su and kanovei@math.uni-wuppertal.de

[^0]: $\left(^{2}\right)$ That is, $a(k)=b(k)$ for all but finite k, the Vitali equivalence relation on 2^{ω}.
 $\left({ }^{3}\right)$ If one enlarges $<_{0}$ so that, in addition, $a<_{0} b$ whenever $a, b \in 2^{\omega}$ are such that $a(k)=1$ and $b(k)=0$ for all but finite k then the enlarged relation can be induced by a Borel action of \mathbb{Z} on 2^{ω}, such that $a<_{0} b$ iff $a=z b$ for some $z \in \mathbb{Z}, z>0$.
 $\left({ }^{4}\right)$ The "moreover" assertion is an immediate corollary of the linearizability by the above-mentioned result of [2].
 $\left({ }^{5}\right)$ Then F associates a chain $\left\{F(b): b \mathrm{E}_{0} a\right\}$ in $\langle\mathcal{N} ; \preccurlyeq\rangle$ to each E_{0}-class $[a] \mathrm{E}_{0}$ so that any two different chains do not contain $\preccurlyeq ~ c o m p a r a b l e ~ e l e m e n t s: ~ l e t ~ u s ~ c a l l ~ t h e m ~ f u l l y ~$ incomparable chains. Thus (II) essentially says that \preccurlyeq admits an effectively "large" Borel family of fully incomparable chains, which is therefore necessary and sufficient for \preccurlyeq to be not Borel linearizable.

[^1]: $\left({ }^{6}\right)$ Harrington et al. [2] use a general reflection theorem to get such a set, but a more elementary reasoning sometimes has advantage.

[^2]: ${ }^{(7)}$ For a set $P \subseteq \mathcal{N}^{2}, \mathrm{pr}_{1} P$ and $\mathrm{pr}_{2} P$ have the obvious meaning of the projections on the resp. 1st and 2 nd copy of \mathcal{N}.
 ${ }^{(8)}$) That is, each of them intersects any non-empty Σ_{1}^{1} set $X^{\prime} \subseteq X$.
 $\left({ }^{9}\right)$ We refer to the proof of an "invariant" effective separation theorem in [1], which includes a similar construction.

[^3]: $\left({ }^{10}\right)$ In fact, the proof can be conducted without any use of metamathematics, as in [1], but at the cost of longer reasoning.

[^4]: are connected in 2^{n} by a unique chain of crucial pairs.

