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When a partial Borel order is linearizable

by

Vladimir K a n o v e i (Moscow)

Abstract. We prove a classification theorem of the “Glimm–Effros” type for Borel
order relations: a Borel partial order on the reals either is Borel linearizable or includes a
copy of a certain Borel partial order ≤0 which is not Borel linearizable.

Notation. A binary relation 4 on a set X is a partial quasi-order , or
p.q.-o. in brief, on X, iff x 4 y∧y 4 z ⇒ x 4 z, and x 4 x for any x ∈ X. In
this case, ≈ is the associated equivalence relation, i.e. x ≈ y iff x 4 y∧y 4 x.

If in addition x ≈ x ⇒ x = x for any x then 4 is a partial order , or
p.o., so that, say, forcing relations are p.q.-o.’s, but, generally speaking, not
p.o.’s in this terminology.

A p.o. is linear (l.o.) iff we have x 4 y ∨ y 4 x for all x, y ∈ X.
Let 4 and 4′ be p.q.-o.’s on resp. X and X ′. A map h : X → X ′ will be

called half order preserving , or h.o.p., iff x 4 y ⇒ h(x) 4′ h(y).

Definition 1. A Borel p.q.-o. 〈X; 4〉 is Borel linearizable iff there is a
Borel l.o. 〈X ′; 4′〉 and a Borel h.o.p. map h : X → X ′ (called a linearization
map) satisfying x ≈ y ⇔ h(x) = h(y) (1).

Introduction. Harrington, Marker, and Shelah [2] proved several the-
orems on Borel partial order relarions, mainly concerning thin p.q.-o.’s, i.e.
those which do not admit uncountable pairwise incomparable subsets. In
particular, they demonstrated that any such Borel p.q.-o. is Borel lineariz-
able, and moreover the corresponding l.o. 〈X ′; 4′〉 can be chosen as a sub-
order of 〈2α;≤lex〉 for some α < ω1, where ≤lex is the lexicographical order.
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(1) The equivalence cannot be dropped in this definition as otherwise a one-element
set X ′ works in any case.
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As elementary examples show that thinness is not a necessary condition
for Borel linearizability, this result leaves open the problem of linearization
of non-thin Borel p.q.-o.’s. Harrington et al. wrote in [2] that “there is little
to say about nonthin orderings”, although there are many interesting among
them like the dominance order on ωω.

Our main result will say that not all Borel p.q.-o.’s are Borel linearizable,
and there exists a minimal one, in a certain sense, among them.

Definition 2. Let a, b ∈ 2ω. We define a≤0 b iff either a = b or aE0 b (2)
and a(k0) < b(k0) where k0 is the largest k such that a(k) 6= b(k) (3).

The relation ≤0 is a Borel p.q.-o. on 2ω which orders every E0-class
similarly to the integers Z (except for the class [ω×{0}]E0 ordered as ω and
the class [ω × {1}]E0 ordered as ω∗, the inverted order) but leaves any two
E0-inequivalent reals incomparable.

The following is the main result of the paper.

Theorem 3. Suppose that 4 is a Borel p.q.-o. on N = ωω. Then exactly
one of the following two conditions is satisfied :

(I) 4 is Borel linearizable; moreover (4), there exist an ordinal α < ω1

and a Borel linearization map h : 〈N; 4〉 → 〈2α;≤lex〉.
(II) there exists a continuous 1-1 map F : 2ω → N such that we have

a ≤0 b ⇒ F (a) 4 F (b) while a 6E0 b implies that F (a) and F (b) are 4-
incomparable (5).

The theorem resembles the case of Borel equivalence relations where a
necessary and sufficient condition for a Borel equivalence relation E to be
smooth is that E0 (which is not smooth) does not continuously embed in E
(Harrington, Kechris and Louveau [1]). (≤0 itself is not Borel linearizable.)

The proof is essentially a combination of ideas and techniques in [1, 2].

1. Incompatibility. Let us first prove that (I) and (II) are incompatible.

(2) That is, a(k) = b(k) for all but finite k, the Vitali equivalence relation on 2ω .
(3) If one enlarges <0 so that, in addition, a <0 b whenever a, b ∈ 2ω are such that

a(k) = 1 and b(k) = 0 for all but finite k then the enlarged relation can be induced by a
Borel action of Z on 2ω , such that a <0 b iff a = zb for some z ∈ Z, z > 0.

(4) The “moreover” assertion is an immediate corollary of the linearizability by the
above-mentioned result of [2].

(5) Then F associates a chain {F (b) : bE0 a} in 〈N;4〉 to each E0-class [a]E0 so that
any two different chains do not contain 4 comparable elements: let us call them fully
incomparable chains. Thus (II) essentially says that 4 admits an effectively “large” Borel
family of fully incomparable chains, which is therefore necessary and sufficient for 4 to
be not Borel linearizable.
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Suppose otherwise. The superposition of the maps F and h is then a Borel
h.o.p. map φ : 〈2ω;≤0〉 → 〈2α;≤lex〉 satisfying the following: φ(a) = φ(b)
implies that aE0 b, i.e. a and b are ≤0 comparable.

Therefore, as any E0-class is ≤0-ordered similarly to Z, ω, or ω∗, the
φ-image Xa = φ”[a]E0 of the E0-class of any a ∈ 2ω is ≤lex-ordered similarly
to a subset of Z. If Xa = {xa} is a singleton then put ψ(a) = xa.

Assume now that Xa contains at least two points. In this case we can
effectively pick an element in Xa! Indeed, there is a maximal sequence
u ∈ 2<α such that u ⊆ x for each x ∈ Xa. Then the set X left

a = {x ∈ X :
u∧0 ⊆ x} contains a ≤lex-largest element, which we denote by ψ(a).

To conclude, ψ is a Borel reduction of E0 to the equality on 2α, i.e.
aE0 b iff ψ(a) = ψ(b), which is impossible because E0 is not a smooth Borel
equivalence relation (see [1]).

2. The dichotomy. As usual, it will be assumed that the p.q.-o. 4 of
Theorem 3 is a ∆1

1 relation. Let ≈ denote the associated equivalence.
Following [2] let, for α < ωCK

1 , Fα be the family of all h.o.p. ∆1
1 functions

f : 〈N; 4〉 → 〈2α;≤lex〉. Then F =
⋃
α<ωCK

1
Fα is a (countable) Π1

1 set, in a
suitable coding system for functions of this type. (See [2] for details.)

Define, for x, y ∈ N, x ≡ y iff f(x) = f(y) for any f ∈ F.

Lemma 4 (see [2]). ≡ is a Σ1
1 equivalence relation including ≈.

P r o o f. As 4 is ∆1
1, one gets by a rather standard argument a Π1

1 set
N ⊆ ω and a function fn ∈ F for any n ∈ N so that F = {fn : n ∈ N}
and the relations n ∈ N ∧ fn(x)≤lex fn(y) and n ∈ N ∧ fn(x)<lex fn(y) are
presentable in the form n ∈ N ∧ O(x, y) and n ∈ N ∧ O′(x, y) where O, O′

are Σ1
1 relations. Now x ≡ y iff ∀n (n ∈ N ⇒ fn(x) = fn(y)), as required.

Case 1: ≡ coincides with ≈. Let us show how this implies (I) of Theo-
rem 3. The set

P = {〈x, y, n〉 : x 6≈ y ∧ fn(x) 6= fn(y)}
is Π1

1 and, by the assumption of Case 1, its projection on x, y coincides with
the complement of ≈ . Let Q ⊆ P be a Π1

1 set uniformizing P in the sense
of N2 × ω. Then Q is ∆1

1 because

Q(x, y, n)⇔ x 6≈ y ∧ ∀n′ 6= n (¬Q(x, y, n′)).

It follows that N ′ = {n : ∃x, y Q(x, y, n)} ⊆ N is Σ1
1 . Therefore by the Σ1

1
separation theorem there is a ∆1

1 set M such that N ′ ⊆M ⊆ N (6).
Consider a ∆1

1 enumeration M = {nl : l ∈ ω}. For any l, fnl ∈
Fα for some ordinal α = αl < ωCK

1 . Another standard argument (see

(6) Harrington et al. [2] use a general reflection theorem to get such a set, but a more
elementary reasoning sometimes has advantage.
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[2]) shows that in this case (e.g. when M ⊆ N is a ∆1
1 set) the ordinals

αl are bounded by some α < ωCK
1 . It follows that the function h(x) =

fn0(x)∧fn1(x)∧fn2(x)∧ . . .∧ fnl(x)∧ . . . belongs to some Fβ , β ≤ α · ω. On
the other hand, by the construction we have x ≈ y ⇔ h(x) = h(y), hence h
satisfies (I) of Theorem 3.

Case 2: ≈ $ ≡. Assuming this we work towards (II) of Theorem 3.

3. The domain of singularity. By the assumption the Σ1
1 set A =

{x : ∃y (x ≈ y ∧ x 6≡ y)} is non-empty.
Define X ≡ Y iff we have ∀x ∈ X ∃y ∈ Y (x ≡ y) and vice versa.

Proposition 5. Let X,Y ⊆ A be non-empty Σ1
1 sets satisfying X ≡ Y.

Then the sets
P+ = {〈x, y〉 ∈ X × Y : x ≡ y ∧ x 4 y}, and

P− = {〈x, y〉 ∈ X × Y : x ≡ y ∧ x 64 y}
are non-empty Σ1

1 sets, their projections (7) pr1 P
+ and pr1 P

− are Σ1
1 -

dense in X (8), while the projections pr2 P
+ and pr2 P

− are Σ1
1 -dense

in Y .

P r o o f. The density easily follows from the non-emptiness, so let us
concentrate on the latter. We prove that P+ 6= ∅.

Suppose on the contrary that P+ = ∅. Then there is a single function
f ∈ F such that the set {〈x, y〉 ∈ X × Y : f(x) = f(y) ∧ x 4 y} is empty.
(See the reasoning in Case 1 of Section 2.) Define

X∞ = {x : ∀y ∈ Y (f(x) = f(y)⇒ x 64 y)},
so that X∞ is a Π1

1 set and X ⊆ X∞ but Y ∩X∞ = ∅. Using separation,
we can easily define an increasing sequence of sets

X = X0 ⊆ U0 ⊆ X1 ⊆ U1 ⊆ . . . ⊆ Xn ⊆ Un ⊆ . . . ⊆ X∞
so that Un = {x′ : ∃x ∈ Xn (f(x) = f(x′) ∧ x 4 x′)} while Xn+1 ∈ ∆1

1 for
all n. (Note that if Xn ⊆ X∞ and Un is defined as indicated then Un ⊆ X∞
too.) Moreover, a proper execution of the construction (9) allows getting the
final set U =

⋃
n Un =

⋃
nXn in ∆1

1. Note that X ⊆ U , but Y ∩U = ∅ since
U ⊆ X∞.

Put f ′(x) = f(x)∧1 whenever x ∈ U, and f ′(x) = f(x)∧0 otherwise. We
assert that f ′ ∈ F. Indeed, suppose that x′ 4 y′; we prove f ′(x′)≤lex f

′(y′).

(7) For a set P ⊆ N2, pr1 P and pr2 P have the obvious meaning of the projections
on the resp. 1st and 2nd copy of N.

(8) That is, each of them intersects any non-empty Σ1
1 set X ′ ⊆ X.

(9) We refer to the proof of an “invariant” effective separation theorem in [1], which
includes a similar construction.
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It can be assumed that f(x′) = f(y′). It remains to check that x′ ∈ U ⇒
y′ ∈ U, which easily follows from the definition of the sets Un. Thus f ′ ∈ F.

However, clearly f ′(x) 6= f ′(y), hence x 6≡ y, whenever x ∈ X and y ∈ Y ,
which contradicts the assumption that X ≡ Y .

Now we prove that P− 6= ∅. Consider first the case X = Y. Suppose on
the contrary that P− = ∅. Then, as above, there is a single function f ∈ F

such that the set {〈x, y〉 ∈ X2 : f(x) = f(y) ∧ x 64 y} is empty, so that ≡
and ≈ coincide on X. Our plan is to find functions f ′, f ′′ ∈ F such that

Q′ = {〈x, y〉 ∈ X ×N : f ′(x) = f ′(y) ∧ y 64 x},
Q′′ = {〈x, y〉 ∈ X ×N : f ′′(x) = f ′′(y) ∧ x 64 y}

are empty sets; then Q = {〈x, y〉 ∈ X × N : x ≡ y ∧ y 6≈ x} = ∅, which
contradicts ∅ 6= X ⊆ A.

Let us find f ′; the case of the other function is similar. Define

X∞ = {x : ∀x′ ∈ X (f(x) = f(x′)⇒ x 4 x′)},
so that X∞ is Π1

1 and X ⊆ X∞. As above there is a sequence of sets

X = X0 ⊆ U0 ⊆ X1 ⊆ U1 ⊆ . . . ⊆ Xn ⊆ Un ⊆ . . . ⊆ X∞
such that Un = {u : ∃x ∈ Xn (f(x) = f(u) ∧ u 4 x)} while Xn+1 ∈ ∆1

1 for
all n and the final set U =

⋃
n Un =

⋃
nXn belongs to ∆1

1.
Set f ′(x) = f(x)∧0 whenever x ∈ U, and f ′(x) = f(x)∧1 otherwise.

Then f ′ ∈ F. We prove that f ′ witnesses that Q′ = ∅. Consider any x ∈ X
and y ∈ N such that f ′(x) = f ′(y). Then in particular f(x) = f(y) and
x ∈ U ⇔ y ∈ U, so that y ∈ U because we know that x ∈ X ⊆ U. Thus
y ∈ X∞, so by definition y 4 x, as required.

Finally, we prove P− 6= ∅ in the general case. By the result for the case
X = Y, the Σ1

1 set P ′ = {〈x, x′〉 ∈ X2 : x ≡ x′ ∧ x 64 x′} is non-empty. Let
X ′ = {x′ ∈ X : ∃x P ′(x, x′)} and Y ′ = {y ∈ Y : ∃x′ ∈ X ′ (x′ ≡ y)}, so
that X ′, Y ′ are Σ1

1 sets satisfying X ′ ≡ Y ′. By the result for P+ there exist
x′ ∈ X ′ and y ∈ Y ′ satisfying x′ ≡ y and y 4 x′. Now there is x ∈ X such
that x ≡ x′ and x 64 x′. Then x ≡ y and x 64 y, as required.

4. The forcing notions involved. Our further strategy will be the
following. We shall define a generic extension of the universe V (where The-
orem 3 is being proved) in which there exists a function F which witnesses
(II) of Theorem 3. However, as the existence of such a function is a Σ1

2
statement, we obtain the result for V by the Shoenfield absoluteness theo-
rem (10).

Definition 6. P is the collection of all non-empty Σ1
1 sets X ⊆ A.

(10) In fact, the proof can be conducted without any use of metamathematics, as in
[1], but at the cost of longer reasoning.
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It is a standard fact that P (the Gandy forcing) forces a real which is the
only real which belongs to every set in the generic set G ⊆ P. (We identify
Σ1

1 sets in the ground universe V with their copies in the extension.)

Definition 7. P+
2 is the collection of all non-empty Σ1

1 sets P ⊆ A2

such that P (x, y) ⇒ x ≡ y ∧ x 4 y. The collection P−2 is defined similarly
but with the requirement P (x, y)⇒ x ≡ y ∧ x 64 y instead.

Both P+
2 and P−2 are non-empty forcing notions by Proposition 5. Each

of them forces a pair of reals 〈x, y〉 ∈ A2 satisfying resp. x 4 y and x 64 y.

Definition 8. P2
≡ is the collection of all sets of the form Υ = X × Y

where X, Y are sets in P satisfying X ≡ Y .

Lemma 9. P2
≡ forces a pair of reals 〈x, y〉 such that x 64 y.

P r o o f. Suppose that, on the contrary, a condition Υ0 = X0 × Y0 in
P2
≡ forces x 4 y. Consider a more complicated forcing P which consists

of forcing conditions of the form p = 〈Υ, P, Υ ′, Q〉, where Υ = X × Y and
Υ ′ = X ′×Y ′ belong to P2

≡, P ∈ P+
2 , P ⊆ Y ×X ′, Q ∈ P−2 , Q ⊆ X×Y ′, and

the sets pr1 P ⊆ Y , pr2 P ⊆ X ′, pr1Q ⊆ X and pr2Q ⊆ Y ′ are Σ1
1 -dense

in resp. Y, X ′, X, Y ′.
For instance, setting P0 = {〈y, x′〉 ∈ Y0 × X0 : y ≡ x′ ∧ y 4 x′} and

Q0 = {〈x, y′〉 ∈ X0 × Y0 : x ≡ y′ ∧ x 64 y′}, we get a condition p0 =
〈Υ0, P0, Υ0, Q0〉 ∈ P by Proposition 5.

It is the principal fact that if p = 〈Υ, P, Υ ′, Q〉 ∈ P and we strengthen one
of the components within the corresponding forcing notion then this can be
appropriately reflected in the other components. To be concrete assume that,
for instance, P ∗ ∈ P+

2 , P ∗ ⊆ P, and find a condition p1 = 〈Υ1, P1, Υ
′
1, Q1〉 ∈

P satisfying Υ1 ⊆ Υ , Υ ′1 ⊆ Υ ′, P1 ⊆ P ∗, and Q1 ⊆ Q.
Assume that Υ = X ×Y and Υ ′ = X ′×Y ′. Consider the non-empty Σ1

1
sets Y2 = pr1 P

∗ ⊆ Y and X2 = {x ∈ X : ∃y ∈ Y2 (x ≡ y)}. It follows from
Proposition 5 that Q1 = {〈x, y〉 ∈ Q : x ∈ X2} 6= ∅, hence Q1 is a condition
in P−2 and X1 = pr1Q1 is a non-empty Σ1

1 subset of X2 ⊆ X.
The set Y1 = {y ∈ Y2 : ∃x ∈ X1 (x ≡ y)} satisfies X1 ≡ Y1, therefore

Υ1 = X1 × Y1 ∈ P2
≡. Furthermore, P1 = {〈y, x〉 ∈ P ∗ : y ∈ Y1} ∈ P+

2 .
Put X ′1 = pr2 P1 ⊆ X ′ and Y ′1 = pr2Q1 ⊆ Y ′. Notice that Y1 ≡ X ′1 be-

cause any condition in P+
2 is a subset of ≡, similarly X1 ≡ Y ′1 , and X1 ≡ Y1

(see above). It follows that X ′1 ≡ Y ′1 , hence Υ ′1 = X ′1×Y ′1 is a condition in P2
≡.

Now p1 = 〈Υ1, P1, Υ
′
1, Q1〉 ∈ P as required.

We conclude that P forces “quadruples” of reals 〈x, y, x′, y′〉 such that
the pairs 〈x, y〉 and 〈x′, y′〉 are P2

≡-generic, hence satisfy x 4 y and x′ 4 y′

provided the generic set contains Υ0—by the assumption above. Further-
more, the pair 〈y, x′〉 is P+

2 -generic, hence y 4 x′, while the pair 〈x, y′〉 is
P−2 -generic, hence x 64 y′, which is a contradiction.
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5. The splitting construction. Let, in the universe V, κ = 2ℵ0 . Let
V+ be a κ-collapse extension of V.

Our aim is to define, in V+, a splitting system of sets which leads to
a function F satisfying (II) of Theorem 3. Let us fix two points before the
construction starts.

First , as the forcing notions involved are countable in V, there exist, in
V+, enumerations {D(n) : n ∈ ω}, {D2(n) : n ∈ ω}, and {D2(n) : n ∈ ω}
of all open dense sets in resp. P, P+

2 , P2
≡, which (the dense sets) belong to

V, such that D(n+ 1) ⊆ D(n) etc. for each n.
Second , we introduce the notion of a crucial pair. A pair 〈u, v〉 of binary

sequences u, v ∈ 2n is called crucial iff u = 1k∧0∧w and v = 0k∧1∧w for
some k < n and w ∈ 2n−k−1. One easily sees that the graph of all crucial
pairs in 2n is actually a chain connecting all members of 2n.

We define, in V+, a system of sets Xu ∈ P, where u ∈ 2<ω, and sets
Puv ∈ P+

2 , 〈u, v〉 being a crucial pair in some 2n, satisfying the following
conditions:

(1) Xu ∈ D(n) whenever u ∈ 2n; Xu∧i ⊆ Xu;
(2) if 〈u, v〉 is a crucial pair in 2n then Puv ∈ D2(n) and Pu∧i, v∧i ⊆ Puv;
(3) if u, v ∈ 2n and u(n− 1) 6= v(n− 1) then Xu ×Xv ∈ P2

≡, Xu ×Xv ∈
D2(n), and Xu ∩Xv = ∅;

(4) if 〈u, v〉 is a crucial pair in 2n then pr1 Puv = Xu and pr2 Puv = Xv.

Why does this imply the existence of a required function? First of all for
any a ∈ 2ω (in V+) the sequence of sets Xa¹n is P-generic over V by (1),
therefore the intersection

⋂
n∈ωXa¹n is a singleton. Let F (a) ∈ N be its only

element.
It does not take much effort to prove that F is continuous and 1-1.
Consider a, b ∈ 2ω satisfying a 6E0 b. Then a(n) 6= b(n) for infinitely many

n, hence the pair 〈F (a), F (b)〉 is P2
≡-generic by (3), thus F (a) and F (b) are

4-incomparable by Lemma 9.
Consider a, b ∈ 2ω satisfying a ≤0 b. We may assume that a and b are

≤0-neighbours, i.e. a = 1k∧0∧c while b = 0k∧1∧c for some k ∈ ω and
c ∈ 2ω. Then by (2) the sequence of sets Pa¹n, b¹n, n > k, is P+

2 -generic,
hence it results in a pair of reals satisfying x 4 y. However, x = F (a) and
y = F (b) by (4).

The construction of a splitting system. We argue in V+.
Suppose that the construction has been completed up to a level n; we

will expand it to the next level. From now on s, t will denote sequences in
2n while u, v will denote sequences in 2n+1.

To start with, we set Xs∧i = Xs for all s ∈ 2n and i = 0, 1, and Ps∧i, t∧i =
Pst whenever i = 0, 1 and 〈s, t〉 is a crucial pair in 2n.
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For the “initial” crucial pair 〈1n∧0, 0n∧1〉 at this level let P1n∧0, 0n∧1 =
X1n∧0 ×X0n∧1 = X1n ×X0n . Then P1n∧0, 0n∧1 ∈ P2

≡ (11).
This ends the definition of “initial values” at the (n + 1)th level. The

plan is to gradually “shrink” the sets in order to fulfill the requirements.

Step 1. We take care of item (1). Consider an arbitrary u0 = s0
∧i ∈

2n+1. As D(n) is dense there is a set X ′ ∈ D(n) with X ′ ⊆ Xu0 . The
intention is to take X ′ as the “new” Xu0 . But this change has to be expanded
through the chain of crucial pairs, in order to preserve (4).

Thus put X ′u0
= X ′. Suppose that X ′u has been defined and is included

in Xu, the “old” version, for some u ∈ 2n+1, and 〈u, v〉 is a crucial pair,
v ∈ 2n+1 being not yet encountered. Define P ′uv = (X ′u × N) ∩ Puv and
X ′v = pr2 P

′
uv. Clearly (4) holds for the “new” sets X ′u, X ′v, and P ′uv.

The construction describes how the original change from Xu0 to X ′u0

spreads through the chain of crucial pairs in 2n+1, resulting in a system of
new sets, X ′u and P ′uv, which satisfy (1) for the particular u0 ∈ 2n+1. We
iterate this construction consecutively for all u0 ∈ 2n+1, getting finally a
system of sets satisfying (1) (fully) and (4), which we shall denote by Xu

and Puv from now on.

Step 2. We take care of item (3). Fix a pair of u0 and v0 in 2n+1

such that u0(n) = 0 and v0(n) = 1. By the density of D2(n), there is
a set X ′u0

× X ′v0
∈ D2(n) included in Xu0 × Xv0 . We may assume that

X ′u0
∩ X ′v0

= ∅. (Indeed, it easily follows from Proposition 5, for P−, that
there exist reals x0 ∈ Xu0 and y0 ∈ Xv0 satisfying x0 ≡ y0 but x0 6= y0, say
x0(k) = 0 while y0(k) = 1. Define

X = {x ∈ X0 : x(k) = 0 ∧ ∃y ∈ Y0 (y(k) = 1 ∧ x ≡ y)},
and Y correspondingly; then X ≡ Y and X ∩ Y = ∅.)

Spread the change from Xu0 to X ′u0
and from Xv0 to X ′v0

through the
chain of crucial pairs in 2n+1, by the method of Step 1, until the wave of
spreading from u0 meets the wave of spreading from u0 at the “meeting”
crucial pair 〈1n∧0, 0n∧1〉. This leads to a system of sets X ′u and P ′uv which
satisfy (3) for the particular pair 〈u0, v0〉 and still satisfy (4) possibly ex-
cept for the “meeting” crucial pair 〈1n∧0, 0n∧1〉 (for which basically the set
P ′1n∧0, 0n∧1 is not yet defined at this step).

Note that Step 1 leaves P1n∧0, 0n∧1 in the form X1n∧0 × X0n∧1 (where
X1n∧0 and X0n∧1 are the “versions” at the end of Step 1). We now have
the “new” sets, X ′1n∧0 and X ′0n∧1, included in resp. X1n∧0 and X0n∧1 and
satisfying X ′0n∧0 ≡ X ′0n∧1 (because we had X ′u0

≡ X ′v0
at the beginning of

(11) It easily follows from (2) and (4) that Xs ≡ Xt for all s, t ∈ 2n, because s and t
are connected in 2n by a unique chain of crucial pairs.
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the change). It remains to define P ′1n∧0, 0n∧1 = X ′1n∧0 × X ′0n∧1. This ends
the consideration of the pair 〈u0, v0〉.

Applying this construction consecutively for all pairs of u0 ∈ P0 and
v0 ∈ P1 (including the pair 〈1n∧0, 0n∧1〉) we finally get a system of sets
satisfying (1), (3), and (4), which will be denoted still by Xu and Puv.

Step 3. We finally take care of (2). Consider a crucial pair 〈u0, v0〉 in
2n+1. By density, there exists a set P ′u0,v0

∈ D2(n) with P ′u0,v0
⊆ Pu0,v0 . (In

the case when 〈u0, v0〉 is the pair 〈1n∧0, 0n∧1〉 we rather apply Proposition 5
to obtain the set P ′u0,v0

.)
Define X ′u0

= pr1 P
′
u0,v0

and X ′v0
= pr2 P

′
u0,v0

and spread this change
through the chain of crucial pairs in 2n+1. (Note that X ′u0

≡ X ′v0
as sets in

P2
≡ are included in ≡. This keeps X ′u ≡ X ′v for all u, v ∈ 2n+1 through the

spreading.)
Executing this step for all crucial pairs in 2n+1, we finally end the con-

struction, in V+, of a system of sets satisfying (1) through (4). Theorem 3
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