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Definability within structures related to
Pascal’s triangle modulo an integer

by

Alexis B è s (Paris) and Ivan K o r e c (Bratislava)

Abstract. Let Sq denote the set of squares, and let SQn be the squaring func-
tion restricted to powers of n; let ⊥ denote the coprimeness relation. Let Bn(x, y) =
(x+y
x ) MOD n. For every integer n ≥ 2 addition and multiplication are definable in the

structures 〈N;Bn,⊥〉 and 〈N;Bn,Sq〉; thus their elementary theories are undecidable. On
the other hand, for every prime p the elementary theory of 〈N;Bp,SQp〉 is decidable.

1. Introduction. Since Julia Robinson’s result [Ro] that + and × are
first-order definable in the structure 〈N;S, |〉, where N denotes the set of
nonnegative integers, S stands for the successor function and | for the divis-
ibility relation, there have been many works on definability within fragments
of arithmetic, which showed deep connections with number theory and au-
tomata theory—see e.g. [BJW], and the survey papers [BHMV], [Ce]. The
field is obviously related to the study of decidability of logical theories: one
often proves undecidability of a theory by means of definability techniques,
and in turn decidability arguments can be used for proving undefinability
of properties (see e.g. [MMT]).

For every n ∈ N, the Pascal triangle modulo n is the binary function on
N defined by

Bn(x, y) =
(
x+ y

x

)
MOD n

where
(·
·
)

denotes the binomial coefficient, and MOD denotes the remainder
by integer division.

Arithmetical properties of Pascal triangles modulo n have been widely
investigated (see e.g. [Di], [Bo], [Si]). In this paper we study definability and
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decidability questions related to structures containing Bn and some extra
predicate or function. Let us recall some known results in this area:

• If n ≥ 2 has (at least) two distinct prime divisors then addition and
multiplication are definable in the structure 〈N;Bn〉; thus its elemen-
tary theory is undecidable [Ko1].
• If n ≥ 2 is a prime number then the elementary theory of 〈N;Bn,+〉

is decidable [Ko3].
• If n ≥ 2 is a prime power but not a prime then addition is definable in
〈N;Bn〉; moreover, the elementary theory of 〈N;Bn〉 (or 〈N;Bn,+〉) is
decidable [Be].

In Section 3 we study the structure 〈N;Bn,⊥〉, where ⊥ denotes the
coprimeness relation (i.e. x ⊥ y if and only if x and y have no common
prime divisor). We use arithmetical results of Richard to define + and × in
this structure, from which we deduce the undecidability of its elementary
theory. In Section 4 we consider the structure 〈N;Bn, Sq〉, where Sq denotes
the set of squares; this time again, defining + and × we prove that this
structure has an undecidable elementary theory; this result was proved in
[Ko2] for the case n = 2. We then investigate in Section 5 the structure
〈N;Bn, SQn〉, where SQn is the squaring function restricted to powers of n.
It is shown that the elementary theory of 〈N;Bn,SQn〉 is decidable if and
only if n is prime.

The equality sign will be considered as a logical symbol. Let L be a
first-order language, and let M be an L-structure with domain M . Recall
that an n-ary relation R over M is definable inM if and only if there exists a
first-order L-formula ϕ with n free variables such that for all a1, . . . , an ∈M ,
R(a1, . . . , an) holds if and only if M |= ϕ[a1, . . . , an]. In the same way, a
function over M is definable in M if its graph is definable in M.

Usually function symbols denote total functions; however, to simplify
formal definitions we shall introduce function symbols denoting partial func-
tions. These partial functions always have positive range and thus could be
completed to total ones by the value 0 (which is definable in the structures
we consider).

We do not distinguish between a function or predicate and the corre-
sponding formal symbol for it.

2. Definability results for 〈N;Bn〉. The section introduces auxiliary
results and definitions which will be used throughout the paper. For every
integer n ≥ 2 and every x ∈ N, we call any finite sequence a0, a1, . . . , ak
of nonnegative integers less than n such that x =

∑
0≤i≤k ain

i an n-ary
expansion of x. We write x = [ak . . . a0]n, and the ai’s are called digits
of the n-ary expansion. Since adding to the sequence 〈ai〉i≤k an arbitrary



Pascal’s triangle 113

number of leading zero digits preserves the first equality, any integer has an
infinite number of n-ary expansions, and for all integers x, y one can always
find n-ary expansions of x and y with the same number of digits.

The following theorem, which is a slight modification of a result of Lucas
([Lu], see also [Fi]), relates the value of

(
x+y
x

)
modulo p, for p prime, to the

p-ary expansions of x and y.

Theorem 2.1 (Lucas). Let p be a prime. For any x, y ∈ N, if x =
[xn . . . x1x0]p and y = [yn . . . y1y0]p then

(
x+ y

x

)
≡

n∏

i=0

(
xi + yi
xi

)
(mod p).

For the remainder of this section, let p denote a prime number. For any
x = [xn . . . x0]p and y = [yn . . . y0]p, let x vp y mean that xi ≤ yi for every
i ≤ n. The following two theorems specify the expressive power of 〈N;Bp〉.

Theorem 2.2 (Korec [Ko1]). The relation vp is definable in the structure
〈N;Bp〉.

If we consider any integer x as a finite multiset of powers of p, with
p− 1 as the maximal allowed multiplicity of a membership, then vp can be
understood as the multiset inclusion.

Theorem 2.3 (Korec [Ko2]). The following relations and functions are
definable in the structure 〈N;Bp〉:

x @p y (proper multiset inclusion),

x ≺p y (covering relation in (N,vp)),
z = x up y (meet operation in (N,vp)),
z = x tp y (join operation in (N,vp)),

0, 1, . . . , p− 1 (the constants 0, 1, . . . , p− 1),

Powp(x) (x is a power of p),

OneDigp(x) (x has at most one nonzero digit),

Digip(w, x) (Powp(w) and the corresponding digit of x is i).

Since we shall work within extensions of 〈N;Bp〉, we will freely use the
above symbols in the sequel.

Let NextPowp = {(pn, pn+1) : n ∈ N}. We shall use the following lemma
in Sections 3 and 4.

Lemma 2.4. Addition is first-order definable in the structure 〈N;Bp,
NextPowp〉.

P r o o f. The defining formula for + will express the usual algorithm of
addition in base p. The following (finite) set of quintuples of integers will be
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used as an abbreviation:

X = {(i, j, k,m, n) :

i, j,m ∈ {0, 1, . . . , p− 1} ∧ k, n ∈ {0, 1} ∧ i+ j + k = m+ np}.
Now a defining formula for addition is

z = x+ y ⇔
∃v
(

Dig0
p(1, v) ∧ ∀w

(
Powp(w)⇒

∨

(i,j,k,m,n)∈X

(
Digip(w, x) ∧Digjp(w, y)

∧Digkp(w, v) ∧Digmp (w, z) ∧ ∃z(NextPowp(w, z) ∧Dignp (z, v))
)))

.

In this formula, v stands for the “vectors of carries”, an integer whose
digits are 0 or 1, each digit 1 corresponding to a carry.

3. Definability within 〈N;Bn,⊥〉. In [Ko3] the second author proved
that for any n ≥ 2 addition and multiplication are definable in the structure
〈N;Bn, |〉, where | denotes the division relation. The proof rests on a {Bp, |}-
definition of NextPown. In this section we improve this result by showing
that the same holds for the structure 〈N;Bn,⊥〉, where x ⊥ y holds if and
only if x and y have no common prime divisor (this relation is easily definable
in 〈N; |〉).

We shall prove that + and × are definable in 〈N;Bn,⊥〉. Since by [Wo]
multiplication is definable in 〈N; +,⊥〉, it is sufficient to define addition in
〈N;Bn,⊥〉. Moreover, we only need to consider the case of n prime, since +
is definable in 〈N;Bn〉 whenever n ≥ 2 is not prime [Ko1], [Be].

The proof is based upon the following two theorems due to D. Richard
[Ri], who used them as definability tools in the study of the structure
〈N;S,⊥〉, where S denotes the successor function. For every x ∈ N, denote
by Supp(x) the support of x, that is, the set of its prime divisors.

Theorem 3.1 (Richard). For every integer x ≥ 2 and all α, β ∈ N the
following holds:

(i) The equality Supp(xα + 1) = Supp(xβ + 1) is equivalent to “α = β
or (x = 2 and α, β ∈ {1, 3})”.

(ii) The equality Supp(xα − 1) = Supp(xβ − 1) is equivalent to “α = β
or (x = 2u − 1 for some u ≥ 2, and α, β ∈ {1, 2})”.

Theorem 3.2 (Richard). For every integer x ≥ 2 and all α, β ∈ N, the
inclusion

Supp(xα − 1) ⊆ Supp(xβ − 1)

is equivalent to “α |β or (x = 2u − 1 for some u ≥ 2, and α ∈ {1, 2})”.
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We now intend to define NextPowp in 〈N;Bp,⊥〉. Let us first introduce
some auxiliary relations and constants.

Lemma 3.3. The relations

• [Supp(x) = Supp(y)], denoted by SameSupp(x, y),
• [Supp(x) ⊆ Supp(y)], denoted by InclSupp(x, y),
• [Supp(z) = Supp(x) ∪ Supp(y)], denoted by UnionSupp(x, y, z),
• [x is a prime power], denoted by PrimePow(x),

are definable in the structure 〈N;Bp,⊥〉.
P r o o f. The relevant definitions are:

SameSupp(x, y)⇔ ∀t(t ⊥ x⇔ t ⊥ y),

InclSupp(x, y)⇔ ∀t(t ⊥ y ⇒ t ⊥ x),

UnionSupp(x, y, z)⇔ ∀t(t ⊥ z ⇔ (t ⊥ x ∧ t ⊥ y)),

PrimePow(x)⇔ ∀y∀z((¬x ⊥ y ∧ ¬x ⊥ z)⇒ ¬y ⊥ z).
Lemma 3.4. The constants 2, 4 and 8 are definable in the structure

〈N;B2,⊥〉.
P r o o f. By Theorem 3.1(i), for all α, β ∈ N, α 6= β, we have

Supp(2α + 1) = Supp(2β + 1)⇔
{
α = 1, β = 3 or
α = 3, β = 1.

Therefore we can define the set T = {3, 9} by the formula

T (x)⇔ ∃y∃z(Pow2(y) ∧ x = y t2 1 ∧ Pow2(z) ∧ ¬y = z

∧ SameSupp(x, z t2 1)).

Then we define the set U = {2, 8} by the formula

U(x)⇔ (Pow2(x) ∧ ∃y(T (y) ∧ y = x t2 1)).

The set V = {4, 16} can be defined by the formula

V (x)⇔ (Pow2(x) ∧ ¬y = 1 ∧ ¬U(x)

∧ ∃y∃z(U(y) ∧ U(z) ∧ ¬y = z ∧ Supp(x t2 y) = Supp(x t2 z))).

Then observe that 15 is the only positive integer which is not a prime power
and can be written as the sum of 1 and three integers among {2, 4, 8, 16}.
Thus the constant 15 can be defined by the formula

x = 15⇔ ¬PrimePow(x) ∧ ∃y1∃y2∃y3

(U(y1) ∧ V (y2) ∧ (U(y3) ∨ V (y3))

∧ ¬y1 = y3 ∧ ¬y2 = y3 ∧ x = 1 t2 y1 t2 y2 t2 y3).

This allows us to define the constants 4 and 16 by the formulas

x = 4⇔ V (x) ∧ x u2 15 = x, x = 16⇔ V (x) ∧ ¬x = 4.
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Finally, the integer 1 + 8 + 16 is not coprime to 15, while 1 + 2 + 16 is; thus
we define the constants 2 and 8 by the formulas

x = 2⇔ U(x) ∧ (1 t2 x t2 16) ⊥ 15, x = 8⇔ U(x) ∧ ¬x = 2.

We shall use the following corollary of Chebyshev’s Theorem:

Proposition 3.5. For every integer n ≥ 2 there exists a prime p such
that n ≤ p ≤ 7

5n.

P r o o f. It is proved in [El, p. 21] that there exists a constant A > 0 such
that for every integer n ≥ 30,

An

log n
≤ π(n) ≤ 6

5
· An

logn
.

Hence for every integer n ≥ 30,

π

(
7
5
n

)
− π(n) ≥ 7

5
· An

log
(

7
5n
) − 6

5
· An

logn

≥ An

5(logn)
(

log n+ log 7
5

)
(

7 log n− 6
(

log n+ log
7
5

))
.

The last expression is strictly positive whenever n > (7/5)6. Since
(7/5)6 < 30, this proves that for every n ≥ 30 there exists a prime p such
that n ≤ p ≤ 7

5n. The cases n = 2, . . . , 29 are easily checked.

Lemma 3.6. Let p be a prime greater than 2. The constant p is definable
in the structure 〈N;Bp,⊥〉.

P r o o f. • First case: p = 3. In this case by Theorem 3.1(i) for every
n ∈ N we have Supp(3n + 1) = {2} if and only if n = 1. By Theorem 2.3
the constants 1 and 2 are definable in 〈N;B3,⊥〉, and the constant 3 is thus
definable in 〈N;B3,⊥〉 by the formula

x = 3⇔ (Pow3(x) ∧ SameSupp(x t3 1, 2)).

• Second case: p > 3. If we set n = (p + 1)/2, then the previous propo-
sition ensures us that there exists a prime q such that

p+ 1
2
≤ q ≤ 7

5
· p+ 1

2

and 7
5 (p+ 1)/2 < p whenever p ≥ 3. Thus there exists a prime q such that

p+ 1
2
≤ q < p.

Fix such a q; by Theorem 2.3 the constant q − 1 is definable in 〈N;Bp,⊥〉.
Now the set PredPowq = {(qn, qn − 1) : n ≥ 1} can be defined by
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PredPowq(x, y)⇔
(

SameSupp(x, q)

∧
p−1∧

i=1

(x up (p− 1) = i⇒ (y up (p− 1) = i− 1 ∧ x = y tp i))
)
.

We intend to define the constant q2, which has only two non-zero digits,
namely the 0th and the first; this property will allow us to define p.

First assume that q = 2u − 1 for some positive integer u. By Theo-
rem 3.1(ii), if Supp(qn− 1) = Supp(q− 1) with n 6= 1 then n = 2. Therefore
q2 − 1 is definable in 〈N;Bp,⊥〉:

x = q2 − 1⇔ ∃t(PredPowq(t, x) ∧ ¬x = q − 1 ∧ SameSupp(x, q − 1)).

From this we get a definition for q2 by the formula

x = q2 ⇔
p−2∨

i=1

((q2 − 1) up (p− 1) = i ∧ x = (q2 − 1) tp (i+ 1)).

Assume now that q 6= 2u − 1 for every u ≥ 1. In this case, by Theo-
rem 3.1(ii), for all integers α, β we have

Supp(qα − 1) = Supp(qβ − 1) if and only if α = β,

thus q2 is the only power of q, say qn, such that

Supp(qn − 1) = Supp(q − 1) ∪ Supp(q + 1).

We have q < p − 1, thus by Theorem 2.3 the constant q + 1 is definable in
〈N;Bp,⊥〉. This leads to the following definition for q2:

x = q2 ⇔ ∃y(PredPowq(x, y) ∧UnionSupp(q − 1, q + 1, y)).

The inequalities
p+ 1

2
≤ q < p

yield p < q2 < p2; finally, we can define p by observing that p is the only
proper power of p, say pn, such that pn up q2 6= 0:

x = p⇔ (x 6= 1 ∧ Powp(x) ∧ x up q2 6= 0).

Lemma 3.7. For every prime p the relation NextPowp is definable in the
structure 〈N;Bp,⊥〉.

P r o o f. • First case: p = 2. Let α, β be two integers greater than or
equal to 3. If

Supp(2α + 2) = Supp(2β + 1) ∪ {2}
then

Supp(2α−1 + 1) = Supp(2β + 1),
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which implies, by Theorem 3.1(i), α− 1 = β. Conversely, if α− 1 = β then
obviously

Supp(2α + 2) = Supp(2β + 1) ∪ {2}.
Therefore a suitable formula for NextPow2(x, y) is

NextPow2(x, y)⇔
((x = 1 ∧ y = 2) ∨ (x = 2 ∧ y = 4) ∨ (x = 4 ∧ y = 8)

∨ (Pow2(x) ∧ Pow2(y) ∧ ¬x = 1 ∧ ¬x = 2 ∧ ¬x = 4

∧ ¬y = 1 ∧ ¬y = 2 ∧ ¬y = 4 ∧UnionSupp(x t2 1, 2, y t2 2))).

• Second case: p 6= 2. In this case by Theorem 3.1(i) for all α, β ∈ N we
have

Supp(pα + p) = Supp(pβ + 1) ∪ {p} if and only if α− 1 = β.

Therefore an appropriate formula for NextPowp(x, y) is

NextPowp(x, y)⇔ (Powp(x) ∧ Powp(y) ∧UnionSupp(x tp 1, p, y tp p)).
Theorem 3.8. For every integer n ≥ 2 the structures 〈N;Bn,⊥〉 and

〈N; +,×〉 are inter-definable.

P r o o f. By Lemmas 3.7 and 2.4 for every prime p addition is definable in
the structure 〈N;Bp,⊥〉. Furthermore, by [Ko1], [Be], addition is definable in
〈N;Bn〉 whenever n ≥ 2 is not prime; thus for every integer n ≥ 2 addition
is definable in 〈N;Bn,⊥〉. Now by [Wo] multiplication is definable in the
structure 〈N; +,⊥〉.

Corollary 3.9. For every integer n ≥ 2 the elementary theory of
〈N;Bn,⊥〉 is undecidable.

4. Definability within 〈N;Bn, Sq〉. Let Sq denote the set of squares. In
[Ko2] it was proved that + and × are definable in the structure 〈N;B2,Sq〉.
We here extend this result to 〈N;Bn, Sq〉 for every integer n ≥ 3. A first
observation is that we only have to define addition, since by [Pu], × is
definable in 〈N; +,Sq〉. Moreover, as noted before, addition is definable in
〈N;Bn〉 whenever n ≥ 2 is not prime ([Ko1], [Be]), thus it is sufficient to
prove the result for n prime and greater than or equal to 3.

The following two lemmas specify, for squares with a small number of
nonzero digits, their respective position.

Lemma 4.1. Let p be an odd prime. For all k, t ∈ N, if k 6= 2t then

(p− 2)pk + p2t is a square if and only if k = 2t+ 1.

P r o o f. The “if” part is obvious. For the converse suppose that

(1) (p− 2)pk + p2t = x2
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for some x ∈ N. Let us first show that k > 2t. Otherwise k < 2t, and (1)
implies

(2) pk[(p− 2) + p2t−k] = x2.

Since p − 2 + p2t−k is prime to p, k is even; thus there exist two positive
integers j, y such that

(3) p− 2 + p2j = y2.

Now p2j and p2j + 2pj + 1 are consecutive squares, and the fact that

(4) p2j < p− 2 + p2j < p2j + 2pj + 1

leads to a contradiction. So k > 2t, that is, k ≥ 2t+ 1. It follows that

(5) p2t[(p− 2)pk−2t + 1] = x2.

Therefore (p − 2)pk−2t + 1 is a square. Thus we have to show that for all
positive integers l, z the equation

(6) (p− 2)pl + 1 = z2

yields l = 1. Equation (6) implies (p − 2)pl | z2 − 1. Since p ≥ 3, we have
pl | z − 1 or pl | z + 1. In both cases we have z ≥ pl − 1, which implies

(7) z2 ≥ p2l − 2pl + 1.

Now p ≥ 3, so pl−2−pl−1 ≥ 0, which yields p2l−2pl+1 > p2l−1. Therefore
(6) and (7) lead to (p − 2)pl + 1 > p2l−1. This implies l ≥ 2l − 1, that is,
l ≤ 1 and finally l = 1.

Lemma 4.2. Let p be an odd prime. For all j, k ∈ N such that j 6= k, we
have the following :

(i) if p = 3 then (p2j + p2k + 2p2k+1 is a square if and only if j = k+ 1
or j = k − 1);

(ii) if p > 3 then (p2j+p2k+2p2k+1 is a square if and only if j = k+1).

P r o o f. The “if” part is easily checked in both cases. Conversely, assume
first that j < k. In this case

(8) 1 + p2(k−j) + 2p2(k−j)+1 = y2

for some positive integer y. Set l = k − j. We get

(9) 1 + p2l + 2p2l+1 = y2.

Thus

(10) p2l(1 + 2p) = (y − 1)(y + 1),

which yields p2l | y − 1 or p2l | y + 1. In both cases y ≥ p2l − 1, so that
y2 ≥ p4l − 2p2l + 1. Then from (9) we obtain

(11) 1 + p2l + 2p2l+1 ≥ p4l − 2p2l + 1,
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which implies 1 + 2p ≥ p2l − 2. If p = 3 then the previous inequality forces
l = 1, i.e. j = k − 1. If p > 3 then p2l − 2 ≥ 5p− 2 > 1 + 2p, which leads to
a contradiction.

Assume now that j > k. Set l = j − k. In this case

(12) 1 + p2l + 2p = z2

for some positive integer z. Now for every m ∈ N, p2m and p2m + 2pm + 1
are consecutive squares, therefore the only case for which 1 + p2l + 2p is a
square is l = 1, that is, j = k + 1.

As in the previous section, we now define NextPowp in order to define
addition.

Lemma 4.3. For every prime p ≥ 3 the relation NextPowp is definable
in the structure 〈N;Bp, Sq〉.

P r o o f. Let EvenPowp (respectively OddPowp) be the set of even (resp.
odd) powers of p. These sets are definable by the following formulas:

EvenPowp(x)⇔ (Powp(x) ∧ Sq(x)),

OddPowp(x)⇔ (Powp(x) ∧ ¬Sq(x)).

Let us now define the set E = {(p − 2)pk + p2t : k, t ∈ N and k 6= 2t}.
A suitable defining formula is

E(x)⇔ ∃z1∃z2(EvenPowp(z1) ∧OneDigp(z2)

∧ ∃wDigp−2
p (w, z2) ∧ x = z1 tp z2).

Now using Lemma 4.1 we can define the set D1 = {(p2n, p2n+1) : n ∈ N} by
the formula

D1(x, y)⇔ EvenPowp(x)∧OddPowp(y)∧∃z(E(z)∧Sq(z)∧x vp z∧y vp z).
Consider the set F = {p2j + p2k + 2p2k+1 : j, k ∈ N and j 6= k}. It is defin-
able as follows:

F (x)⇔ ∃y1∃y2∃y3∃z(EvenPowp(y1)∧EvenPowp(y2)∧¬y1 = y2∧D1(y2, y3)

∧OneDigp(z) ∧ ∃w Dig2
p(w, z) ∧ y3 vp z ∧ x = y1 tp y2 tp z).

• First case: p > 3. Let z ∈ F , that is, z = p2j + p2k + 2p2k+1 for some
j, k ∈ N, j 6= k. By Lemma 4.2(ii), z is a square if and only if j = k + 1.
This allows us to define D2 = {(p2n+1, p2n+2) : n ∈ N} in the following way:

D2(x, y)⇔ OddPowp(x) ∧ EvenPowp(y)

∧ ∃z(F (z) ∧ Sq(z) ∧ y vp z ∧ x vp z ∧ ¬D1(y, x)).

This leads to the following definition for NextPowp:

NextPowp(x, y)⇔ D1(x, y) ∨D2(x, y).
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• Second case: p = 3. Let z ∈ F , say z = 32j + 32k + 2 · 32k+1 for some
j, k ∈ N, j 6= k. By Lemma 4.2(i), z is a square if and only if j = k + 1 or
j = k− 1. Thus we can define the set G = {(32m, 32n) : |m− n| = 1} by the
formula

G(x, y)⇔ EvenPow3(x) ∧ EvenPow3(y)

∧ ¬x = y ∧ ∃z(F (z) ∧ Sq(z) ∧ x v3 z ∧ y v3 z).

Now consider

SeqEvenPow3 =
{

(x, t) : x =
n∑

i=0

32i and t = 32n for some n ∈ N
}

;

this set, using G, is definable as follows:

SeqEvenPow3(x, t)⇔
(∀z((Pow3(z) ∧ z v3 x)⇒ (EvenPow3(z) ∧Dig1

3(z, x)))

∧ 1 v3 x ∧ EvenPow3(t) ∧ t v3 x ∧ ∃u(G(t, u) ∧ ¬u v3 x)

∧ ∀v∀w((EvenPow3(v) ∧ v v3 x ∧ ¬v = t ∧G(v, w))⇒ w v3 x)).

Thanks to this set we can define

NextEvenPow3 = {(32n, 32n+2) : n ∈ N}
by the formula

NextEvenPow3(x, y)⇔ ∃u∃v(SeqEvenPow3(u, x)

∧ SeqEvenPow3(v, y) ∧ v = u t3 y).

We finally define NextPow3 in the following way:

NextPow3(x, y)⇔ D1(x, y) ∨ ∃z(D1(z, x) ∧NextEvenPow3(z, y)).

Theorem 4.4. For every integer n ≥ 2 the structures 〈N;Bn, Sq〉 and
〈N; +,×〉 are inter-definable.

P r o o f. From Lemma 4.3 and Theorem 2.4 it follows that for every
prime p addition is definable in the structure 〈N;Bp, Sq〉. Since by [Ko1],
[Be], addition is definable in 〈N;Bn〉 whenever n ≥ 2 is not prime, this proves
that for every integer n ≥ 2 addition is definable in the structure 〈N;Bn,Sq〉.
Then by [Pu] multiplication is definable in the structure 〈N; +, Sq〉.

Corollary 4.5. For every integer n ≥ 2 the elementary theory of
〈N;Bn, Sq〉 is undecidable.

5. Definability within 〈N;Bn,SQn〉. In the last section we proved that
adding the set of squares to the language {Bn} suffices to define addition and
multiplication, and therefore leads to the undecidability of the corresponding
theory. We now study the situation obtained by adding a fragment of the
squaring function to {Bn}.
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For every integer n ≥ 2, let SQn denote the restriction of the squaring
function to powers of n. In [Ko2] the following two results were proved:

(i) Multiplication is definable in the structure 〈N;B2,+,SQ2〉. Thus the
elementary theory of this structure is undecidable.

(ii) Neither + nor × are definable in the structure 〈N;B2, SQ2〉.
We prove below that (i) holds if 2 is replaced by any integer greater

than 1. Since addition is definable in 〈N;Bn〉 whenever n ≥ 2 is not prime,
this will imply that for every nonprime integer n ≥ 2 the elementary theory
of 〈N;Bn, SQn〉 is undecidable. On the other hand, we show, using Feferman–
Vaught results on generalized powers, that for every prime p the elementary
theory of 〈N;Bp,SQp〉 is decidable.

Let us first consider the structure 〈N;Bn,+,SQn〉 for n ≥ 2. We shall
make use of the following theorem due to Villemaire [Vi], which is a first-
order version of results of Thomas [Th]. For every integer n ≥ 2, let us denote
by Vn the function which maps every positive integer x to the greatest power
of n dividing x.

Theorem 5.1 (Villemaire). Let n ≥ 2, and let f be a function from
Pown to Pown which has the following properties:

(1) For every i ∈ N, f(ni+1) ≥ nf(ni) (f is strictly increasing);
(2) There exists d ∈ N such that for every i ∈ N there exists an integer

m such that i ≤ m ≤ i+ d and

f(nm+1) ≥ n2f(nm).

Then multiplication is definable in the structure 〈N; +, Vn, f〉.
Theorem 5.2. For every integer n ≥ 2 multiplication is definable in

〈N;Bn,+, SQn〉.
P r o o f. Since for every i ∈ N, SQn(ni+1) = n2SQn(ni), it follows that

the function SQn satisfies conditions (1) and (2) of the previous theorem.
Thus it remains to prove that Vn is definable in 〈N;Bn,+,SQn〉. A suitable
definition is

y = Vn(x)⇔ (¬x = 0 ∧ Pown(y) ∧ ¬Dig0
n(y, x)

∧ ∀z((z < y ∧ Pown(z))⇒ Dig0
n(z, x))).

Corollary 5.3. For every nonprime integer n ≥ 2 the elementary theory
of 〈N;Bn,SQn〉 is undecidable.

P r o o f. This follows from Theorem 5.2 and the fact that addition is
definable in 〈N;Bn〉 whenever n ≥ 2 is not prime ([Ko1], [Be]).

We now study the expressive power of 〈N;Bp, SQp〉 for p prime. The
following theorem specifies the result (ii) of the beginning of the section.
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Theorem 5.4. For every prime p, neither + nor × are definable in
〈N;Bp, SQp〉.

P r o o f. The argument is almost the same as in [Ko2]. Let ϕ be the
permutation of Powp defined by




ϕ(p2i) = p3·2i for every i ∈ N,
ϕ(p3·2i) = p2i for every i ∈ N,
ϕ(pi) = pi for every i 6∈ {3 · 2j : j ∈ N} ∪ {2j : j ∈ N}.

Now let ϕ be the function defined by

ϕ
( k∑

i=0

aip
i
)

=
k∑

i=0

aiϕ(pi) for all n ∈ N and ai ∈ {0, 1, . . . , p−1}, 0 ≤ i ≤ k.

It follows from Lucas’ Theorem that for all x, y ∈ N,

Bp(x, y) = Bp(ϕ(x), ϕ(y)).

Moreover, ϕ(z) = z for every z ∈ {0, 1, . . . , p− 1}. Hence ϕ preserves Bp. It
is easily checked that ϕ preserves SQp too. Therefore ϕ is an automorphism
of the structure 〈N;Bp, SQp〉. Now

ϕ(p− 1) + ϕ(1) = p− 1 + 1 = p 6= p3 = ϕ(p− 1 + 1)

and
ϕ(p2) · ϕ(p) = p6 · p3 = p9 6= p = ϕ(p2 · p).

Thus ϕ preserves neither + nor ×.

In the sequel p will denote a prime number. We now proceed to show
that the elementary theory of 〈N;Bp, SQp〉 is decidable.

For technical reasons we shall consider, instead of 〈N;Bp, SQp〉, the struc-
ture 〈N;B′p,SQ′p〉, where:

• B′p is the graph of Bp.
• SQ′p = {(pi, p2i) : i ≥ 1} ∪ {(1, p)}.
Bp is obviously definable in 〈N;B′p,SQ′p〉; moreover, SQp is definable in

〈N;B′p, SQ′p〉 by the formula

y = SQp(x)⇔ ((x = 1 ∧ y = 1) ∨ (¬x = 1 ∧ SQ′p(x, y))).

Thus if we show that the elementary theory of 〈N;B′p, SQ′p〉 is decidable,
then so will be the elementary theory of 〈N;Bp,SQp〉.

We shall use the notion of generalized power, which was introduced by
Feferman and Vaught [FV].

For every set B, denote by Pf(B) the set of finite subsets of B. If A is
a (nonempty) set, e is an element of A, and B is a set, we denote by A

(B)
e

the set of functions f from B to A such that {b : b ∈ B ∧ f(b) 6= e} is finite.
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Definition 5.5. Let A,B be nonempty sets, e be an element of A,
LA, LB be first-order languages, and A = 〈A;RA〉, B = 〈Pf(B);RB〉 be
an LA-structure and LB-structure, respectively. Let R be a relation with
arity k over A(B)

e . We say that R is accessible in (A,B) if and only if there
exist an LB-formula G(X1, . . . , Xl) and l LA-formulas with k free variables
F1, . . . , Fl such that:

(i) A 6|= Fi(e, e, . . . , e) for every i ∈ {1, . . . , l}.
(ii) For every k-tuple (f1, . . . , fk) ofA(B)

e ,R(f1, . . . , fk) holds if and only if

B |= G(T1, . . . , Tl)
where

Ti = {x ∈ B : A |= Fi(f1(x), . . . , fk(x))} for every i ∈ {1, . . . , l}.
(The condition (i) ensures that T1, . . . , Tl are finite sets.)

Definition 5.6. With the above notations, if R is a set of relations
over A(B)

e , we say that the structure 〈A(B)
e ;R〉 is a generalized power of A

relative to B if every relation of R is accessible in (A,B).

Theorem 5.7 (Feferman–Vaught [FV]). With the above notations, if the
elementary theories of A and B are decidable and C is a generalized power
of A relative to B then the elementary theory of C is decidable.

Let us denote by � the binary relation over Pf(N) defined by: X � Y
if and only if X,Y are nonempty sets and Sup(X) < Sup(Y ). We shall
prove that the structure 〈N;B′p,SQ′p〉 is isomorphic to a generalized power
of 〈N;Bp,+〉 relative to 〈Pf(N);⊆,�〉.

For every x ∈ N, let fx : N → N be the function defined as follows:
assume that

x =
k∑

i=0

aip
i, where ai ∈ {0, 1, . . . , p− 1}, 0 ≤ i ≤ k;

then

fx(0) = a0p
0 +

blog2(k)c∑

i=0

a2ip
i+1

and for every positive integer n,

fx(n) =
blog2(k/(2n+1))c∑

i=0

a(2n+1)2ip
i

where brc denotes the integer part of r. It is easily checked that the function
ϕ : N→ N(N)

0 which maps every x ∈ N to fx is 1-1 and onto.
Consider the structure 〈N(N)

0 ; B̃′p, S̃Q′p〉, where

N(N)
0 |= B̃′p(x, y, z) if and only if N |= B′p(ϕ

−1(x), ϕ−1(y), ϕ−1(z))
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and

N(N)
0 |= S̃Q′p(x, y) if and only if N |= SQ′p(ϕ

−1(x), ϕ−1(y))

for all x, y, z ∈ N(N)
0 . This structure is clearly isomorphic to 〈N;B′p, SQ′p〉.

We intend to prove that 〈N(N)
0 ; B̃′p, S̃Q′p〉 is a generalized power of

〈N;Bp,+〉 relative to 〈Pf(N);⊆,�〉. For this we have to show that the rela-
tions S̃Q′p and B̃′p are accessible in (〈N;Bp,+〉, 〈Pf(N);⊆,�〉).

We first introduce several relations and functions over Pf(N).

Lemma 5.8. The following relations and functions over Pf(N) are defin-
able in the structure 〈Pf(N);⊆,�〉:
• [X is empty ], denoted by Empty(X);
• [X is a singleton], denoted by Singl(X);
• the singleton {0}, denoted by Zero;
• the function denoted by Y = Succ(X), which maps every singleton

X = {n} to Y = {n+ 1} (n ∈ N);
• the function denoted by Y = Sup(X), which maps every nonempty set

X with maximal element n to the singleton Y = {n}.
P r o o f. The corresponding definitions are:

Empty(X)⇔ (∀Y (X ⊆ Y ));

Singl(X)⇔ (¬Empty(X) ∧ ∀Y (Y ⊆ X ⇒ (Empty(Y ) ∨X = Y )));

X = Zero⇔ (Singl(X) ∧ ∀Y (¬Y � X));

Y = Succ(X)⇔ (Singl(X) ∧ Singl(Y ) ∧X� Y ∧ ¬∃Z(X �Z ∧ Z� Y ));

Y = Sup(X)⇔ (¬Empty(X) ∧ Singl(Y ) ∧ ∀Z(X � Z ⇔ Y � Z)).

Lemma 5.9. The relation S̃Q′p is accessible in (〈N;Bp,+〉, 〈Pf(N);⊆,�〉).
P r o o f. Let x, y be two integers with respective p-ary expansions x =

[xk . . . x1x0]p and y = [yk . . . y1y0]p. Then S̃Q′p(fx, fy) holds if and only if
both x and y have a single nonzero digit, say xi and yj , each being equal
to 1, and either i = 0 and j = 1, or i > 0 and j = 2i. These conditions can
be expressed in the following (equivalent) way: there exists n ∈ N such that
fx(n) = pl, fy(n) = pl+1 for some l ∈ N, and fx(n′) = fy(n′) = 0 whenever
n′ 6= n. This yields the following description of S̃Q′p:

Consider

F1(u, v) : ¬(u = 0 ∨ v = 0)

and

F2(u, v) : NextPowp(u, v).
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F1 and F2 can be seen as {Bp,+}-formulas (since NextPowp is easily defin-
able in 〈N;Bp,+〉). Then consider

G(T1, T2) : Singl(T1) ∧ T1 ⊆ T2.

G(T1, T2) can be seen as a {⊆,�}-formula (by Lemma 5.8). From the above
remark it is clear that S̃Q′p(fx, fy) holds if and only if G(T1, T2) does, with

Ti = {n ∈ N : 〈N;Bp,+〉 |= Fi(fx(n), fy(n))} for every i ∈ {1, 2}.
Lemma 5.10. The relation B̃′p is accessible in (〈N;Bp,+〉, 〈Pf(N);⊆,�〉).
P r o o f. Let x, y be two integers with respective p-ary expansions x =

[xk . . . x1x0]p and y = [yk . . . y1y0]p. By Lucas’ Theorem,

Bp(x, y) =
k∏

i=0

(
xi + yi
xi

)
MOD p

=
(
x0 + y0

x0

) blog2(k)c∏

i=0

(
x2i + y2i

x2i

)

×
b(k−1)/2c∏

j=1

blog2(k/(2j+1))c∏

i=0

(
x(2j+1)2i + y(2j+1)2i

x(2j+1)2i

)
MOD p

= Bp(fx(0), fy(0))
b(k−1)/2c∏

j=1

Bp(fx(j), fy(j)) MOD p

=
b(k−1)/2c∏

j=0

Bp(fx(j), fy(j)) MOD p.

This identity allows us to split the computation of Bp(x, y) into a fi-
nite number of computations of Bp(fx(j), fy(j)), which we then multiply
modulo p.

Consider the following {Bp,+}-formulas:

F1(x, y, z) : x 6= 0 ∨ y 6= 0,

F i2(x, y, z) : (x 6= 0 ∨ y 6= 0) ∧Bp(x, y) = i (i = 0, 1, . . . , p− 1),

F3(x, y, z) : z 6= 0,

F j4 (x, y, z) : z = j (j = 1, . . . , p− 1).

We now find a {⊆,�}-formula F which describes the computation of
Bp(x, y). The idea is to introduce p finite sets Y0, Y1, . . . , Yp−1 which encode
the computation of

∏b(k−1)/2c
j=0 Bp(fx(j), fy(j)) modulo p, in the following

way:
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• If Bp(fx(b(k− 1)/2c), fy(b(k− 1)/2c)) = h then b(k− 1)/2c ∈ Yh, and
b(k − 1)/2c 6∈ Yi for every i 6= h.
• For every j < b(k− 1)/2c, if j + 1 ∈ Yl and Bp(fx(j), fy(j)) = m then

j ∈ YlmMODp, and j 6∈ Yi for every i 6= lm MOD p.

This means that for every j ≤ b(k − 1)/2c, j ∈ Yl if and only if l equals
the partial product

∏b(k−1)/2c
i=j Bp(fx(i), fy(i)) MOD p. Thus one sees that

at the end of the computation, the value of Bp(x, y) will be the (unique)
integer l such that 0 ∈ Yl. These ideas lead to the following definition for F :

F (T1, T
0
2 , T

1
2 , . . . , T

p−1
2 , T3, T

1
4 , T

2
4 , . . . , T

p−1
4 ) :

(Empty(T1)⇒ (Singl(T3) ∧ Zero ⊆ T 1
4 ))

∧ ¬Empty(T1)⇒ ∃Y0, Y1, . . . , Yp−1
(

Sup(Y0, Y1, . . . , Yp−1) = Sup(T1)

∧
p−1∧

i=0

(Sup(T1) ⊆ T i2 ⇔ Sup(T1) ⊆ Yi)

∧ ∀Z
(

(Singl(Z) ∧ Z � Sup(T1))⇒
(
¬Z ⊆ T1 ⇒

p−1∧

i=0

(Succ(Z) ⊆ Yi ⇔ Z ⊆ Yi)
)

∧
(
Z ⊆ T1 ⇒

∧

0≤i,j≤p−1

((Succ(Z) ⊆ Yi ∧ Z ⊆ T j2 )⇔ Z ⊆ Yij MOD p)
))

∧
p−1∧

j=1

(Zero ⊆ Yj ⇒ (Singl(T3) ∧ Zero ⊆ T j4 ))

∧ Zero ⊆ Y0 ⇒ Empty(T3)
)
.

Finally, one checks that for all x, y, z ∈ N, B̃′p(fx, fy, fz) holds if and
only if F (. . .) does, with

Ti = {n ∈ N : 〈N;Bp,+〉 |= Fi(fx(n), fy(n), fz(n))} for every i ∈ {1, 3}
and

T i2 = {n ∈ N : 〈N;Bp,+〉 |= F i2(fx(n), fy(n), fz(n))} (i = 0, 1, . . . , p− 1),

T j4 = {n ∈ N : 〈N;Bp,+〉 |= F j4 (fx(n), fy(n), fz(n))} (j = 1, . . . , p− 1).

From Lemmas 5.9 and 5.10 we now deduce the following:
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Corollary 5.11. The structure 〈N(N)
0 ; B̃′p, S̃Q′p〉 is a generalized power

of 〈N;Bp,+〉 relative to 〈Pf(N);⊆,�〉.
Lemma 5.12. The elementary theory of 〈Pf(N);⊆,�〉 is decidable.

P r o o f. By [Ko3] the elementary theory of 〈N;B2,+〉 is decidable. Con-
sider the relation x ≺ y over N which holds if and only if there exists
i ∈ N such that x < 2i ≤ y. Using + and Pow2 one easily defines ≺ in
〈N;B2,+〉. Furthermore, v2 is definable in 〈N;B2,+〉. It follows that the
elementary theory of 〈N;v2,≺〉 is decidable. Now let h : N→ Pf(N) be the
function which maps every integer n =

∑k
j=0 2ij (with ij pairwise distinct)

to h(x) = {i0, i1, . . . , ik}. h is obviously 1-1 and onto; moreover, one checks
that for all n, n′ ∈ N, n v2 n

′ if and only if h(n) ⊆ h(n′), and n ≺ n′ if and
only if h(n)� h(n′). Therefore the structures 〈N;v2,≺〉 and 〈Pf(N);⊆,�〉
are isomorphic, from which the result follows.

Theorem 5.13. For every prime p the elementary theory of 〈N;Bp, SQp〉
is decidable.

P r o o f. By Corollary 5.11 the structure 〈N(N)
0 ; B̃′p, S̃Q′p〉 is a generalized

power of 〈N;Bp,+〉 relative to 〈Pf(N);⊆,�〉. By [Ko3] and Lemma 5.12 the
last two structures have decidable elementary theories, thus by Theorem
5.7 the same holds for 〈N(N)

0 ; B̃′p, S̃Q′p〉. Now this structure is isomorphic
to 〈N;B′p, SQ′p〉, which has therefore a decidable elementary theory, and the
result follows from the fact that Bp and SQp are definable in this structure.
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Université Paris 7 Mathematical Institute
Equipe de Logique URA 753 Slovak Academy of Sciences
2, place Jussieu Štefánikova 49
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