Definability within structures related to Pascal's triangle modulo an integer

by

Alexis Bès (Paris) and Ivan Korec (Bratislava)

Abstract. Let Sq denote the set of squares, and let SQ_n be the squaring function restricted to powers of n; let \perp denote the coprimeness relation. Let $B_n(x, y) = \binom{x+y}{x}$ MOD n. For every integer $n \geq 2$ addition and multiplication are definable in the structures $\langle \mathbb{N}; B_n, \perp \rangle$ and $\langle \mathbb{N}; B_n, \mathrm{Sq} \rangle$; thus their elementary theories are undecidable. On the other hand, for every prime p the elementary theory of $\langle \mathbb{N}; B_p, \mathrm{Sq}_p \rangle$ is decidable.

1. Introduction. Since Julia Robinson's result [Ro] that + and \times are first-order definable in the structure $\langle \mathbb{N}; S, | \rangle$, where \mathbb{N} denotes the set of nonnegative integers, S stands for the successor function and | for the divisibility relation, there have been many works on definability within fragments of arithmetic, which showed deep connections with number theory and automata theory—see e.g. [BJW], and the survey papers [BHMV], [Ce]. The field is obviously related to the study of decidability of logical theories: one often proves undecidability of a theory by means of definability techniques, and in turn decidability arguments can be used for proving undefinability of properties (see e.g. [MMT]).

For every $n \in \mathbb{N}$, the *Pascal triangle modulo* n is the binary function on \mathbb{N} defined by

$$B_n(x,y) = \begin{pmatrix} x+y\\ x \end{pmatrix} \text{MOD } n$$

where (:) denotes the binomial coefficient, and MOD denotes the remainder by integer division.

Arithmetical properties of Pascal triangles modulo n have been widely investigated (see e.g. [Di], [Bo], [Si]). In this paper we study definability and

¹⁹⁹¹ Mathematics Subject Classification: Primary 11B65, 03B25; Secondary 11U05, 03F30.

Key words and phrases: Pascal's triangle modulo n, decidability, definability.

The second author was supported by Grant 1227/94 of Slovak Academy of Sciences.

^[111]

decidability questions related to structures containing B_n and some extra predicate or function. Let us recall some known results in this area:

- If $n \geq 2$ has (at least) two distinct prime divisors then addition and multiplication are definable in the structure $\langle \mathbb{N}; B_n \rangle$; thus its elementary theory is undecidable [Ko1].
- If $n \geq 2$ is a prime number then the elementary theory of $\langle \mathbb{N}; B_n, + \rangle$ is decidable [Ko3].
- If $n \geq 2$ is a prime power but not a prime then addition is definable in $\langle \mathbb{N}; B_n \rangle$; moreover, the elementary theory of $\langle \mathbb{N}; B_n \rangle$ (or $\langle \mathbb{N}; B_n, + \rangle$) is decidable [Be].

In Section 3 we study the structure $\langle \mathbb{N}; B_n, \perp \rangle$, where \perp denotes the coprimeness relation (i.e. $x \perp y$ if and only if x and y have no common prime divisor). We use arithmetical results of Richard to define + and × in this structure, from which we deduce the undecidability of its elementary theory. In Section 4 we consider the structure $\langle \mathbb{N}; B_n, \mathrm{Sq} \rangle$, where Sq denotes the set of squares; this time again, defining + and × we prove that this structure has an undecidable elementary theory; this result was proved in [Ko2] for the case n = 2. We then investigate in Section 5 the structure $\langle \mathbb{N}; B_n, \mathrm{SQ}_n \rangle$, where SQ_n is the squaring function restricted to powers of n. It is shown that the elementary theory of $\langle \mathbb{N}; B_n, \mathrm{SQ}_n \rangle$ is decidable if and only if n is prime.

The equality sign will be considered as a logical symbol. Let \mathcal{L} be a first-order language, and let \mathcal{M} be an \mathcal{L} -structure with domain M. Recall that an *n*-ary relation R over M is *definable* in \mathcal{M} if and only if there exists a first-order \mathcal{L} -formula φ with n free variables such that for all $a_1, \ldots, a_n \in M$, $R(a_1, \ldots, a_n)$ holds if and only if $\mathcal{M} \models \varphi[a_1, \ldots, a_n]$. In the same way, a function over M is definable in \mathcal{M} if its graph is definable in \mathcal{M} .

Usually function symbols denote *total* functions; however, to simplify formal definitions we shall introduce function symbols denoting *partial* functions. These partial functions always have positive range and thus could be completed to total ones by the value 0 (which is definable in the structures we consider).

We do not distinguish between a function or predicate and the corresponding formal symbol for it.

2. Definability results for $\langle \mathbb{N}; B_n \rangle$. The section introduces auxiliary results and definitions which will be used throughout the paper. For every integer $n \geq 2$ and every $x \in \mathbb{N}$, we call any finite sequence a_0, a_1, \ldots, a_k of nonnegative integers less than n such that $x = \sum_{0 \leq i \leq k} a_i n^i$ an n-ary expansion of x. We write $x = [a_k \ldots a_0]_n$, and the a_i 's are called *digits* of the n-ary expansion. Since adding to the sequence $\langle a_i \rangle_{i < k}$ an arbitrary

number of leading zero digits preserves the first equality, any integer has an infinite number of n-ary expansions, and for all integers x, y one can always find n-ary expansions of x and y with the same number of digits.

The following theorem, which is a slight modification of a result of Lucas ([Lu], see also [Fi]), relates the value of $\binom{x+y}{x}$ modulo p, for p prime, to the p-ary expansions of x and y.

THEOREM 2.1 (Lucas). Let p be a prime. For any $x, y \in \mathbb{N}$, if $x = [x_n \dots x_1 x_0]_p$ and $y = [y_n \dots y_1 y_0]_p$ then

$$\binom{x+y}{x} \equiv \prod_{i=0}^n \binom{x_i+y_i}{x_i} \pmod{p}.$$

For the remainder of this section, let p denote a prime number. For any $x = [x_n \dots x_0]_p$ and $y = [y_n \dots y_0]_p$, let $x \sqsubseteq_p y$ mean that $x_i \le y_i$ for every $i \le n$. The following two theorems specify the expressive power of $\langle \mathbb{N}; B_p \rangle$.

THEOREM 2.2 (Korec [Ko1]). The relation \sqsubseteq_p is definable in the structure $\langle \mathbb{N}; B_p \rangle$.

If we consider any integer x as a finite multiset of powers of p, with p-1 as the maximal allowed multiplicity of a membership, then \sqsubseteq_p can be understood as the multiset inclusion.

THEOREM 2.3 (Korec [Ko2]). The following relations and functions are definable in the structure $\langle \mathbb{N}; B_p \rangle$:

$x \sqsubset_p y$	(proper multiset inclusion),
$x \prec_p y$	(covering relation in $(\mathbb{N}, \sqsubseteq_p)$),
$z=x\sqcap_p y$	(meet operation in $(\mathbb{N}, \sqsubseteq_p)$),
$z = x \sqcup_p y$	(join operation in $(\mathbb{N}, \sqsubseteq_p)$),
$0, 1, \ldots, p-1$	(the constants $0, 1, \ldots, p-1$),
$\operatorname{Pow}_p(x)$	(x is a power of p),
$\operatorname{OneDig}_p(x)$	(x has at most one nonzero digit),
$\operatorname{Dig}_p^i(w, x)$	(Pow _p (w) and the corresponding digit of x is i).

Since we shall work within extensions of $\langle \mathbb{N}; B_p \rangle$, we will freely use the above symbols in the sequel.

Let NextPow_p = { $(p^{n}, p^{n+1}) : n \in \mathbb{N}$ }. We shall use the following lemma in Sections 3 and 4.

LEMMA 2.4. Addition is first-order definable in the structure $\langle \mathbb{N}; B_p$, NextPow_p \rangle .

Proof. The defining formula for + will express the usual algorithm of addition in base p. The following (finite) set of quintuples of integers will be

used as an abbreviation:

$$X = \{(i, j, k, m, n) : i, j, m \in \{0, 1, \dots, p-1\} \land k, n \in \{0, 1\} \land i + j + k = m + np\}.$$

Now a defining formula for addition is

$$z = x + y \Leftrightarrow \exists v \Big(\operatorname{Dig}_p^0(1, v) \land \forall w \Big(\operatorname{Pow}_p(w) \Rightarrow \bigvee_{(i, j, k, m, n) \in X} \Big(\operatorname{Dig}_p^i(w, x) \land \operatorname{Dig}_p^j(w, y) \land \operatorname{Dig}_p^k(w, v) \land \operatorname{Dig}_p^m(w, z) \land \exists z (\operatorname{NextPow}_p(w, z) \land \operatorname{Dig}_p^n(z, v)) \Big) \Big) \Big).$$

In this formula, v stands for the "vectors of carries", an integer whose digits are 0 or 1, each digit 1 corresponding to a carry.

3. Definability within $\langle \mathbb{N}; B_n, \perp \rangle$. In [Ko3] the second author proved that for any $n \geq 2$ addition and multiplication are definable in the structure $\langle \mathbb{N}; B_n, | \rangle$, where | denotes the division relation. The proof rests on a $\{B_p, |\}$ -definition of NextPow_n. In this section we improve this result by showing that the same holds for the structure $\langle \mathbb{N}; B_n, \perp \rangle$, where $x \perp y$ holds if and only if x and y have no common prime divisor (this relation is easily definable in $\langle \mathbb{N}; | \rangle$).

We shall prove that + and \times are definable in $\langle \mathbb{N}; B_n, \perp \rangle$. Since by [Wo] multiplication is definable in $\langle \mathbb{N}; +, \perp \rangle$, it is sufficient to define addition in $\langle \mathbb{N}; B_n, \perp \rangle$. Moreover, we only need to consider the case of n prime, since + is definable in $\langle \mathbb{N}; B_n \rangle$ whenever $n \geq 2$ is not prime [Ko1], [Be].

The proof is based upon the following two theorems due to D. Richard [Ri], who used them as definability tools in the study of the structure $\langle \mathbb{N}; S, \perp \rangle$, where S denotes the successor function. For every $x \in \mathbb{N}$, denote by Supp(x) the *support* of x, that is, the set of its prime divisors.

THEOREM 3.1 (Richard). For every integer $x \ge 2$ and all $\alpha, \beta \in \mathbb{N}$ the following holds:

(i) The equality $\operatorname{Supp}(x^{\alpha} + 1) = \operatorname{Supp}(x^{\beta} + 1)$ is equivalent to " $\alpha = \beta$ or $(x = 2 \text{ and } \alpha, \beta \in \{1, 3\})$ ".

(ii) The equality $\operatorname{Supp}(x^{\alpha} - 1) = \operatorname{Supp}(x^{\beta} - 1)$ is equivalent to " $\alpha = \beta$ or $(x = 2^u - 1 \text{ for some } u \ge 2, \text{ and } \alpha, \beta \in \{1, 2\})$ ".

THEOREM 3.2 (Richard). For every integer $x \ge 2$ and all $\alpha, \beta \in \mathbb{N}$, the inclusion

$$\operatorname{Supp}(x^{\alpha} - 1) \subseteq \operatorname{Supp}(x^{\beta} - 1)$$

is equivalent to " $\alpha \mid \beta$ or $(x = 2^u - 1 \text{ for some } u \ge 2, \text{ and } \alpha \in \{1, 2\})$ ".

We now intend to define NextPow_p in $\langle \mathbb{N}; B_p, \perp \rangle$. Let us first introduce some auxiliary relations and constants.

LEMMA 3.3. The relations

- $[\operatorname{Supp}(x) = \operatorname{Supp}(y)], \text{ denoted by } \operatorname{SameSupp}(x, y),$
- $[\operatorname{Supp}(x) \subseteq \operatorname{Supp}(y)]$, denoted by $\operatorname{InclSupp}(x, y)$,
- $[\operatorname{Supp}(z) = \operatorname{Supp}(x) \cup \operatorname{Supp}(y)]$, denoted by $\operatorname{UnionSupp}(x, y, z)$,
- [x is a prime power], denoted by PrimePow(x),

are definable in the structure $\langle \mathbb{N}; B_p, \bot \rangle$.

Proof. The relevant definitions are:

SameSupp $(x, y) \Leftrightarrow \forall t(t \perp x \Leftrightarrow t \perp y),$ InclSupp $(x, y) \Leftrightarrow \forall t(t \perp y \Rightarrow t \perp x),$ UnionSupp $(x, y, z) \Leftrightarrow \forall t(t \perp z \Leftrightarrow (t \perp x \land t \perp y)),$ PrimePow $(x) \Leftrightarrow \forall y \forall z((\neg x \perp y \land \neg x \perp z) \Rightarrow \neg y \perp z).$

LEMMA 3.4. The constants 2, 4 and 8 are definable in the structure $\langle \mathbb{N}; B_2, \perp \rangle$.

Proof. By Theorem 3.1(i), for all $\alpha, \beta \in \mathbb{N}, \alpha \neq \beta$, we have

$$\operatorname{Supp}(2^{\alpha}+1) = \operatorname{Supp}(2^{\beta}+1) \Leftrightarrow \begin{cases} \alpha = 1, \ \beta = 3 \text{ or} \\ \alpha = 3, \ \beta = 1. \end{cases}$$

Therefore we can define the set $T = \{3, 9\}$ by the formula

 $T(x) \Leftrightarrow \exists y \exists z (\operatorname{Pow}_2(y) \land x = y \sqcup_2 1 \land \operatorname{Pow}_2(z) \land \neg y = z \land \operatorname{SameSupp}(x, z \sqcup_2 1)).$

Then we define the set $U = \{2, 8\}$ by the formula

$$U(x) \Leftrightarrow (\operatorname{Pow}_2(x) \land \exists y(T(y) \land y = x \sqcup_2 1))$$

The set $V = \{4, 16\}$ can be defined by the formula

$$V(x) \Leftrightarrow (\operatorname{Pow}_2(x) \land \neg y = 1 \land \neg U(x) \\ \land \exists y \exists z (U(y) \land U(z) \land \neg y = z \land \operatorname{Supp}(x \sqcup_2 y) = \operatorname{Supp}(x \sqcup_2 z))).$$

Then observe that 15 is the only positive integer which is not a prime power and can be written as the sum of 1 and three integers among $\{2, 4, 8, 16\}$. Thus the constant 15 can be defined by the formula

$$\begin{aligned} x &= 15 \Leftrightarrow \neg \operatorname{PrimePow}(x) \land \exists y_1 \exists y_2 \exists y_3 \\ & (U(y_1) \land V(y_2) \land (U(y_3) \lor V(y_3)) \\ & \land \neg y_1 = y_3 \land \neg y_2 = y_3 \land x = 1 \sqcup_2 y_1 \sqcup_2 y_2 \sqcup_2 y_3). \end{aligned}$$

This allows us to define the constants 4 and 16 by the formulas

 $x = 4 \Leftrightarrow V(x) \land x \sqcap_2 15 = x, \quad x = 16 \Leftrightarrow V(x) \land \neg x = 4.$

Finally, the integer 1 + 8 + 16 is not coprime to 15, while 1 + 2 + 16 is; thus we define the constants 2 and 8 by the formulas

$$x = 2 \Leftrightarrow U(x) \land (1 \sqcup_2 x \sqcup_2 16) \perp 15, \quad x = 8 \Leftrightarrow U(x) \land \neg x = 2. \blacksquare$$

We shall use the following corollary of Chebyshev's Theorem:

PROPOSITION 3.5. For every integer $n \ge 2$ there exists a prime p such that $n \le p \le \frac{7}{5}n$.

Proof. It is proved in [El, p. 21] that there exists a constant A > 0 such that for every integer $n \ge 30$,

$$\frac{An}{\log n} \le \pi(n) \le \frac{6}{5} \cdot \frac{An}{\log n}$$

Hence for every integer $n \ge 30$,

$$\pi\left(\frac{7}{5}n\right) - \pi(n) \ge \frac{7}{5} \cdot \frac{An}{\log\left(\frac{7}{5}n\right)} - \frac{6}{5} \cdot \frac{An}{\log n}$$
$$\ge \frac{An}{5(\log n)\left(\log n + \log\frac{7}{5}\right)} \left(7\log n - 6\left(\log n + \log\frac{7}{5}\right)\right).$$

The last expression is strictly positive whenever $n > (7/5)^6$. Since $(7/5)^6 < 30$, this proves that for every $n \ge 30$ there exists a prime p such that $n \le p \le \frac{7}{5}n$. The cases $n = 2, \ldots, 29$ are easily checked.

LEMMA 3.6. Let p be a prime greater than 2. The constant p is definable in the structure $\langle \mathbb{N}; B_p, \perp \rangle$.

Proof. • First case: p = 3. In this case by Theorem 3.1(i) for every $n \in \mathbb{N}$ we have $\operatorname{Supp}(3^n + 1) = \{2\}$ if and only if n = 1. By Theorem 2.3 the constants 1 and 2 are definable in $\langle \mathbb{N}; B_3, \bot \rangle$, and the constant 3 is thus definable in $\langle \mathbb{N}; B_3, \bot \rangle$ by the formula

$$x = 3 \Leftrightarrow (\operatorname{Pow}_3(x) \land \operatorname{SameSupp}(x \sqcup_3 1, 2)).$$

• Second case: p > 3. If we set n = (p+1)/2, then the previous proposition ensures us that there exists a prime q such that

$$\frac{p+1}{2} \le q \le \frac{7}{5} \cdot \frac{p+1}{2}$$

and $\frac{7}{5}(p+1)/2 < p$ whenever $p \geq 3$. Thus there exists a prime q such that

$$\frac{p+1}{2} \le q < p.$$

Fix such a q; by Theorem 2.3 the constant q-1 is definable in $\langle \mathbb{N}; B_p, \perp \rangle$. Now the set $\operatorname{PredPow}_q = \{(q^n, q^n - 1) : n \geq 1\}$ can be defined by $\operatorname{PredPow}_q(x, y) \Leftrightarrow \left(\operatorname{SameSupp}(x, q)\right)^{p-1}$

$$\wedge \bigwedge_{i=1}^{p-1} (x \sqcap_p (p-1) = i \Rightarrow (y \sqcap_p (p-1) = i - 1 \land x = y \sqcup_p i)))$$

We intend to define the constant q^2 , which has only two non-zero digits, namely the 0th and the first; this property will allow us to define p.

First assume that $q = 2^u - 1$ for some positive integer u. By Theorem 3.1(ii), if $\operatorname{Supp}(q^n - 1) = \operatorname{Supp}(q - 1)$ with $n \neq 1$ then n = 2. Therefore $q^2 - 1$ is definable in $\langle \mathbb{N}; B_p, \bot \rangle$:

$$x = q^2 - 1 \Leftrightarrow \exists t (\operatorname{PredPow}_q(t, x) \land \neg x = q - 1 \land \operatorname{SameSupp}(x, q - 1)).$$

From this we get a definition for q^2 by the formula

$$x = q^2 \Leftrightarrow \bigvee_{i=1}^{p-2} ((q^2 - 1) \sqcap_p (p-1)) = i \land x = (q^2 - 1) \sqcup_p (i+1)).$$

Assume now that $q \neq 2^u - 1$ for every $u \geq 1$. In this case, by Theorem 3.1(ii), for all integers α, β we have

$$\operatorname{Supp}(q^{\alpha}-1) = \operatorname{Supp}(q^{\beta}-1)$$
 if and only if $\alpha = \beta$,

thus q^2 is the only power of q, say q^n , such that

$$\operatorname{Supp}(q^n - 1) = \operatorname{Supp}(q - 1) \cup \operatorname{Supp}(q + 1)$$

We have q , thus by Theorem 2.3 the constant <math>q + 1 is definable in $\langle \mathbb{N}; B_p, \perp \rangle$. This leads to the following definition for q^2 :

$$x = q^2 \Leftrightarrow \exists y (\operatorname{PredPow}_q(x, y) \land \operatorname{UnionSupp}(q - 1, q + 1, y)).$$

The inequalities

$$\frac{p+1}{2} \le q < p$$

yield $p < q^2 < p^2$; finally, we can define p by observing that p is the only proper power of p, say p^n , such that $p^n \sqcap_p q^2 \neq 0$:

$$x = p \Leftrightarrow (x \neq 1 \land \operatorname{Pow}_p(x) \land x \sqcap_p q^2 \neq 0). \bullet$$

LEMMA 3.7. For every prime p the relation NextPow_p is definable in the structure $\langle \mathbb{N}; B_p, \perp \rangle$.

Proof. • First case: p = 2. Let α, β be two integers greater than or equal to 3. If

$$Supp(2^{\alpha} + 2) = Supp(2^{\beta} + 1) \cup \{2\}$$

then

$$\operatorname{Supp}(2^{\alpha-1}+1) = \operatorname{Supp}(2^{\beta}+1),$$

which implies, by Theorem 3.1(i), $\alpha - 1 = \beta$. Conversely, if $\alpha - 1 = \beta$ then obviously

$$Supp(2^{\alpha} + 2) = Supp(2^{\beta} + 1) \cup \{2\}.$$

Therefore a suitable formula for NextPow₂(x, y) is

 $NextPow_2(x, y) \Leftrightarrow$

 $((x=1 \wedge y=2) \vee (x=2 \wedge y=4) \vee (x=4 \wedge y=8)$

 $\vee (\operatorname{Pow}_2(x) \wedge \operatorname{Pow}_2(y) \wedge \neg x = 1 \wedge \neg x = 2 \wedge \neg x = 4$

$$\wedge \neg y = 1 \land \neg y = 2 \land \neg y = 4 \land \text{UnionSupp}(x \sqcup_2 1, 2, y \sqcup_2 2))).$$

• Second case: $p \neq 2$. In this case by Theorem 3.1(i) for all $\alpha, \beta \in \mathbb{N}$ we have

 $\operatorname{Supp}(p^{\alpha} + p) = \operatorname{Supp}(p^{\beta} + 1) \cup \{p\} \text{ if and only if } \alpha - 1 = \beta.$

Therefore an appropriate formula for $NextPow_p(x, y)$ is

 $\operatorname{NextPow}_p(x,y) \Leftrightarrow (\operatorname{Pow}_p(x) \land \operatorname{Pow}_p(y) \land \operatorname{UnionSupp}(x \sqcup_p 1, p, y \sqcup_p p)). \blacksquare$

THEOREM 3.8. For every integer $n \geq 2$ the structures $\langle \mathbb{N}; B_n, \perp \rangle$ and $\langle \mathbb{N}; +, \times \rangle$ are inter-definable.

Proof. By Lemmas 3.7 and 2.4 for every prime p addition is definable in the structure $\langle \mathbb{N}; B_p, \perp \rangle$. Furthermore, by [Ko1], [Be], addition is definable in $\langle \mathbb{N}; B_n \rangle$ whenever $n \geq 2$ is not prime; thus for every integer $n \geq 2$ addition is definable in $\langle \mathbb{N}; B_n, \perp \rangle$. Now by [Wo] multiplication is definable in the structure $\langle \mathbb{N}; +, \perp \rangle$.

COROLLARY 3.9. For every integer $n \geq 2$ the elementary theory of $\langle \mathbb{N}; B_n, \perp \rangle$ is undecidable.

4. Definability within $\langle \mathbb{N}; B_n, \mathrm{Sq} \rangle$. Let Sq denote the set of squares. In [Ko2] it was proved that + and \times are definable in the structure $\langle \mathbb{N}; B_2, \mathrm{Sq} \rangle$. We here extend this result to $\langle \mathbb{N}; B_n, \mathrm{Sq} \rangle$ for every integer $n \geq 3$. A first observation is that we only have to define addition, since by [Pu], \times is definable in $\langle \mathbb{N}; +, \mathrm{Sq} \rangle$. Moreover, as noted before, addition is definable in $\langle \mathbb{N}; B_n \rangle$ whenever $n \geq 2$ is not prime ([Ko1], [Be]), thus it is sufficient to prove the result for n prime and greater than or equal to 3.

The following two lemmas specify, for squares with a small number of nonzero digits, their respective position.

LEMMA 4.1. Let p be an odd prime. For all $k, t \in \mathbb{N}$, if $k \neq 2t$ then

 $(p-2)p^k + p^{2t}$ is a square if and only if k = 2t + 1.

Proof. The "if" part is obvious. For the converse suppose that

(1)
$$(p-2)p^k + p^{2t} = x^2$$

for some $x \in \mathbb{N}$. Let us first show that k > 2t. Otherwise k < 2t, and (1) implies

(2)
$$p^k[(p-2) + p^{2t-k}] = x^2.$$

Since $p - 2 + p^{2t-k}$ is prime to p, k is even; thus there exist two positive integers j, y such that

(3)
$$p-2+p^{2j}=y^2.$$

Now p^{2j} and $p^{2j} + 2p^j + 1$ are consecutive squares, and the fact that

(4)
$$p^{2j}$$

leads to a contradiction. So k > 2t, that is, $k \ge 2t + 1$. It follows that

(5)
$$p^{2t}[(p-2)p^{k-2t}+1] = x^2.$$

Therefore $(p-2)p^{k-2t} + 1$ is a square. Thus we have to show that for all positive integers l, z the equation

(6)
$$(p-2)p^l + 1 = z^2$$

yields l = 1. Equation (6) implies $(p-2)p^l | z^2 - 1$. Since $p \ge 3$, we have $p^l | z - 1$ or $p^l | z + 1$. In both cases we have $z \ge p^l - 1$, which implies

(7)
$$z^2 \ge p^{2l} - 2p^l + 1.$$

Now $p \geq 3$, so $p^l - 2 - p^{l-1} \geq 0$, which yields $p^{2l} - 2p^l + 1 > p^{2l-1}$. Therefore (6) and (7) lead to $(p-2)p^l + 1 > p^{2l-1}$. This implies $l \geq 2l - 1$, that is, $l \leq 1$ and finally l = 1.

LEMMA 4.2. Let p be an odd prime. For all $j, k \in \mathbb{N}$ such that $j \neq k$, we have the following:

(i) if p = 3 then $(p^{2j} + p^{2k} + 2p^{2k+1})$ is a square if and only if j = k+1 or j = k-1;

(ii) if p > 3 then $(p^{2j} + p^{2k} + 2p^{2k+1})$ is a square if and only if j = k+1.

 ${\rm P\,r\,o\,o\,f.}$ The "if" part is easily checked in both cases. Conversely, assume first that j < k. In this case

(8)
$$1 + p^{2(k-j)} + 2p^{2(k-j)+1} = y^2$$

for some positive integer y. Set l = k - j. We get

(9)
$$1 + p^{2l} + 2p^{2l+1} = y^2.$$

Thus

(10)
$$p^{2l}(1+2p) = (y-1)(y+1),$$

which yields $p^{2l} | y - 1$ or $p^{2l} | y + 1$. In both cases $y \ge p^{2l} - 1$, so that $y^2 \ge p^{4l} - 2p^{2l} + 1$. Then from (9) we obtain

(11)
$$1 + p^{2l} + 2p^{2l+1} \ge p^{4l} - 2p^{2l} + 1,$$

which implies $1 + 2p \ge p^{2l} - 2$. If p = 3 then the previous inequality forces l = 1, i.e. j = k - 1. If p > 3 then $p^{2l} - 2 \ge 5p - 2 > 1 + 2p$, which leads to a contradiction.

Assume now that j > k. Set l = j - k. In this case

(12)
$$1 + p^{2l} + 2p = z^2$$

for some positive integer z. Now for every $m \in \mathbb{N}$, p^{2m} and $p^{2m} + 2p^m + 1$ are consecutive squares, therefore the only case for which $1 + p^{2l} + 2p$ is a square is l = 1, that is, j = k + 1.

As in the previous section, we now define $\mathrm{NextPow}_p$ in order to define addition.

LEMMA 4.3. For every prime $p \geq 3$ the relation NextPow_p is definable in the structure $\langle \mathbb{N}; B_p, \mathrm{Sq} \rangle$.

Proof. Let EvenPow_p (respectively OddPow_p) be the set of even (resp. odd) powers of p. These sets are definable by the following formulas:

$$\begin{aligned} & \operatorname{EvenPow}_p(x) \Leftrightarrow (\operatorname{Pow}_p(x) \wedge \operatorname{Sq}(x)), \\ & \operatorname{OddPow}_p(x) \Leftrightarrow (\operatorname{Pow}_p(x) \wedge \neg \operatorname{Sq}(x)). \end{aligned}$$

Let us now define the set $E = \{(p-2)p^k + p^{2t} : k, t \in \mathbb{N} \text{ and } k \neq 2t\}$. A suitable defining formula is

$$E(x) \Leftrightarrow \exists z_1 \exists z_2 (\operatorname{EvenPow}_p(z_1) \land \operatorname{OneDig}_p(z_2) \\ \land \exists w \operatorname{Dig}_p^{p-2}(w, z_2) \land x = z_1 \sqcup_p z_2).$$

Now using Lemma 4.1 we can define the set $D_1 = \{(p^{2n}, p^{2n+1}) : n \in \mathbb{N}\}$ by the formula

 $D_1(x, y) \Leftrightarrow \operatorname{EvenPow}_p(x) \wedge \operatorname{OddPow}_p(y) \wedge \exists z (E(z) \wedge \operatorname{Sq}(z) \wedge x \sqsubseteq_p z \wedge y \sqsubseteq_p z).$ Consider the set $F = \{p^{2j} + p^{2k} + 2p^{2k+1} : j, k \in \mathbb{N} \text{ and } j \neq k\}$. It is definable as follows:

$$F(x) \Leftrightarrow \exists y_1 \exists y_2 \exists y_3 \exists z (\operatorname{EvenPow}_p(y_1) \land \operatorname{EvenPow}_p(y_2) \land \neg y_1 = y_2 \land D_1(y_2, y_3) \land \operatorname{OneDig}_p(z) \land \exists w \operatorname{Dig}_p^2(w, z) \land y_3 \sqsubseteq_p z \land x = y_1 \sqcup_p y_2 \sqcup_p z).$$

• First case: p > 3. Let $z \in F$, that is, $z = p^{2j} + p^{2k} + 2p^{2k+1}$ for some $j, k \in \mathbb{N}, j \neq k$. By Lemma 4.2(ii), z is a square if and only if j = k + 1. This allows us to define $D_2 = \{(p^{2n+1}, p^{2n+2}) : n \in \mathbb{N}\}$ in the following way:

$$D_2(x, y) \Leftrightarrow \operatorname{OddPow}_p(x) \wedge \operatorname{EvenPow}_p(y)$$

$$\wedge \exists z (F(z) \wedge \operatorname{Sq}(z) \wedge y \sqsubseteq_p z \wedge x \sqsubseteq_p z \wedge \neg D_1(y, x))$$

This leads to the following definition for $NextPow_p$:

$$\operatorname{NextPow}_p(x,y) \Leftrightarrow D_1(x,y) \lor D_2(x,y)$$

• Second case: p = 3. Let $z \in F$, say $z = 3^{2j} + 3^{2k} + 2 \cdot 3^{2k+1}$ for some $j, k \in \mathbb{N}, j \neq k$. By Lemma 4.2(i), z is a square if and only if j = k + 1 or j = k - 1. Thus we can define the set $G = \{(3^{2m}, 3^{2n}) : |m - n| = 1\}$ by the formula

$$G(x,y) \Leftrightarrow \operatorname{EvenPow}_{3}(x) \wedge \operatorname{EvenPow}_{3}(y)$$

$$\wedge \neg x = y \wedge \exists z (F(z) \wedge \operatorname{Sq}(z) \wedge x \sqsubseteq_{3} z \wedge y \sqsubseteq_{3} z).$$

Now consider

SeqEvenPow₃ =
$$\left\{ (x,t) : x = \sum_{i=0}^{n} 3^{2i} \text{ and } t = 3^{2n} \text{ for some } n \in \mathbb{N} \right\}$$
;

this set, using G, is definable as follows:

SeqEvenPow₃ $(x, t) \Leftrightarrow$

$$(\forall z ((\operatorname{Pow}_3(z) \land z \sqsubseteq_3 x) \Rightarrow (\operatorname{EvenPow}_3(z) \land \operatorname{Dig}_3^1(z, x))) \land 1 \sqsubseteq_3 x \land \operatorname{EvenPow}_3(t) \land t \sqsubseteq_3 x \land \exists u(G(t, u) \land \neg u \sqsubseteq_3 x)$$

 $\wedge \forall v \forall w ((\text{EvenPow}_3(v) \land v \sqsubseteq_3 x \land \neg v = t \land G(v, w)) \Rightarrow w \sqsubseteq_3 x)).$

Thanks to this set we can define

$$NextEvenPow_3 = \{(3^{2n}, 3^{2n+2}) : n \in \mathbb{N}\}$$

by the formula

 $\mathbf{NextEvenPow}_3(x,y) \Leftrightarrow \exists u \exists v (\mathbf{SeqEvenPow}_3(u,x)$

$$\wedge \operatorname{SeqEvenPow}_{3}(v, y) \wedge v = u \sqcup_{3} y).$$

We finally define $NextPow_3$ in the following way:

NextPow₃ $(x, y) \Leftrightarrow D_1(x, y) \lor \exists z (D_1(z, x) \land \text{NextEvenPow}_3(z, y)).$

THEOREM 4.4. For every integer $n \geq 2$ the structures $\langle \mathbb{N}; B_n, \mathrm{Sq} \rangle$ and $\langle \mathbb{N}; +, \times \rangle$ are inter-definable.

Proof. From Lemma 4.3 and Theorem 2.4 it follows that for every prime p addition is definable in the structure $\langle \mathbb{N}; B_p, \mathrm{Sq} \rangle$. Since by [Ko1], [Be], addition is definable in $\langle \mathbb{N}; B_n \rangle$ whenever $n \geq 2$ is not prime, this proves that for every integer $n \geq 2$ addition is definable in the structure $\langle \mathbb{N}; B_n, \mathrm{Sq} \rangle$. Then by [Pu] multiplication is definable in the structure $\langle \mathbb{N}; +, \mathrm{Sq} \rangle$.

COROLLARY 4.5. For every integer $n \geq 2$ the elementary theory of $\langle \mathbb{N}; B_n, \mathrm{Sq} \rangle$ is undecidable.

5. Definability within $\langle \mathbb{N}; B_n, \mathrm{SQ}_n \rangle$. In the last section we proved that adding the set of squares to the language $\{B_n\}$ suffices to define addition and multiplication, and therefore leads to the undecidability of the corresponding theory. We now study the situation obtained by adding a fragment of the squaring function to $\{B_n\}$.

For every integer $n \ge 2$, let SQ_n denote the restriction of the squaring function to powers of n. In [Ko2] the following two results were proved:

(i) Multiplication is definable in the structure $\langle \mathbb{N}; B_2, +, \mathrm{SQ}_2 \rangle$. Thus the elementary theory of this structure is undecidable.

(ii) Neither + nor × are definable in the structure $\langle \mathbb{N}; B_2, \mathrm{SQ}_2 \rangle$.

We prove below that (i) holds if 2 is replaced by any integer greater than 1. Since addition is definable in $\langle \mathbb{N}; B_n \rangle$ whenever $n \geq 2$ is not prime, this will imply that for every nonprime integer $n \geq 2$ the elementary theory of $\langle \mathbb{N}; B_n, \mathrm{SQ}_n \rangle$ is undecidable. On the other hand, we show, using Feferman– Vaught results on generalized powers, that for every prime p the elementary theory of $\langle \mathbb{N}; B_p, \mathrm{SQ}_p \rangle$ is decidable.

Let us first consider the structure $\langle \mathbb{N}; B_n, +, \mathrm{SQ}_n \rangle$ for $n \geq 2$. We shall make use of the following theorem due to Villemaire [Vi], which is a firstorder version of results of Thomas [Th]. For every integer $n \geq 2$, let us denote by V_n the function which maps every positive integer x to the greatest power of n dividing x.

THEOREM 5.1 (Villemaire). Let $n \ge 2$, and let f be a function from Pow_n to Pow_n which has the following properties:

(1) For every $i \in \mathbb{N}$, $f(n^{i+1}) \ge nf(n^i)$ (f is strictly increasing);

(2) There exists $d \in \mathbb{N}$ such that for every $i \in \mathbb{N}$ there exists an integer m such that $i \leq m \leq i + d$ and

$$f(n^{m+1}) \ge n^2 f(n^m).$$

Then multiplication is definable in the structure $\langle \mathbb{N}; +, V_n, f \rangle$.

THEOREM 5.2. For every integer $n \geq 2$ multiplication is definable in $\langle \mathbb{N}; B_n, +, \mathrm{SQ}_n \rangle$.

Proof. Since for every $i \in \mathbb{N}$, $\mathrm{SQ}_n(n^{i+1}) = n^2 \mathrm{SQ}_n(n^i)$, it follows that the function SQ_n satisfies conditions (1) and (2) of the previous theorem. Thus it remains to prove that V_n is definable in $\langle \mathbb{N}; B_n, +, \mathrm{SQ}_n \rangle$. A suitable definition is

$$y = V_n(x) \Leftrightarrow (\neg x = 0 \land \operatorname{Pow}_n(y) \land \neg \operatorname{Dig}_n^0(y, x) \land \forall z((z < y \land \operatorname{Pow}_n(z)) \Rightarrow \operatorname{Dig}_n^0(z, x))).$$

COROLLARY 5.3. For every nonprime integer $n \ge 2$ the elementary theory of $\langle \mathbb{N}; B_n, \mathrm{SQ}_n \rangle$ is undecidable.

Proof. This follows from Theorem 5.2 and the fact that addition is definable in $\langle \mathbb{N}; B_n \rangle$ whenever $n \geq 2$ is not prime ([Ko1], [Be]).

We now study the expressive power of $\langle \mathbb{N}; B_p, \mathrm{SQ}_p \rangle$ for p prime. The following theorem specifies the result (ii) of the beginning of the section.

THEOREM 5.4. For every prime p, neither + nor \times are definable in $\langle \mathbb{N}; B_p, \mathrm{SQ}_p \rangle.$

Proof. The argument is almost the same as in [Ko2]. Let φ be the permutation of Pow_p defined by

$$\begin{cases} \varphi(p^{2^{i}}) = p^{3 \cdot 2^{i}} & \text{for every } i \in \mathbb{N}, \\ \varphi(p^{3 \cdot 2^{i}}) = p^{2^{i}} & \text{for every } i \in \mathbb{N}, \\ \varphi(p^{i}) = p^{i} & \text{for every } i \notin \{3 \cdot 2^{j} : j \in \mathbb{N}\} \cup \{2^{j} : j \in \mathbb{N}\}. \end{cases}$$

Now let $\overline{\varphi}$ be the function defined by

$$\overline{\varphi}\Big(\sum_{i=0}^k a_i p^i\Big) = \sum_{i=0}^k a_i \varphi(p^i) \text{ for all } n \in \mathbb{N} \text{ and } a_i \in \{0, 1, \dots, p-1\}, \ 0 \le i \le k.$$

It follows from Lucas' Theorem that for all $x, y \in \mathbb{N}$,

$$B_p(x,y) = B_p(\overline{\varphi}(x),\overline{\varphi}(y)).$$

Moreover, $\overline{\varphi}(z) = z$ for every $z \in \{0, 1, \dots, p-1\}$. Hence $\overline{\varphi}$ preserves B_p . It is easily checked that $\overline{\varphi}$ preserves SQ_p too. Therefore $\overline{\varphi}$ is an automorphism of the structure $\langle \mathbb{N}; B_p, \mathrm{SQ}_p \rangle$. Now

$$\overline{\varphi}(p-1) + \overline{\varphi}(1) = p - 1 + 1 = p \neq p^3 = \overline{\varphi}(p-1+1)$$

and

$$\overline{\varphi}(p^2) \cdot \overline{\varphi}(p) = p^6 \cdot p^3 = p^9 \neq p = \overline{\varphi}(p^2 \cdot p).$$

Thus $\overline{\varphi}$ preserves neither + nor ×.

In the sequel p will denote a prime number. We now proceed to show that the elementary theory of $\langle \mathbb{N}; B_p, \mathrm{SQ}_p \rangle$ is decidable.

For technical reasons we shall consider, instead of $\langle \mathbb{N}; B_p, \mathrm{SQ}_p \rangle$, the structure $\langle \mathbb{N}; B'_p, \mathrm{SQ}'_p \rangle$, where:

- B'_p is the graph of B_p . $SQ'_p = \{(p^i, p^{2i}) : i \ge 1\} \cup \{(1, p)\}.$

 B_p is obviously definable in $\langle \mathbb{N}; B'_p, \mathrm{SQ}'_p \rangle$; moreover, SQ_p is definable in $\langle \mathbb{N}; B'_p, \mathrm{SQ}'_p \rangle$ by the formula

$$y = \mathrm{SQ}_p(x) \Leftrightarrow ((x = 1 \land y = 1) \lor (\neg x = 1 \land \mathrm{SQ}'_p(x, y))).$$

Thus if we show that the elementary theory of $\langle \mathbb{N}; B'_p, \mathrm{SQ}'_p \rangle$ is decidable, then so will be the elementary theory of $\langle \mathbb{N}; B_p, \mathrm{SQ}_p \rangle$.

We shall use the notion of generalized power, which was introduced by Feferman and Vaught [FV].

For every set B, denote by $\mathcal{P}_{f}(B)$ the set of finite subsets of B. If A is a (nonempty) set, e is an element of A, and B is a set, we denote by $A_e^{(B)}$ the set of functions f from B to A such that $\{b : b \in B \land f(b) \neq e\}$ is finite. DEFINITION 5.5. Let A, B be nonempty sets, e be an element of A, $\mathcal{L}_A, \mathcal{L}_B$ be first-order languages, and $\mathcal{A} = \langle A; \mathcal{R}_A \rangle$, $\mathcal{B} = \langle \mathcal{P}_f(B); \mathcal{R}_B \rangle$ be an \mathcal{L}_A -structure and \mathcal{L}_B -structure, respectively. Let R be a relation with arity k over $A_e^{(B)}$. We say that R is *accessible* in $(\mathcal{A}, \mathcal{B})$ if and only if there exist an \mathcal{L}_B -formula $G(X_1, \ldots, X_l)$ and $l \mathcal{L}_A$ -formulas with k free variables F_1, \ldots, F_l such that:

where

 $T_i = \{x \in B : \mathcal{A} \models F_i(f_1(x), \dots, f_k(x))\} \text{ for every } i \in \{1, \dots, l\}.$

(The condition (i) ensures that T_1, \ldots, T_l are finite sets.)

DEFINITION 5.6. With the above notations, if \mathcal{R} is a set of relations over $A_e^{(B)}$, we say that the structure $\langle A_e^{(B)}; \mathcal{R} \rangle$ is a generalized power of \mathcal{A} relative to \mathcal{B} if every relation of \mathcal{R} is accessible in $(\mathcal{A}, \mathcal{B})$.

THEOREM 5.7 (Feferman–Vaught [FV]). With the above notations, if the elementary theories of \mathcal{A} and \mathcal{B} are decidable and \mathcal{C} is a generalized power of \mathcal{A} relative to \mathcal{B} then the elementary theory of \mathcal{C} is decidable.

Let us denote by \ll the binary relation over $\mathcal{P}_{\mathbf{f}}(\mathbb{N})$ defined by: $X \ll Y$ if and only if X, Y are nonempty sets and $\operatorname{Sup}(X) < \operatorname{Sup}(Y)$. We shall prove that the structure $\langle \mathbb{N}; B'_p, \operatorname{SQ}'_p \rangle$ is isomorphic to a generalized power of $\langle \mathbb{N}; B_p, + \rangle$ relative to $\langle \mathcal{P}_{\mathbf{f}}(\mathbb{N}); \subseteq, \ll \rangle$.

For every $x \in \mathbb{N}$, let $f_x : \mathbb{N} \to \mathbb{N}$ be the function defined as follows: assume that

$$x = \sum_{i=0}^{k} a_i p^i$$
, where $a_i \in \{0, 1, \dots, p-1\}, \ 0 \le i \le k;$

then

$$f_x(0) = a_0 p^0 + \sum_{i=0}^{\lfloor \log_2(k) \rfloor} a_{2^i} p^{i+1}$$

and for every positive integer n,

$$f_x(n) = \sum_{i=0}^{\lfloor \log_2(k/(2n+1)) \rfloor} a_{(2n+1)2^i} p^i$$

where $\lfloor r \rfloor$ denotes the integer part of r. It is easily checked that the function $\varphi : \mathbb{N} \to \mathbb{N}_0^{(\mathbb{N})}$ which maps every $x \in \mathbb{N}$ to f_x is 1-1 and onto.

Consider the structure $\langle \mathbb{N}_0^{(\mathbb{N})}; \widetilde{B}'_p, \widetilde{SQ}'_p \rangle$, where

$$\mathbb{N}_0^{(\mathbb{N})} \models \widetilde{B}_p'(x, y, z) \quad \text{if and only if} \quad \mathbb{N} \models B_p'(\varphi^{-1}(x), \varphi^{-1}(y), \varphi^{-1}(z))$$

and

$$\mathbb{N}_0^{(\mathbb{N})} \models \widetilde{\mathrm{SQ}}_p'(x, y) \quad \text{if and only if} \quad \mathbb{N} \models \mathrm{SQ}_p'(\varphi^{-1}(x), \varphi^{-1}(y))$$

for all $x, y, z \in \mathbb{N}_0^{(\mathbb{N})}$. This structure is clearly isomorphic to $\langle \mathbb{N}; B'_p, \mathrm{SQ}'_p \rangle$.

We intend to prove that $\langle \mathbb{N}_0^{(\mathbb{N})}; \widetilde{B}'_p, \widetilde{SQ}'_p \rangle$ is a generalized power of $\langle \mathbb{N}; B_p, + \rangle$ relative to $\langle \mathcal{P}_f(\mathbb{N}); \subseteq, \ll \rangle$. For this we have to show that the relations \widetilde{SQ}'_p and \widetilde{B}'_p are accessible in $(\langle \mathbb{N}; B_p, + \rangle, \langle \mathcal{P}_f(\mathbb{N}); \subseteq, \ll \rangle)$.

We first introduce several relations and functions over $\mathcal{P}_{f}(\mathbb{N})$.

LEMMA 5.8. The following relations and functions over $\mathcal{P}_{f}(\mathbb{N})$ are definable in the structure $\langle \mathcal{P}_{f}(\mathbb{N}); \subseteq, \ll \rangle$:

- [X is empty], denoted by Empty(X);
- [X is a singleton], denoted by Singl(X);
- the singleton {0}, denoted by Zero;

• the function denoted by Y = Succ(X), which maps every singleton $X = \{n\}$ to $Y = \{n+1\}$ $(n \in \mathbb{N})$;

• the function denoted by Y = Sup(X), which maps every nonempty set X with maximal element n to the singleton $Y = \{n\}$.

Proof. The corresponding definitions are:

$$\begin{split} & \operatorname{Empty}(X) \Leftrightarrow (\forall Y(X \subseteq Y)); \\ & \operatorname{Singl}(X) \Leftrightarrow (\neg \operatorname{Empty}(X) \land \forall Y(Y \subseteq X \Rightarrow (\operatorname{Empty}(Y) \lor X = Y))); \\ & X = \operatorname{Zero} \Leftrightarrow (\operatorname{Singl}(X) \land \forall Y(\neg Y \ll X)); \end{split}$$

$$\begin{split} Y &= \operatorname{Succ}(X) \Leftrightarrow (\operatorname{Singl}(X) \wedge \operatorname{Singl}(Y) \wedge X \ll Y \wedge \neg \exists Z (X \ll Z \wedge Z \ll Y)); \\ Y &= \operatorname{Sup}(X) \Leftrightarrow (\neg \operatorname{Empty}(X) \wedge \operatorname{Singl}(Y) \wedge \forall Z (X \ll Z \Leftrightarrow Y \ll Z)). \bullet \end{split}$$

LEMMA 5.9. The relation \widetilde{SQ}'_p is accessible in $(\langle \mathbb{N}; B_p, + \rangle, \langle \mathcal{P}_f(\mathbb{N}); \subseteq, \ll \rangle)$.

Proof. Let x, y be two integers with respective *p*-ary expansions $x = [x_k \dots x_1 x_0]_p$ and $y = [y_k \dots y_1 y_0]_p$. Then $\widetilde{\mathrm{SQ}}'_p(f_x, f_y)$ holds if and only if both x and y have a single nonzero digit, say x_i and y_j , each being equal to 1, and either i = 0 and j = 1, or i > 0 and j = 2i. These conditions can be expressed in the following (equivalent) way: there exists $n \in \mathbb{N}$ such that $f_x(n) = p^l$, $f_y(n) = p^{l+1}$ for some $l \in \mathbb{N}$, and $f_x(n') = f_y(n') = 0$ whenever $n' \neq n$. This yields the following description of $\widetilde{\mathrm{SQ}}'_p$:

Consider

$$F_1(u,v): \neg (u=0 \lor v=0)$$

and

$$F_2(u,v)$$
: NextPow_p(u,v)

 F_1 and F_2 can be seen as $\{B_p, +\}$ -formulas (since NextPow_p is easily definable in $\langle \mathbb{N}; B_p, + \rangle$). Then consider

$$G(T_1, T_2)$$
: Singl $(T_1) \land T_1 \subseteq T_2$.

 $G(T_1, T_2)$ can be seen as a $\{\subseteq, \ll\}$ -formula (by Lemma 5.8). From the above remark it is clear that $\widetilde{SQ}'_p(f_x, f_y)$ holds if and only if $G(T_1, T_2)$ does, with

 $T_i = \{n \in \mathbb{N} : \langle \mathbb{N}; B_p, + \rangle \models F_i(f_x(n), f_y(n))\} \quad \text{ for every } i \in \{1, 2\}. \blacksquare$

LEMMA 5.10. The relation \widetilde{B}'_p is accessible in $(\langle \mathbb{N}; B_p, + \rangle, \langle \mathcal{P}_{\mathrm{f}}(\mathbb{N}); \subseteq, \ll \rangle)$.

Proof. Let x, y be two integers with respective *p*-ary expansions $x = [x_k \dots x_1 x_0]_p$ and $y = [y_k \dots y_1 y_0]_p$. By Lucas' Theorem,

$$B_{p}(x,y) = \prod_{i=0}^{k} {\binom{x_{i} + y_{i}}{x_{i}}} \text{ MOD } p$$

$$= {\binom{x_{0} + y_{0}}{x_{0}}} \prod_{i=0}^{\lfloor \log_{2}(k) \rfloor} {\binom{x_{2^{i}} + y_{2^{i}}}{x_{2^{i}}}}$$

$$\times \prod_{j=1}^{\lfloor (k-1)/2 \rfloor} \prod_{i=0}^{\lfloor \log_{2}(k/(2j+1)) \rfloor} {\binom{x_{(2j+1)2^{i}} + y_{(2j+1)2^{i}}}{x_{(2j+1)2^{i}}}} \text{ MOD } p$$

$$= B_{p}(f_{x}(0), f_{y}(0)) \prod_{j=1}^{\lfloor (k-1)/2 \rfloor} B_{p}(f_{x}(j), f_{y}(j)) \text{ MOD } p$$

$$= \prod_{j=0}^{\lfloor (k-1)/2 \rfloor} B_{p}(f_{x}(j), f_{y}(j)) \text{ MOD } p.$$

This identity allows us to split the computation of $B_p(x, y)$ into a finite number of computations of $B_p(f_x(j), f_y(j))$, which we then multiply modulo p.

Consider the following $\{B_p, +\}$ -formulas:

$$F_1(x, y, z): \quad x \neq 0 \lor y \neq 0,$$

$$F_2^i(x, y, z): \quad (x \neq 0 \lor y \neq 0) \land B_p(x, y) = i \quad (i = 0, 1, \dots, p - 1),$$

$$F_3(x, y, z): \quad z \neq 0,$$

$$F_4^j(x, y, z): \quad z = j \quad (j = 1, \dots, p - 1).$$

We now find a $\{\subseteq, \ll\}$ -formula F which describes the computation of $B_p(x, y)$. The idea is to introduce p finite sets $Y_0, Y_1, \ldots, Y_{p-1}$ which encode the computation of $\prod_{j=0}^{\lfloor (k-1)/2 \rfloor} B_p(f_x(j), f_y(j))$ modulo p, in the following way:

126

• If $B_p(f_x(\lfloor (k-1)/2 \rfloor), f_y(\lfloor (k-1)/2 \rfloor)) = h$ then $\lfloor (k-1)/2 \rfloor \in Y_h$, and $\lfloor (k-1)/2 \rfloor \notin Y_i$ for every $i \neq h$.

• For every $j < \lfloor (k-1)/2 \rfloor$, if $j+1 \in Y_l$ and $B_p(f_x(j), f_y(j)) = m$ then $j \in Y_{lm \text{ MOD} p}$, and $j \notin Y_i$ for every $i \neq lm \text{ MOD } p$.

This means that for every $j \leq \lfloor (k-1)/2 \rfloor$, $j \in Y_l$ if and only if l equals the partial product $\prod_{i=j}^{\lfloor (k-1)/2 \rfloor} B_p(f_x(i), f_y(i))$ MOD p. Thus one sees that at the end of the computation, the value of $B_p(x, y)$ will be the (unique) integer l such that $0 \in Y_l$. These ideas lead to the following definition for F:

$$\begin{split} F(T_1, T_2^0, T_2^1, \dots, T_2^{p-1}, T_3, T_4^1, T_4^2, \dots, T_4^{p-1}) : \\ (\operatorname{Empty}(T_1) \Rightarrow (\operatorname{Singl}(T_3) \land \operatorname{Zero} \subseteq T_4^1)) \\ \land \neg \operatorname{Empty}(T_1) \Rightarrow \exists Y_0, Y_1, \dots, Y_{p-1} \\ \left(\operatorname{Sup}(Y_0, Y_1, \dots, Y_{p-1}) = \operatorname{Sup}(T_1) \right) \\ \land \bigwedge_{i=0}^{p-1} (\operatorname{Sup}(T_1) \subseteq T_2^i \Leftrightarrow \operatorname{Sup}(T_1) \subseteq Y_i) \\ \land \forall Z \Big((\operatorname{Singl}(Z) \land Z \ll \operatorname{Sup}(T_1)) \Rightarrow \\ \left(\neg Z \subseteq T_1 \Rightarrow \bigwedge_{i=0}^{p-1} (\operatorname{Succ}(Z) \subseteq Y_i \Leftrightarrow Z \subseteq Y_i) \Big) \\ \land \left(Z \subseteq T_1 \Rightarrow \bigwedge_{0 \leq i, j \leq p-1} ((\operatorname{Succ}(Z) \subseteq Y_i \land Z \subseteq T_2^j) \Leftrightarrow Z \subseteq Y_{ij \operatorname{MOD} p}) \right) \right) \\ \land \bigwedge_{j=1}^{p-1} (\operatorname{Zero} \subseteq Y_j \Rightarrow (\operatorname{Singl}(T_3) \land \operatorname{Zero} \subseteq T_4^j)) \\ \land \operatorname{Zero} \subseteq Y_0 \Rightarrow \operatorname{Empty}(T_3) \Big). \end{split}$$

Finally, one checks that for all $x, y, z \in \mathbb{N}$, $\widetilde{B}'_p(f_x, f_y, f_z)$ holds if and only if $F(\ldots)$ does, with

$$T_i = \{n \in \mathbb{N} : \langle \mathbb{N}; B_p, + \rangle \models F_i(f_x(n), f_y(n), f_z(n))\} \text{ for every } i \in \{1, 3\}$$
 and

$$\begin{split} T_2^i &= \{ n \in \mathbb{N} : \langle \mathbb{N}; B_p, + \rangle \models F_2^i(f_x(n), f_y(n), f_z(n)) \} \quad (i = 0, 1, \dots, p-1), \\ T_4^j &= \{ n \in \mathbb{N} : \langle \mathbb{N}; B_p, + \rangle \models F_4^j(f_x(n), f_y(n), f_z(n)) \} \quad (j = 1, \dots, p-1). \blacksquare \end{split}$$

From Lemmas 5.9 and 5.10 we now deduce the following:

COROLLARY 5.11. The structure $\langle \mathbb{N}_0^{(\mathbb{N})}; \widetilde{B}'_p, \widetilde{\mathrm{SQ}}'_p \rangle$ is a generalized power of $\langle \mathbb{N}; B_p, + \rangle$ relative to $\langle \mathcal{P}_{\mathrm{f}}(\mathbb{N}); \subseteq, \ll \rangle$.

LEMMA 5.12. The elementary theory of $\langle \mathcal{P}_{\mathrm{f}}(\mathbb{N}); \subseteq, \ll \rangle$ is decidable.

Proof. By [Ko3] the elementary theory of $\langle \mathbb{N}; B_2, + \rangle$ is decidable. Consider the relation $x \prec y$ over \mathbb{N} which holds if and only if there exists $i \in \mathbb{N}$ such that $x < 2^i \leq y$. Using + and Pow₂ one easily defines \prec in $\langle \mathbb{N}; B_2, + \rangle$. Furthermore, \sqsubseteq_2 is definable in $\langle \mathbb{N}; B_2, + \rangle$. It follows that the elementary theory of $\langle \mathbb{N}; \sqsubseteq_2, \prec \rangle$ is decidable. Now let $h : \mathbb{N} \to \mathcal{P}_f(\mathbb{N})$ be the function which maps every integer $n = \sum_{j=0}^k 2^{i_j}$ (with i_j pairwise distinct) to $h(x) = \{i_0, i_1, \ldots, i_k\}$. h is obviously 1-1 and onto; moreover, one checks that for all $n, n' \in \mathbb{N}, n \sqsubseteq_2 n'$ if and only if $h(n) \subseteq h(n')$, and $n \prec n'$ if and only if $h(n) \ll h(n')$. Therefore the structures $\langle \mathbb{N}; \sqsubseteq_2, \prec \rangle$ and $\langle \mathcal{P}_f(\mathbb{N}); \subseteq, \ll \rangle$ are isomorphic, from which the result follows. ■

THEOREM 5.13. For every prime p the elementary theory of $\langle \mathbb{N}; B_p, \mathrm{SQ}_p \rangle$ is decidable.

Proof. By Corollary 5.11 the structure $\langle \mathbb{N}_0^{(\mathbb{N})}; \widetilde{B}'_p, \widetilde{\mathrm{SQ}}'_p \rangle$ is a generalized power of $\langle \mathbb{N}; B_p, + \rangle$ relative to $\langle \mathcal{P}_{\mathrm{f}}(\mathbb{N}); \subseteq, \ll \rangle$. By [Ko3] and Lemma 5.12 the last two structures have decidable elementary theories, thus by Theorem 5.7 the same holds for $\langle \mathbb{N}_0^{(\mathbb{N})}; \widetilde{B}'_p, \widetilde{\mathrm{SQ}}'_p \rangle$. Now this structure is isomorphic to $\langle \mathbb{N}; B'_p, \mathrm{SQ}'_p \rangle$, which has therefore a decidable elementary theory, and the result follows from the fact that B_p and SQ_p are definable in this structure. ■

Acknowledgements. The authors wish to thank the anonymous referee for many valuable corrections and suggestions.

References

- [BJW] P. T. Bateman, C. G. Jockusch and, A. R. Woods, Decidability and undecidability with a predicate for the primes, J. Symbolic Logic 58 (1993), 672–687.
- [Be] A. Bès, On Pascal triangles modulo a prime power, Ann. Pure Appl. Logic 89 (1997), 17–35.
- [Bo] B. A. Bondarenko, Generalized Pascal Triangles and Pyramids, their Fractals, Graphs and Applications, "Fan", Tashkent, 1990 (in Russian).
- [BHMV] V. Bruyère, G. Hansel, C. Michaux and R. Villemaire, Logic and precognizable sets of integers, Bull. Belg. Math. Soc. Simon Stevin 1 (1994), 191-238.
 - [Ce] P. Cegielski, Definability, decidability, complexity, Ann. Math. Artificial Intelligence 16 (1996), 311–342.
 - [Di] L. E. Dickson, History of the Theory of Numbers, Vol. I, Chelsea, New York, 1952, Ch. IX.
 - [El] W. and F. Ellison, *Prime Numbers*, Hermann, Paris, 1985.
 - [FV] S. Feferman and R. L. Vaught, The first order properties of products of algebraic systems, Fund. Math. 47 (1959), 57–103.

- [Fi] N. J. Fine, Binomial coefficients modulo a prime, Amer. Math. Monthly 54 (1947), 589–592.
- [Ko1] I. Korec, Definability of arithmetic operations in Pascal triangle modulo an integer divisible by two primes, Grazer Math. Ber. 318 (1993), 53–62.
- [Ko2] —, Structures related to Pascal's triangle modulo 2 and their elementary theories, Math. Slovaca 44 (1994), 531–554.
- [Ko3] —, Elementary theories of structures containing generalized Pascal triangles modulo a prime, in: Proc. 5th Conf. on Discrete Mathematics and Applications (Blagoevgrad/Predel, 1994), S. Shtrakov and I. Mirchev (eds.), Blagoevgrad, 1995, 91–102.
- [Lu] E. Lucas, Sur les congruences des nombres eulériens et des coefficients différentiels des fonctions trigonométriques, suivant un module premier, Bull. Soc. Math. France 6 (1878), 49–54.
- [MMT] R. McKenzie, J. Mycielski and D. Thompson, On boolean functions and connected sets, Math. Systems Theory 5 (1971), 259–270.
 - [Pu] H. Putnam, Decidability and essential undecidability, J. Symbolic Logic 22 (1957), 39–54.
 - [Ri] D. Richard, All arithmetical sets of powers of primes are first-order definable in terms of the successor function and the coprimeness predicate, Discrete Math. 53 (1985), 221–247.
 - [Ro] J. Robinson, Definability and decision problems in arithmetic, J. Symbolic Logic 14 (1949), 98–114.
 - [Si] D. Singmaster, Notes on binomial coefficients III—Any integer divides almost all binomial coefficients, J. London Math. Soc. (2) 8 (1974), 555–560.
 - [Th] W. Thomas, A note on undecidable extensions of monadic second order successor arithmetic, Arch. Math. Logik Grundlagenforsch. 17 (1975), 43–44.
 - [Vi] R. Villemaire, Joining k- and l-recognizable sets of natural numbers, in: Proc. 9th Sympos. Theoretical Aspects of Computer Science STACS'92 (Paris), Lecture Notes in Comput. Sci. 577, Springer, 1992, 83–94.
 - [Wo] A. R. Woods, Some problems in logic and number theory and their connections, thesis, University of Manchester, 1981.

Université Paris 7 Equipe de Logique URA 753 2, place Jussieu 75251 Paris Cedex 05, France E-mail: bes@logique.jussieu.fr Mathematical Institute Slovak Academy of Sciences Štefánikova 49 81473 Bratislava, Slovakia E-mail: korec@savba.sk

Received 7 November 1996; in revised form 27 July 1997