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On nonstructure of elementary submodels of
a stable homogeneous structure
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Tapani H y t t i n e n (Helsinki)

Abstract. We assume that M is a stable homogeneous model of large cardinality.
We prove a nonstructure theorem for (slightly saturated) elementary submodels of M,
assuming M has dop. We do not assume that th(M) is stable.

In this paper we study elementary submodels of a stable homogeneous
L-structure M. We use M as a monster model used in “classical” stabil-
ity theory and so as in [HS], we assume that |M| is strongly inaccessible
(= regular and strong limit) and > |L|, where |L| is the number of L-for-
mulas. We recall that by [Sh1], if D is a stable finite diagram, then it has
a monster model like M (assuming, of course, the existence of a strongly
inaccessible cardinal). As in [HS], we can drop the assumption of |M| being
strongly inaccessible if instead of all elementary submodels of M, we study
only suitably small ones.

We assume that the reader is familiar with [HS] and we use conventions,
notions and results of [HS] freely. The machinery in [HS] is an improved
version of that in [Hy1]. Now we modify it so that it comes closer to the
lines of [Hy1].

As mentioned in the abstract, we prove a nonstructure theorem for
(FM
λr(M)-saturated) elementary submodels of M, assuming M has dop

(= λr(M)-dop). By a nonstructure theorem we mean a theorem which im-
plies, at least, that for most κ, the number of models of power κ is the
maximal one. Often nonstructure theorems imply also that a “Shelah-style”
structure theorem does not hold for a class of models. See [HT] for further
discussion about nonstructure theorems. In [HS] a structure theorem was
proved for FM

λr(M)-saturated models assuming M is superstable and does
not have λr(M)-dop. So in case M is superstable, we have a dichotomy for
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FM
λr(M)-saturated models, i.e. we have a simple property which determines

when FM
λr(M)-saturated models have a structure theorem.

We concentrate on the model theory side of the nonstructure theorem.
There is well-developed combinatorics that gives nonstructure theorems as
soon as certain model-theoretic results are proved.

1. Basic notions and their properties. By a model we mean an
elementary submodel of M of cardinality < |M|; we write A, B and so on
for these. Similarly by a set we mean a subset of M of cardinality < |M| and
we write A, B and so on for these. We will not distinguish elements from
finite sequences, so by a, b, c etc. we mean finite sequences (of elements of
M) and we write a∪A and a ∈ A instead of rng(a)∪A and rng(a) ⊆ A. For
infinite sequences, we will write a, b and so on. By λ(M) we mean the least
cardinal in which M is stable. λr(M) is the least regular cardinal ≥ λ(M).
By an automorphism we mean an automorphism of M.

Next we repeat some definitions and results from [Hy1] and [HS].
We say that a type p(x) over A is complete if for all φ(x, a), a ∈ A, either

φ(x, a) ∈ p or ¬φ(x, a) ∈ p. We say that a type p over M is M-consistent if
it is realized in M. We write S(A) for the set of all complete M-consistent
types over A.

We say that a set A ⊆M is FM
κ -saturated if any M-consistent type over

a subset of A of power < κ is realized in A. Notice that if A is FM
ω -saturated,

then it is an elementary submodel of M.

1.1. Lemma ([Hy1]). Assume that p is a complete type over A. If p is
not M-consistent , then there is a finite set B ⊆ A such that p¹B is not
M-consistent.

P r o o f. Immediate by homogeneity of M.

1.2. Definition. (i) ([Sh2]) We say that p ∈ S(A) splits over B ⊆ A if
for some φ(x, y) and b, c ∈ A with t(b, B) = t(c,B) we have φ(x, b) ∈ p and
¬φ(x, c) ∈ p.

(ii) ([Hy1]) We say that A is free from C over B, A ↓B C, if for all (finite
sequences) a ∈ A and c ∈ C there is D ⊆ B of power < λ(M) such that
t(a,B ∪ c) does not split over D.

Notice that this independence notion differs from the one defined in [HS],
but as proved there, over FM

λ(M)-saturated models they are equivalent. Below
we list some of the basic properties of this independence notion.

1.3. Lemma ([Hy1]). (i) There are no Ai, i < λ(M), and a such that for
all i < j < λ(M), Ai ⊆ Aj and a 6 ↓Ai Aj.

(ii) For all a and A, there is B ⊆ A of power < λ(M) such that t(a,A)
does not split over B. In particular , a ↓A A.
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(iii) If a ↓B A, B ⊆ B′ ⊆ A′ ⊆ A and B′ −B is finite, then a ↓B′ A′.
P r o o f. (i) As [Sh2], I, Lemma 2.7. (ii) Immediate by (i). (iii) Easy.

1.4. Definition. We say that t(a,A) is stationary if for all C ⊇ A and
b, c the following holds: if t(b, A) = t(c, A) = t(a,A), b ↓A C and c ↓A C
then t(b, C) = t(c, C).

1.5. Lemma ([Hy1]). If A is FM
λ(M)-saturated then t(a,A) is stationary.

P r o o f. Assume not. Let b, c and C exemplify this. Choose d ∈ C and
A ⊆ A of power < λ(M) such that t(b, A ∪ d) 6= t(c, A ∪ d) and neither
t(b,A ∪ d) nor t(b,A ∪ d) splits over A. Let d′ ∈ A be such that t(d′, A) =
t(d,A). Then t(b, A ∪ d′) 6= t(c, A ∪ d′), a contradiction.

1.6. Theorem ([Hy1]). Assume A is FM
λ(M)-saturated and t(a,A) does

not split over A ⊆ A of power < λ(M). Then for all B ⊇ A there is b such
that t(b,A) = t(a,A) and t(b,B) does not split over A.

P r o o f. We define a type p over B so that φ(x, c) ∈ p if there is d ∈ A
such that t(d,A) = t(c, A) and M |= φ(a, d). By Lemma 1.1, it is easy to
see that p ∈ S(B).

1.7. Corollary ([Hy1]). (i) If a ↓A B and A is FM
λ(M)-saturated , then

there is C ⊆ A of power < λ(M) such that t(a,A∪B) does not split over C.
(ii) Assume A is FM

λ(M)-saturated , A ⊇ A and C ↓A A. Then for all
B ⊇ A, there is D such that t(D,A) = t(C,A) and D ↓A B.

(iii) Assume B ⊆ B′ ⊆ A′ ⊆ A and B is FM
λ(M)-saturated. If a ↓B A then

a ↓B′ A′.
(iv) Assume A ⊆ B are FM

λ(M)-saturated. Then a ↓A B and a ↓B C iff
a ↓A B ∪ C.

P r o o f. (i) By Lemma 1.3(ii) and Theorem 1.6, choose b so that t(b,A) =
t(a,A) and t(b,A ∪ B) does not split over some C ⊆ A of power < λ(M).
By stationarity, t(a,A ∪B) = t(b,A ∪B).

(ii) Immediate by (i), Theorem 1.6 and stationarity.
(iii) Immediate by (i).
(iv) From right to left, this follows from (iii). For the other direction,

choose b so that t(b,B) = t(a,B) and b ↓A B ∪C. By (iii), b ↓B C and so by
stationarity, t(a,B ∪ C) = t(b,B ∪ C).

1.8. Lemma ([Hy1]). a ↓A B and b ↓A∪a B iff a ∪ b ↓A B.

P r o o f. From right to left this is easy. We prove the other direction:
Assume not. Choose c ∈ B so that a ∪ b 6 ↓A c. Choose A′ ⊆ A of power
< λ(M) such that

(i) t(a,A ∪ c) does not split over A′,
(ii) t(b, A ∪ a ∪ c) does not split over A′ ∪ a.
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Then we can find e, f ∈ A∪ c and φ(x, y, z) such that t(e,A′) = t(f,A′) and

(∗) M |= φ(a, b, e) ∧ ¬φ(a, b, f).

By (i), t(e,A′ ∪ a) = t(f,A′ ∪ a). But this and (∗) contradict (ii).

1.9. Lemma. If I = (I,<) is a linear order and {ai | i ∈ I} is infinite
and order indiscernible over A, then it is indiscernible over A.

P r o o f. Assume not. By Lemma 1.1, we can assume (I,<) is a dense
linear order of power > λ(M) (without endpoints), with a dense subset of
power λ(M). As in the classical proof we get a contradiction with λ(M)-
stability of M.

1.10. Theorem ([Hy1]). Assume A is FM
λ -saturated. Then a ↓A b iff

b ↓A a.

P r o o f. Assume not. Choose a and b so that a ↓A b and b 6 ↓A a. For
all i < ω, choose ai and bi so that t(ai ∪ bi,A) = t(a ∪ b,A) and ai ∪ bi ↓A⋃
j<i aj ∪ bj . Clearly {ai∪ bi | i < ω} is infinite. By stationarity, it is easy to

see that {ai ∪ bi | i < ω} is order indiscernible over A. By Lemma 1.9, it is
indiscernible overA. But by stationarity, bi ↓A aj iff j < i, a contradiction.

1.11. Definition. We say that (ai)i∈I is A-independent if for all i ∈ I,
ai ↓A

⋃{aj | j ∈ I, j 6= i}.
1.12. Lemma ([Hy1]). (i) If A is FM

λ(M)-saturated and for all i < α,
ai ↓A

⋃{aj | j < i}, then (ai)i<α is A-independent.
(ii) Assume that (ai)i∈I is A-independent. Then for all J ⊆ I,

⋃

i∈J
ai ↓A

⋃

i∈I−J
ai.

P r o o f. (i) By Lemma 1.8 and Theorem 1.10, this is an easy induction
on α.

(ii) By Lemmas 1.3(iii) and 1.8, this is an easy induction on |J |.
We define a set FM

κ as follows (this concept is essentially the same as
(1)-isolation in [Sh1]): (p,A) ∈ FM

κ iff p is M-consistent, A ⊆ dom(p) has
cardinality < κ and for all b, t(b, A) = p¹A implies t(b,dom(p)) = p. If
(p,A) ∈ FM

κ then we also write p ∈ FM
κ (A) and say that p¹A FM

κ -isolates p.
We define an FM

κ -construction as in [Sh2] the general F -construction is
defined. Also the other concepts are defined as in [Sh2]: A is FM

κ -primary
over A if it is FM

κ -constructible over A and FM
κ -saturated. We say that an

FM
κ -saturated B is FM

κ -prime over A if for all FM
κ -saturated C ⊇ A there

is an elementary embedding from B to C which fixes A pointwise. B ⊇ A is
FM
κ -atomic over A if t(b, A) is FM

κ -isolated for all b ∈ B.
In [Sh1] the basic facts about these concepts are proved. In [Hy1] there

is an alternative way to see these results.
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1.13. Theorem ([Sh1]). Assume κ ≥ λ(M).

(i) For all A there is an FM
κ -primary model over A.

(ii) If A is FM
κ -primary over A then it is FM

κ -prime over A.
(iii) Assume κ is regular. If A is FM

κ -primary over A then it is FM
κ -

atomic over A.
(iv) Assume κ is regular. The FM

κ -primary model over A is unique up
to isomorphism over A.

1.14. Lemma. Assume κ ≥ λ(M) is regular and A is FM
κ -primary

over A. If B ⊆ A is of power < κ then A is FM
κ -primary over A ∪B.

P r o o f. As in [Hy1] we can see that FM
κ -isolation satisfies the axioms of

general isolation notion in [Sh2]. So this lemma can be proved as [Sh2], IV,
Lemma 3.6.

We write t(a,A) a B if B ⊆ A, and for all b and FM
λ(M)-saturated C ⊇ A

if a ↓A C and b ↓B C then a ↓C b. We write t(a,A) aa B if B ⊆ A, and for
all b, if b ↓B A then a ↓A b.

1.15. Lemma ([HS]). If B ⊆ A are FM
λ(M)-saturated and t(a,A) aa B

then t(a,A) a B.

P r o o f. This follows easily from [HS], Lemmas 4.6 and 1.9(iv).

When we say that (ai)i∈I is indiscernible, we mean that it is also non-
trivial, i.e. for i 6= j, ai 6= aj .

1.16. Lemma. Let I = (ai)i<α, α ≥ ω, be an indiscernible sequence
over A. Then there is an indiscernible J over A such that I ⊆ J and
|J | = |M|.

P r o o f. Immediate by Lemma 1.1.

1.17. Lemma ([Sh1]). Let I = (ai)i<α be an indiscernible sequence.
Then for all a and φ(x, y), either X = {i < α | |= φ(ai, a)} or Y =
{i < α | |= ¬φ(ai, a)} is of power < λ(M).

P r o o f. By Lemma 1.3(ii), choose Z ⊆ α of power < λ(M) such that
a ↓⋃

i∈Z ai ∪I. Then clearly either X ⊆ Z or Y ⊆ Z.

1.18. Definition ([Sh1]). Let I = (ai)i<α be an indiscernible sequence,
α ≥ λ(M) and A a set. We define a type Av(I, A) to be the set of formulas
φ(x, a), a ∈ A, such that {i < α | |= ¬φ(ai, a)} is of power < λ(M).

1.19. Lemma. Let I = (ai)i<α be an indiscernible sequence, α ≥ λ(M)
and A a set.

(i) If (|A| + λ(M))+ ≤ α, then there is i < α such that t(ai, A) =
Av(I,A).

(ii) Av(I, A) is M -consistent.
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(iii) If I is indiscernible over A, then a realizes Av(I, I ∪A) iff I ∪ {a}
is indiscernible over A.

(iv) If A is FM
λ(M)-saturated , I ⊆ A and a realizes Av(I, A), then for all

b, a ↓A b iff a realizes Av(I, A ∪ b).

P r o o f. (i) Follows from Lemma 1.17 by the pigeonhole principle.
(ii) Immediate by (i) and Lemma 1.16.
(iii) “⇒” Immediate by (i) and Lemma 1.16.
“⇐” Clearly if both I ∪ {a} and I ∪ {b} are indiscernible over A then

t(a,A ∪ I) = t(b, A ∪ I). So “⇐” follows from “⇒”.
(iv) By Theorem 1.7(ii) it is enough to prove the claim from left to

right. Assume that this does not hold. Let b exemplify this. For α ≤ i <
β = α+ (λ(M) + |L|)+, choose ai so that t(ai, A∪ a∪

⋃
j<i aj) = Av(I, A∪

a ∪ ⋃j<i aj). Let J = (ai)i<β . Then by (iii), J is indiscernible. Let b′ be
such that t(b′, A) = t(b, A) and b′ ↓A a∪ J . By stationarity, we may assume
that b = b′. By Corollary 1.7(i), choose A′ ⊆ A of power < λ(M) such that
t(b, A ∪ J ∪ a) does not split over A′ and t(a,A′ ∪ b) 6= Av(I, A′ ∪ b).

By Lemma 1.17, the choice of β and the pigeonhole principle, we can find
X ⊆ β of power ≥ (λ(M)+ |L|)+ such that for all i ∈ X, ai realizes t(a,A′).
Similarly we can see that there is i ∈ X such that t(ai, A′∪b) = Av(I, A′∪b).
But then clearly t(b, A′ ∪ a ∪ ai) splits over A′, a contradiction.

1.20. Lemma. Assume I ⊆ J ∩K, |I| = λ(M), |K| ≥ |J |+ and J and K
are indiscernible sequences over A. Then some c ∈ K realizes Av(J,A∪ J).

P r o o f. By Lemma 1.3(ii), for some K ′ ⊆ K with |K ′| < |K|, for all
finite sequences b of elements of J , there are sets X ⊆ K ′ and B ⊆ A of
power < λ(M) such that t(b, A ∪K) does not split over B ∪ X. We claim
that any c ∈ K −K ′ is as desired.

Assume not. Then we can find a finite sequence b of elements of J − I
and sets X ⊆ K ′ and B ⊆ A of power < λ(M) such that t(b, A ∪K) does
not split over B ∪X and

(1) t(c,B ∪ b ∪ Y ) 6= Av(J,B ∪ b ∪ Y ),

where Y = X ∩ I. Let a ∈ I −X. Then

(2) t(a,B ∪X) = t(c,B ∪X)

and by Lemma 1.19(iii),

(3) t(a,B ∪ b ∪ Y ) = Av(J,B ∪ b ∪ Y ).

Clearly (1)–(3) imply that t(b, A ∪K) splits over B ∪X, a contradiction.

The following property was introduced in [Sh2].

1.21. Definition. Assume κ ≥ λ(M). We say that M has κ-dop if there
are FM

κ -saturated Ai, i < 4, and a 6∈ A3 such that
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(a) A0 ⊆ A1 ∩ A2, A3 is FM
κ -primary over A1 ∪ A2,

(b) A1 ↓A0 A2,
(c) t(a,A3) a A1 and t(a,A3) a A2.

In the case of stable theories, the following property is equivalent to dop
([Sh2]).

1.22. Definition. Assume κ ≥ λ(M). We say that M has κ-sdop if
the following holds: there are FM

κ -saturated Ai, i < 4, of power κ and
I = (ai)i<λ(M) ⊆ A3 such that

(a) A0 ⊆ A1 ∩ A2, A3 is FM
κ -primary over A1 ∪ A2,

(b) A1 ↓A0 A2,
(c) I is an indiscernible sequence over A1 ∪ A2.

The following theorem is proved in [HS]. There we used a different inde-
pendence notion, but since over FM

λ(M)-saturated models they are equivalent,
it is easy to see that dop and sdop do not depend on which independence
notion is used. The claim (i) in the theorem can be proved as in the case
of stable theories ([Sh2]) by using the properties of ↓ listed above. (ii) is
harder.

1.23. Theorem ([HS]). Assume κ = ξ+ > λr(M) and M is ξ-stable.

(i) If M has κ-sdop then it has κ-dop.
(ii) If M has λr(M)-dop then it has κ-sdop.

1.24. Lemma. Assume κ is a regular cardinal > λ(M). Let A be FM
κ -

primary over A and (ai)i<α ⊆ A be an indiscernible sequence over A. Then
α < κ+.

P r o o f. For a contradiction assume α = κ+. Let A0 be FM
κ -primary over

A ∪⋃i<λ(M) ai and A1 be FM
κ -primary over A ∪⋃i<κ ai. By Lemma 1.14,

we may assume that A = A0, and by Theorem 1.13(ii) that there is an
automorphism f that takes A into A1 and fixes A ∪⋃i<λ(M) ai pointwise.

Let I = (ai)i<κ. By Lemma 1.20, there is i∗ < κ+ such that t(f(ai∗),
A ∪ I) = Av(I,A ∪ I). Because A1 is FM

κ -primary over A ∪ ⋃i<κ ai there
is B ⊆ A ∪ ⋃i<κ ai of cardinality < κ such that t(f(ai∗), B) FM

κ -isolates
t(f(ai∗), A∪

⋃
i<κ ai), which is impossible, because clearly there is i < κ for

which t(ai, B) = Av(I, A ∪ I)¹B.

In the next chapter we will need the following theorem. It is proved in
[HS]. In the case ξ is regular it is trivial, but for singular ξ all the machinery
developed in [HS] is needed.
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1.25. Theorem ([HS]). Assume M is ξ-stable.

(i) If A ⊆ A, |A| ≤ ξ and A is FM
ξ -saturated , then there is A ⊆ B ⊆ A

such that |B| = ξ and B is FM
ξ -saturated.

(ii) Let Ai, i < ξ · ξ, be an increasing continuous sequence of sets such
that

(a) for all i < ξ · ξ, Ai+1 is an FM
ξ -saturated model of power ξ,

(b) for all i < ξ · ξ and a there is b ∈ Ai+1 such that t(b, Ai) =
t(a,Ai).

Then
⋃
i<ξ·ξ Ai is FM

ξ -saturated.

P r o o f. (i) Choose B ⊆ A so that it is FM
ξ -primary over A. By [HS],

Theorem 3.14, B is as desired. (ii) follows from the proof of [HS], Theo-
rem 3.14.

2. Nonstructure. From now on we assume that λ = λr(M)+, M has
λ-sdop, κ > λ is regular ξ > κ+ is regular and ξ(κ+) = ξ. We will prove a
nonstructure theorem for FM

κ -saturated elementary submodels of M.

Remark. A nonstructure thererem for FM
κ -saturated models implies a

nonstructure theorem for FM
κ′ -saturated models for all κ′ < κ and also for

elementary submodels of M.

We follow the proofs of the related results in [Sh2]. The main differences
are that we have not created a theory of strong types for M (in [HS] this
is done) and that some types may have no free extensions over some sets.
In fact, the author does not see any reason why t(I,A1 ∪A2) in the defini-
tion of λ-sdop should not be of such type. We overcome these problems by
“replacing t(A,B) ⊥ t(C,B) by t(A,B ∪ C) ∈ FM

λ (B)”.
Notice also that t(a,A) ∈ FM

λ (B), B ⊆ A, does not imply that a ↓B A.
Of course, if there is b such that t(b,B) = t(a,B) and b ↓B A, then t(a,A) ∈
FM
λ (B) does imply that a ↓B A.

2.1. Definition. Assume C ⊆ B. Then we write t(A,B) ∈ FM
λ (C) if for

all finite a ∈ A, there is D ⊆ C of power < λ such that t(a,B) ∈ FM
λ (D).

2.2. Lemma. There are FM
λ -saturated models Ai of cardinality λ, i < 3,

and an indiscernible sequence I over A1 ∪ A2 of power λ(M) such that

(i) A0 ⊆ A1 ∩ A2, A1 ↓A0 A2,
(ii) there is D ⊆ A1∪A2 of power < λ with the following property : if Ci,

i < 3, are such that C0 ↓A0 A1 ∪A2 and for i ∈ {1, 2} and all ci ∈ Ci, there
is Di ⊆ Ai∪C0 of power < κ such that t(ci,A1∪A2∪C0∪C3−i) ∈ FM

λ (Di),
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then

t(I,A1 ∪ A2 ∪ C0 ∪ C1 ∪ C2) ∈ FM
λ (D).

P r o o f. Let Ai, i < 3, and I be as in the definition of λ-sdop, |I| = λ(M).
Clearly these satisfy (i). We show (ii). By Theorem 1.13(iii), let D ⊆ A1∪A2

of power < λ be such that t(I,A1 ∪A2) ∈ FM
λ (D). Clearly we may assume

that |C0| < κ and that C1 = c1 and C2 = c2 are finite. Let a ∈ A1 ∪ A2 be
arbitrary. Then it is enough to show that

(∗) t(I,D ∪ a ∪ C0 ∪ c1 ∪ c2) ∈ FM
λ (D).

Choose FM
λ(M)-saturated models Di, i < 3, such that

(a) Di ⊆ Ai has cardinality < λ and D0 = D1 ∩ D2,
(b) D1 ∪ D2 ↓D0 A0, D1 ↓D2 A2 and D2 ↓D1 A1,
(c) D ∪ a ⊆ D1 ∪ D2,
(d) C0 ↓D0 D1 ∪ D2,
(e) for i ∈ {1, 2}, t(ci,A1 ∪ A2 ∪ C0 ∪ c3−i) ∈ FM

λ (Di ∪ C0).

The only difficulty in seeing the existence of such sets is how to pick them so
that they are FM

λ(M)-saturated. This can be solved by using Theorem 1.25.
(M is λr(M)-stable by [HS].)

Choose C ′0 ⊆ A0 so that t(C ′0,D0) = t(C0,D0). Then by (b) and (d)
above, because D0 is FM

λ(M)-saturated, t(C ′0,D1 ∪ D2) = t(C0,D1 ∪ D2).
For i ∈ {1, 2}, choose c′i ∈ Ai so that t(c′i ∪ C ′0,Di) = t(ci ∪ C0,Di). By
(e) above, there is an automorphism f such that f¹(D1 ∪ D2) = idD1∪D2 ,
f(C0) = C ′0 and for i ∈ {1, 2}, f(ci) = c′i. By the choice of D and (c) above,
(∗) follows.

2.3. Corollary. In Lemma 2.2 we may require that |I| = κ+.

P r o o f. This follows immediately from Lemma 1.19.

Let Ai, i < 3, and I be as in Corollary 2.3. Let U be a set and R
a binary relation on U . We define an FM

κ -saturated model A(U,R) as fol-
lows. For all i ∈ U we choose Bi and Ci so that t(Bi,A0) = t(A1,A0),
t(Ci,A0) = t(A2,A0) and {Bi | i ∈ U} ∪ {Ci | i ∈ U} is independent
over A0. Since A0 is FM

λ(M)-saturated, we can find these by Lemmas 1.12(i)
and 1.7(ii).

For all i, j ∈ U we choose Iij so that t(Iij ∪ Bi ∪ Cj ,A0) = t(I ∪
A1 ∪ A2,A0). Then we let A(U,R) be FM

κ -primary over
⋃{Bi | i ∈ U} ∪⋃{Ci | i ∈ U} ∪

⋃{Iij | (i, j) ∈ R}.
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2.4. Lemma. Let i, j ∈ U , i 6= j, |U | ≥ 3 and

DR
0 (i, j) =

⋃
{Bu | u 6= i} ∪

⋃
{Cu | u 6= j}

∪
⋃
{Iuv | u 6= i, v 6= j, (u, v) ∈ R},

DR
1 (i, j) =

⋃
{Iuv | u = i, v 6= j, (u, v) ∈ R},

DR
2 (i, j) =

⋃
{Iuv | u 6= i, v = j, (u, v) ∈ R}.

Then

(i) DR
0 (i, j) ↓A0 Bi ∪ Cj ,

(ii) t(Iij ,Bi ∪ Cj ∪
⋃
n<3D

R
n (i, j)) ∈ FM

λ (Bi ∪ Cj).

P r o o f. Clearly it is enough to prove this for all finite U . In particular,
it is enough to assume U = ω and R is finite. We prove this by induction
on |R|.

Notice that if (i, j) ∈ R, then
⋃
n<3

DR
n (i, j) ∪ Iij ∪ Bi ∪ Cj =

⋃
{Bi ∪ Ci | i ∈ U} ∪

⋃
{Iuv | (u, v) ∈ R},

otherwise
⋃
n<3

DR
n (i, j) ∪ Bi ∪ Cj =

⋃
{Bi ∪ Ci | i ∈ U} ∪

⋃
{Iuv | (u, v) ∈ R}.

For R = ∅ the claim is clear by Lemmas 1.12(ii) and 2.2.
So assume that R = R′ ∪{(u, v)} (R 6= R′) and that we have proved the

claim for all proper subsets of R. There are four cases:
1. (i, j) ∈ R: Let R∗ = R−{(i, j)}. Then DR

n (i, j) = DR∗
n (i, j) for n < 3,

and so (i) and (ii) follow immediately from the induction assumption.
2. (i, j) 6∈ R, u 6= i and v 6= j: By the induction assumption,

DR′
0 (i, j) ↓A0 Bi ∪ Cj

and

t(Iuv, DR′
0 (i, j) ∪ Bi ∪ Cj) ∈ FM

λ (DR′
0 (i, j)).

Since A0 is FM
λ(M)-saturated, (i) follows.

Let {Im | m < n} be an enumeration of DR
1 (i, j). Then by the induction

assumption, for all m < n,

t
(
Im,Bi ∪ Cj ∪

⋃

k<m

Ik ∪
⋃

n∈{0,2}
DR
n (i, j)

)
∈ FM

λ (Bi ∪DR
0 (i, j)).

So by the basic properties of FM
λ -isolation (FM

λ -isolation satisfies Axiom VII
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for a general isolation notion in [Sh2]),

t
(
DR

1 (i, j),Bi ∪ Cj ∪
⋃

n∈{0,2}
DR
n (i, j)

)
∈ FM

λ (Bi ∪DR
0 (i, j)).

Similarly we can see that

t
(
DR

2 (i, j),Bi ∪ Cj ∪
⋃

n∈{0,1}
DR
n (i, j)

)
∈ FM

λ (Cj ∪DR
0 (i, j)).

So by Lemma 2.2, (ii) follows.
3. (i, j) 6∈ R, u = i and v 6= j: Because DR

0 (i, j) = DR′
0 (i, j), (i) is

immediate by the induction assumption.
As in case 2 above, by the induction assumption,

t
(
DR

1 (i, j),Bi ∪ Cj ∪
⋃

n∈{0,2}
DR
n (i, j)

)
∈ FM

λ (Bi ∪DR
0 (i, j))

and

t
(
DR

2 (i, j),Bi ∪ Cj ∪
⋃

n∈{0,1}
DR
n (i, j)

)
∈ FM

λ (Cj ∪DR
0 (i, j)).

So by Lemma 2.2, (ii) follows.
4. (i, j) 6∈ R, u 6= i and v = j: As in case 3.

2.5. Lemma. For all i, j ∈ U , (i, j) ∈ R iff there is J ⊆ A(U,R) (of
cardinality κ+) such that t(J ∪ Bi ∪ Cj ,A0) = t(I ∪ A1 ∪ A2,A0).

P r o o f. From left to right the claim is trivial. We prove the other direc-
tion: For a contradiction assume (i, j) 6∈ R. By Lemma 2.4(ii), J is indis-
cernible over

⋃{Bu | u ∈ U} ∪
⋃{Cu | u ∈ U} ∪

⋃{Iuv | (u, v) ∈ R}. By
Lemma 1.24, |J | < κ+, a contradiction.

We let ψ(x, y), x = x1
_x2, y = y1

_y2, length(x1) = length(x2) =
length(y1) = length(y2) = λ, be a formula which says that there is J such
that t(J ∪x1∪y2, ∅) = t(I∪A1∪A2, ∅). We do not care in which language ψ
is, as long as isomorphism preserves truth in that language. We let φ(x, y) =
ψ(x, y) ∧ ¬ψ(y, x), i.e. we make ψ asymmetric.

2.6. Definition ([Sh3]). Let φ′(x, y) = φ(y, x) and let η = (η,<) be a
linear ordering. Assume A is a model and for all i ∈ η there is ai ∈ Alength(x).
Then we say that (ai)i∈η is weakly (κ, φ)-skeleton-like in A if

(i) for all i, j ∈ η, |= φ(ai, aj) iff i < j,
(ii) for all a ∈ Alength(x) there is K ⊆ η of power < κ such that if i, j ∈ η

and t(i,K) = t(j,K) (in η), then

|= φ(ai, a)↔ φ(aj , a)

and similarly for φ′.
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We say that a linear ordering η is κ+-dense if for all A,B ⊆ η of power
< κ+, the following holds: if a < b for all a ∈ A and b ∈ B, then there is
c ∈ η such that a < c < b for all a ∈ A and b ∈ B.

2.7. Lemma. Assume η is a κ+-dense linear ordering. Then (Bi ∪ Ci)i∈η
is weakly (κ, φ)-skeleton-like in Aη.

P r o o f. By Lemma 2.5, (i) of Definition 2.6 holds. So we need to
prove (ii).

Let A ⊆ Aη be of power λ. Because Aη is FM
κ -atomic over

⋃{Bi∪Ci∪Iij |
i, j ∈ η, i < j}, there is K ⊆ η of power < κ such that for all finite sequences
a ∈ A, there is D ⊆ ⋃{Bi ∪ Ci ∪Bj ∪ Cj ∪ Iij | i < j, i, j ∈ K} of power < κ
such that

t
(
a,
⋃
{Bi ∪ Ci ∪ Bj ∪ Cj ∪ Iij | i < j, i, j ∈ η}

)
∈ FM

κ (D).

Then K is as required:
It is enough to show that if x, y ∈ η and t(x,K) = t(y,K) (in η), then

|= ψ(A,Bx ∪ Cx)↔ ψ(A,By ∪ Cy)

and

|= ψ(Bx ∪ Cx, A)↔ ψ(By ∪ Cy, A).

Since these are similar, we only prove the first. By symmetry, it is enough
to prove “→”.

Assume |= ψ(A,Bx ∪ Cx). Let B⊆A and I ′⊆Aη be such that t(I ′ ∪ B ∪
Cx, ∅) = t(I ∪ A1 ∪ A2, ∅). Then it is easy to see that there is K ′ ⊆ η such
that

(i) K ∪ {x} ⊆ K ′, |K ′| = κ+,
(ii) B ∪ I ′ ⊆AK′ , where AK′ is FM

κ -primary over
⋃{Bi ∪ Ci | i ∈ K ′}

∪⋃{Ii,j | i < j, i, j ∈ K ′}.
Claim. AK′ is FM

κ -primary over B∪⋃{Bi∪Ci | i ∈ K ′}∪
⋃{Ii,j | i < j,

i, j ∈ K ′}.
P r o o f. Since |B| < κ, this follows from Lemma 1.14. Claim

Since η is κ+-dense, there is K ′′ ⊆ η and an order preserving onto
function f : K ′ → K ′′ such that f¹K = idK and f(x) = y. Let AK′′ ⊆ Aη
be FM

κ -primary over B∪⋃{Bi∪Ci | i ∈ K ′′}∪
⋃{Ii,j | i < j, i, j ∈ K ′′}. By

the choice of K and Lemma 2.4(ii), there is an isomorphism g : AK′ → AK′′
such that g¹B = idB and for i, j ∈ K ′, i < j, g¹(Bi ∪Ci ∪Bj ∪Cj ∪ Iij) is the
natural isomorphism onto Bf(i) ∪ Cf(i) ∪ Bf(j) ∪ Cf(j) ∪ If(i)f(j). Then g(I ′)
is the required indiscernible sequence.

We have now proved all the model theory needed for nonstructure theo-
rems, i.e. in [Sh3] it is shown that from Lemma 2.7 a nonstructure theorem
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follows. Notice that so far we have used only a small fraction of the cardinal
assumptions that we made at the beginning of this section.

In the rest of this section, we show that from Lemma 2.7 and [Sh3]
we can also get a stronger nonstructure theorem than what is explicitly
proved in [Sh3]. The price we pay is that we need all the cardinal assump-
tions that we made at the beginning of this section. These assumptions
are used in the construction of the linear orderings Φ(A). Notice that our
(stronger) nonstructure theorem implies that if M has λr(M)-dop, then we
cannot prove a “Shelah-style” structure theorem for FM

κ -saturated models.
This does not follow from the result that for most ξ > κ, the number of
FM
κ -saturated models of power ξ is the maximal one.

Notice also that the construction of the linear orderings Φ(A) is essen-
tially the one used by J. Conway to construct ω1-like dense linear orderings.
Also the proof of the fact that our models are L∞,ξ+ -equivalent is essen-
tially the same as the proof of the fact that ω1-like dense linear orderings
are L∞,ω1-equivalent (see [NS]).

We let Dξ+ be the filter on ξ+ generated by the closed unbounded subsets
of ξ+ and the set {δ < ξ+ | cf(δ) ≥ κ}. If f : ξ+ → ξ+, then by f/Dξ+ we
mean the ∼-equivalence class of f where f ∼ g iff {δ < ξ+ | f(δ) = g(δ)}
∈ Dξ+ .

2.8. Definition ([Sh3]). Assume I is a linear ordering and cf(I) = ξ+.
Let (Ii)i<ξ+ be an increasing continuous sequence of proper initial segments
of I such that I =

⋃
i<ξ+ Ii. Define f : ξ+ → ξ+ by f(α) = cf((I − Iα)∗),

where (I − Iα)∗ is the inverse of I − Iα.
We define inv1

κ(I) as follows: If there is a closed unbounded set C in ξ+

such that f(α) ≥ κ for all α ∈ C with cf(α) ≥ κ, then inv1
κ(I) = f/Dξ+ ,

otherwise we say that inv1
κ(I) is undefined.

Let τ and τ ′ be linear orderings. We define τ+τ ′ as follows: The universe
of τ + τ ′ is ({0} × τ) ∪ ({1} × τ ′), and (m, i) < (n, j) if m < n or m = n
and i < j. We define τ × τ ′ as follows: The universe of τ × τ ′ is τ × τ ′, and
(i, j) < (i′, j′) if j < j′ or j = j′ and i < i′.

We define a linear ordering τ = (τ,<) as follows: We let the universe of
τ be the set of all functions f : κ+ → ξ such that for all i < κ+ there is j > i
such that f(j) 6= 0. We order τ so that f < g if f(i) < g(i), where i < κ+

is the least ordinal such that f(i) 6= g(i). For all A ⊆ ξ+ we define a linear
ordering Φ(A) as follows: We let τα = τ if α 6∈ A, and otherwise τα = τ×κ∗,
where κ∗ is the inverse of κ. The universe of Φ(A) is

⋃
α<ξ+{α} × τα and

Φ(A) is ordered so that (α, f) < (β, g) iff α < β or α = β and f < g.

2.9. Lemma. (i) τ is a κ+-dense linear ordering of power ξ, τ × ξ ∼= τ
and for all α < ξ, τ × (α+ 1) ∼= τ .
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(ii) τ × (ξ + κ∗) ∼= τ .
(iii) If A ⊆ {α < ξ+ | cf(α) ≥ κ+}, then Φ(A) is κ+-dense.
(iv) Let

Φ(A,α)={α} × τα, Φ(A,<α)=
⋃

β<α

Φ(A, β), Φ(A, β, α)=
⋃

β≤γ<α
Φ(A, γ).

Then |Φ(A,<α)| ≤ ξ for all α < ξ+ and if E ⊆ {α < ξ+ | cf(α) = ξ}
then the following is true: if β ≤ α < ξ+ and β 6∈ E, then Φ(E, β, α+ 1) ∼=
Φ(∅, β, α+ 1).

(v) inv1
κ(Φ(A)) 6= inv1

κ(Φ(A′)) if (A 4 A′) ∩ {α < ξ+ | cf(α) ≥ κ} is
stationary , where A4A′ means the symmetric difference of A and A′.

P r o o f. (i) Immediate by the definitions.
(ii) For all i < κ, we let τ i be the set of those f ∈ τ such that for all

j < i, f(j) = 0 and f(i) 6= 0. We let τκ be the set of those f ∈ τ such that
for all j < κ, f(j) = 0. We order these by the induced order. Then clearly
for all i ≤ κ, τ i ∼= τ and so τ + τ × κ∗ ∼= τ . By this and the first part of (i),
the claim follows.

(iii) Immediate.
(iv) Using (i) and (ii), by an easy induction on α we can see that

Φ(E, β, α+ 1) ∼= τ , from which the claim follows.
(v) Immediate by the definitions.

Let Ei, i < ξ+, be such that

(i) for all i < ξ+, Ei ⊆ {α < ξ+ | cf(α) = ξ} is stationary,
(ii) for all i < j < ξ+, Ei ∩ Ej = ∅.

These exist by [Sh2], Appendix, Theorem 1.3(2). For all C ⊆ ξ+, let EC =⋃
i∈C Ei. Let F (C) =

∑
i<ξ+ Φi(C), where Φi(C), i < ξ+, are disjoint copies

of (Φ(EC))∗ (= inverse of Φ(EC)). We write AC for AF (C). Notice that F (C)
is κ+-dense.

2.10. Lemma. There are sets Ci ⊆ ξ+, i < 2(ξ+), such that for i 6= j,
ACi 6∼= ACj .

P r o o f. Since for all C 6= D, inv1
κ(Φ(EC)) 6= inv1

κ(Φ(ED)), we can prove
the claim exactly as Theorem 3.11(a) of [Sh3] (the second method).

2.11. Lemma. For all C,D ⊆ ξ+, AC ≡ AD(L∞,ξ+).

P r o o f. It is enough to show that ∃ has a winning strategy for
Gωξ+(AC ,AD), the Ehrenfeucht–Fraisse game of length ω in which the play-
ers choose sets of power < ξ+.

We write S(C) for
⋃
{Bi | i ∈ F (C)} ∪

⋃
{Ci | i ∈ F (C)} ∪

⋃
{Iij | i < j}
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and similarly for S(D). Let (S(C), {ci | i < α}, (Ci | i < α)) and (S(D),
{di | i < α}, (Di | i < β)) be FM

κ -constructions of AC and AD, respectively
(see [Sh2]). Because ξ<κ = ξ, if we choose the constructions carefully we
may assume α = β = ξ+.

Let fi be the natural one-one and onto function from Φi(C) to Φ(EC).
By F (C,<γ) we mean

⋃
i<γ f

−1
i (Φ(EC , <γ)). We write S(C, γ) for

⋃
{Bi | i ∈ F (C,<γ)} ∪

⋃
{Ci | i ∈ F (C,<γ)}

∪
⋃
{Iij | i < j, i, j ∈ F (C,<γ)}

and similarly for S(D, γ). We write

A(C, γ) = S(C, γ) ∪ {ci | i < γ}
and similarly for A(D, γ).

Assume now that the players have played n rounds and ∃ has played
so that she has chosen αn−1 < ξ+ of cofinality κ and partial isomorphisms
fn−1 : A(C,αn−1)→ A(D,αn−1) and gn−1 : F (C,<αn−1)→ F (D,<αn−1)
so that

(i) A(C,αn−1) and A(D,αn−1) are FM
κ -saturated,

(ii) for all i < j, i, j ∈ F (C,< αn−1), fn−1¹(Bi ∪ Ci) and fn−1¹Iij
are the natural isomorphisms onto Bgn−1(i) ∪ Cgn−1(i) and Ign−1(i)gn−1(j),
respectively,

(iii) if ci ∈ A(C,αn−1) then Ci ⊆ S(C,αn−1) ∪ {cj | j < i}, if di ∈
A(D,αn−1) then Di ⊆ S(D,αn−1) ∪ {dj | j < i},

(iv) ∃ has chosen her moves according to fn−1.

Notice that by (i) and (iii), A(C,αn−1) is FM
κ -primary over S(C,αn−1)

and A(D,αn−1) is FM
κ -primary over S(D,αn−1).

Let A be the move of ∀ in round n. By symmetry we may assume
A ⊆ AC .

It is easy to see that for all γ there is δ > γ of cofinality κ such that
A(C, δ) is FM

κ -saturated and if ci ∈ A(C, δ) then Ci ⊆ S(C, δ) ∪ {cj |
j < i}. So for all γ there is γ∗ > γ of cofinality κ such that A(C, γ∗) and
A(D, γ∗) are FM

κ -saturated and if ci ∈ A(C, γ∗) and di ∈ A(D, γ∗) then
Ci ⊆ S(C, γ∗) ∪ {cj | j < i} and Di ⊆ S(D, γ∗) ∪ {dj | j < i}, respectively.

Let γ > αn−1 be such that A ⊆ A(C, γ). We let αn = γ∗. Since αn−1 6∈
EC ∪ ED, by the properties of the orderings Φ(E′) we can find a partial
isomorphism gn : F (C,<αn) → F (D,<αn) such that gn−1 ⊆ gn (apply
Lemma 2.9(iv) κ times).

As in the proof of Theorem 1.13(iii) (this is the same proof as the proof
of [Sh2], Theorem IV, 3.2), we see that for all e ∈ A(C,αn−1) there is
E ⊆ S(C,αn−1) of cardinality < κ such that t(e, S(C)) ∈ FM

κ (E) and
similarly for D. This implies that we can find a partial isomorphism f :
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A(C,αn−1) ∪ S(C,αn) → A(D,αn−1) ∪ S(D,αn) such that fn−1 ⊆ f and
(ii) above holds for f .

By the definition of A(C,αn−1),A(C,αn) is FM
κ -primary over A(C,αn−1)

∪S(C,αn) and similarly for D. By Theorem 1.13(iii) we can find fn ⊇ f so
that fn, gn and αn satisfy (i)–(iii) above. So ∃ can continue the game by
choosing her answer according to fn.

Notice that ∃ can modify the strategy described above, so that she can
play ξ rounds without losing.

In the lemmas above we have proved:

2.12. Corollary. Assume κ > λr(M)+ is regular and M has λr(M)-
dop. If ξ > κ+ is regular and ξ(κ+) = ξ, then there are FM

κ -saturated
models Ai, i < 2(ξ+), of cardinality ξ+ such that for i 6= j, Ai 6∼= Aj and
Ai ≡ Aj(L∞,ξ+).
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