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On the insertion of Darboux functions

by

Aleksander M a l i s z e w s k i (Bydgoszcz)

Abstract. The main goal of this paper is to characterize the family of all functions f
which satisfy the following condition: whenever g is a Darboux function and f < g on R
there is a Darboux function h such that f < h < g on R.

1. Preliminaries. We use mostly standard terminology and notation.
The letters R and N denote the real line and the set of positive integers,
respectively. We consider cardinals as ordinals not in one-to-one correspon-
dence with smaller ordinals. The word interval means a nondegenerate
bounded interval. The word function denotes a mapping from R into R
unless otherwise explicitly stated.

Let A ⊂ R. We use the symbols intA, clA, frA, χA, and |A| to denote
the interior, the closure, the boundary, the characteristic function, and the
cardinality of A, respectively. We write c = |R| and ℵ0 = |N|. We say
that A is bilaterally c-dense-in-itself if |A ∩ J | = c for every interval J
with A ∩ J 6= ∅. The shortcut “A is nbcd” means “A is nonempty and
bilaterally c-dense-in-itself.”

Let f be a function. For every y ∈ R let [f < y] = {x ∈ R : f(x) < y}.
The symbols [f ≤ y], [f > y], etc., are defined analogously. For every set
A ⊂ R with |A| = c we define c-inf(f,A) = inf{y ∈ R : |[f < y] ∩ A| = c}.
If A ⊂ R and x is a left c-limit point of A (i.e., |A ∩ (x − δ, x)| = c for
every δ > 0), then let

c-lim(f¹A, x−) = lim
δ→0+

c-inf(f,A ∩ (x− δ, x))

and c-lim(f¹A, x−) = − c-lim(−f¹A, x−). Similarly we define c-lim(f¹A, x+)
and c-lim(f¹A, x+) if x is a right c-limit point of A. The symbols Cf and Df

denote the sets of points of continuity and of discontinuity of f , respectively.
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The following classes of functions are considered.

• RR consists of all functions.
• B consists of all Borel measurable functions.
• Bα denotes the Baire class α (α < ω1). Thus B =

⋃
α<ω1

Bα.
• D consists of all Darboux functions, i.e., f ∈ D iff f [J ] is connected

for every interval J .
• U consists of all functions f with the following property: for all a < a

and each set A ⊂ (a, a) with |A| < c the set f [(a, a) \ A] is dense in the
interval [min{f(a), f(a)},max{f(a), f(a)}]. Recall that U is the uniform
closure of D [6, Theorem 4.3].
• C consists of all functions f with the following property: for every open

interval P the set f−1(P ) is either empty or nbcd. Equivalently, f ∈ C iff
for every x ∈ R we have c-lim(|f − f(x)|, x−) = c-lim(|f − f(x)|, x+) = 0.
• C∗ consists of all functions f with the following property: for every

y ∈ R the set [f < y] is either empty or nbcd. Equivalently, f ∈ C∗ iff for
every x ∈ R we have max{c-lim(f, x−), c-lim(f, x+)} ≤ f(x).
• C∗ consists of all functions f with the following property: for every

y ∈ R the set [f > y] is either empty or nbcd. Equivalently, f ∈ C∗ iff for
every x ∈ R we have min{c-lim(f, x−), c-lim(f, x+)} ≥ f(x).

Recall that we have the following proper inclusions:

(1) D ⊂ U ⊂ C ⊂ C∗ ∩C∗ ⊂ C∗.

For the proof of the inequality D 6= U see, e.g., [6, p. 72]. The other relations
are evident.

2. Introduction. Let f and g be arbitrary functions. The notation
“f < g” means “f(x) < g(x) for each x ∈ R.” We write (f, g) ∈ P

(see [7]) if f < g and |[f < y < g] ∩ (a, a)| = c whenever a < a and
y ∈ (min{f(a), f(a)},max{g(a), g(a)}). If A and B are families of functions,
then define

P(A) = {f ∈ RR : (∀g ∈ A)(f < g ⇒ (f, g) ∈ P)},
M(B) = {(f, g) ∈ RR × RR : (∃h ∈ B)(f < h < g)}

and
M(A,B) = {f ∈ RR : (∀g ∈ A)(f < g ⇒ (f, g) ∈M(B))}.

One can easily verify that if A1 ⊂ A2 and B1 ⊃ B2, then P(A1) ⊃ P(A2)
and M(A1,B1) ⊃M(A2,B2).

It is quite evident that the relation f < g does not imply (f, g) ∈M(D).
(See also Lemma 3.6.) So we can ask two questions:

1. Which assumptions on f and g (in addition to f < g) imply (f, g) ∈
M(D)?
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2. If f < g and (f, g) 6∈M(D), how “regular” can the functions f and g
be?

We now discuss briefly these questions.

1. In 1966 J. G. Ceder and M. L. Weiss proved the following theorem [8,
Theorem 1]. (See also [7, Theorem 1].)

Theorem 2.1. P ⊂M(D).

They also showed that D ∩ B1 ⊂ M(D ∩ B1,D ∩ B2) [8, Theorem 4],
and asked whether D ∩B1 ⊂M(D ∩B1,D ∩B1). This question has been
answered in the affirmative by A. M. Bruckner, J. G. Ceder, and T. L. Pear-
son [4, Theorem 1]. The latter authors also proved the next theorem, which
contains the answer to the first question in case f, g ∈ D [5, Theorem 1].

Theorem 2.2. Let f, g ∈ D. Then (f, g) ∈ M(D) if and only if f < g
and for all a < a and y ∈ (min{f(a), f(a)},max{g(a), g(a)}) the set [f <
y < g] ∩ (a, a) is nonempty and bilaterally dense-in-itself.

In 1968 J. G. Ceder and T. L. Pearson proved the following theorem [7,
Theorem 5].

Theorem 2.3. Every continuous function belongs to P(C).

By Theorem 2.1, it follows that each continuous function belongs to
M(C,D). In Section 4 we characterize the class M(A,D) for A ∈
{D,U,C,C∗ ∩C∗,C∗,C∗,RR}.

2. In 1966 J. G. Ceder and M. L. Weiss constructed functions f, g ∈
D∩B2 such that f < g and (f, g) 6∈M(D) [8, Example 1]. A. M. Bruckner,
J. G. Ceder, and T. L. Pearson showed in 1973 that there exist f ∈ D∩B1

and g ∈ D ∩ B2 such that f < g and (f, g) 6∈ M(D) [4, Example, p. 165].
They also claimed that if f ∈ D and the set f [Cf∩J ] is dense in f [J ] for each
interval J , then f ∈M(D,D) [4, Theorem 2]. We will see that this assertion
is false. In fact, this result does not hold even if we moreover assume that f
is continuous except on a countable set and f satisfies Banach’s condition T2

(Example 5.4). So [4, Corollary, p. 166] is also incorrect.

3. Auxiliary results. The next lemma follows by [7, Lemma 4, p. 285].
(See also [12, Lemma I.3.2].)

Lemma 3.1. Let A ⊂ R be nbcd and f : A→ R. Then

|{x ∈ A : max{c-lim(|f − f(x)|, x−), c-lim(|f − f(x)|, x+)} > 0}| < c.

Lemma 3.2. Assume that A ⊂ R is nbcd , and f is a function such that
for each x ∈ A we have max{c-lim(f¹A, x−), c-lim(f¹A, x+)} < ∞. There
is a function g : A→ R such that

(2) f(x) < g(x) for each x ∈ A
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and

(3) for each interval J , if A ∩ J 6= ∅, then g[A ∩ J ] = (c-inf(f,A ∩ J),∞).

P r o o f. Set B = {x ∈ R : max{c-lim(f, x−), c-lim(f, x+)} > f(x)}.
Then |B| < c. (See Lemma 3.1.) Arrange all intervals intersecting A in a
transfinite sequence, {Jα : α < c}. For each α < c and n ∈ N put yα,n =
max{c-inf(f,A∩Jα) +n−1,−n}, and define Kα,n = [f < yα,n]∩A∩Jα \B.
Then |Kα,n| = c for each α and n. Use [10, Lemma 5] to construct a family,
{Qα,n : α < c, n ∈ N}, consisting of pairwise disjoint sets of cardinality c,
such that each Qα,n is a subset of Kα,n. For each α and n let gα,n : Qα,n →
(yα,n,∞) be a surjection. Define g(x) = gα,n(x) if x ∈ Qα,n for some α < c
and n ∈ N, and g(x) = max{c-lim(f¹A, x−), c-lim(f¹A, x+), f(x)} + 1 if
x ∈ A \⋃α<c

⋃
n∈NQα,n.

Clearly (2) holds. To prove (3) fix an interval J with A ∩ J 6= ∅. Then
J = Jα for some α < c. Hence

g[A ∩ J ] ⊃
⋃

n∈N
gα,n[Qα,n] = (c-inf(f,A ∩ J),∞).

On the other hand, by assumption, for each x ∈ A ∩ J we have

g(x) > max{c-lim(f¹A, x−), c-lim(f¹A, x+)} ≥ c-inf(f,A ∩ J).

Lemma 3.3. Let f ∈ RR. There is a function g ∈ C∗ with g > f .

P r o o f. Define A = {x ∈ R : max{c-lim(f, x−), c-lim(f, x+)} < ∞}.
Then by Lemma 3.1, we have |R \ A| < c. So we can use Lemma 3.2 to
construct a function g : A→ R such that conditions (2) and (3) hold. Extend
g to the whole real line setting g(x) = f(x) + 1 for x 6∈ A. Clearly g > f .
Moreover, by (3), for each x ∈ R we have c-lim(g, x−) = c-lim(g, x+) = ∞.
Thus g ∈ C∗.

The proof of the next proposition is similar to that of [5, Theorem 2].
(See also [12, Corollary VI.1.4].)

Proposition 3.4. For every function f the following are equivalent :

(i) there is a function g ∈ D with g > f ;
(ii) there is a function g ∈ U with g > f ;

(iii) there is a function g ∈ C with g > f ;
(iv) there is a function g ∈ C∗ ∩C∗ with g > f ;
(v) there is a function g ∈ C∗ with g > f ;
(vi) for each x ∈ R we have max{c-lim(f, x−), c-lim(f, x+)} <∞.

P r o o f. The implications (i)⇒(ii)⇒(iii)⇒(iv)⇒(v) are evident. To prove
(v)⇒(vi) recall that, by definition, for each x ∈ R we have

max{c-lim(f, x−), c-lim(f, x+)} ≤ max{c-lim(g, x−), c-lim(g, x+)}
≤ g(x) <∞.
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(vi)⇒(i). Use Lemma 3.2 with A = R to construct a function g satisfying
(2) and (3). Clearly g ∈ D and g > f .

We denote the class of functions which satisfy condition (i) of Proposi-
tion 3.4 by A. Clearly C∗ ⊂ A. The next lemma shows that A∩M(D,C∗)
⊂ C∗.

Lemma 3.5. Let f ∈ A \C∗. There is a function g ∈ D such that g > f
and (f, g) 6∈M(C∗).

P r o o f. By assumption, there is a y ∈ R and an interval I such that
0 < |B| < c, where B = [f < y] ∩ I. Set A = R \ B. Use Lemma 3.2 to
construct a function g : A → R such that (2) and (3) hold. Extend g to
the whole real line setting g(x) = max{c-lim(f, x−), c-lim(f, x+)} for x ∈ B.
One can easily verify that g > f and g ∈ D. Let h be an arbitrary function
with f < h < g. Then for each x ∈ B we have

h(x) < g(x) = max{c-lim(f, x−), c-lim(f, x+)}
≤ max{c-lim(h, x−), c-lim(h, x+)}.

Thus h 6∈ C∗ and (f, g) 6∈M(C∗).

Lemma 3.6. Let f ∈ RR. There is a function g > f with (f, g) 6∈M(D).
If moreover f ∈ A, then we can choose g ∈ C∗.

P r o o f. If f is constant, then define g(x) = f(x) + |x| + χ{0}(x). It is
evident that g > f and g ∈ C∗. If f < h < g, then

c-lim(h, 0−) ≤ c-lim(g, 0−) = f(0) < h(0).

Thus h 6∈ D and (f, g) 6∈M(D).

If f is not constant, then let y ∈ R be such that [f < y] 6= ∅ 6= [f ≥ y].
If f 6∈ A, then define g(x) = y if f(x) < y, and g(x) = f(x) + 1 otherwise.
It is clear that g > f . Let h be an arbitrary function with f < h < g.
Observe that if f(x) < y, then h(x) < g(x) = y, and f(x) ≥ y implies
h(x) > f(x) ≥ y. Hence [h = y] = ∅. Furthermore, [h < y] 6= ∅ 6= [h > y].
Thus h 6∈ D and (f, g) 6∈M(D).

Finally, let f ∈ A. If f 6∈ M(D,D), then by definition, there exists a
function g ∈ D ⊂ C∗ such that g > f and (f, g) 6∈M(D). Otherwise define
g(x) = y if f(x) < y, and g(x) = max{c-lim(f, x−), c-lim(f, x+), f(x)}+ 1 if
f(x) ≥ y. Then clearly g > f , and the relation (f, g) 6∈M(D) can be proved
as in the previous case. To complete the proof we will verify that g ∈ C∗.

Let x ∈ R, y > g(x), and let J 3 x be an interval. If [f < y] ∩ J 6= ∅,
then

|[g < y] ∩ J | ≥ |[f < y] ∩ J | = c.

(Notice that y > g(x) ≥ y, and by Lemma 3.5, f ∈ C∗.)
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In the opposite case put B = {t ∈ R : max{c-lim(f, t−), c-lim(f, t+)} >
f(t)}. By Lemma 3.1, we have |B| < c. Observe that g(t) = f(t)+1 whenever
t ∈ J \B, and

c-inf(f, J) ≤ max{c-lim(f, x−), c-lim(f, x+)} ≤ g(x)− 1 < y − 1.

Thus |[f < y − 1] ∩ J | = c and |[g < y] ∩ J | ≥ |[f < y − 1] ∩ J \B| = c.

Lemma 3.7. Let I ′ be a closed interval and y ∈ R. Suppose that a func-
tion f ∈ A is such that the sets B = [f < y] ∩ I ′ and B′ = R \B are nbcd.
There exists a function g ∈ C∗ ∩C∗ such that g > f and (f, g) 6∈M(D). If
moreover max{c-lim(f¹B′, x−), c-lim(f¹B′, x+)} <∞ for each x ∈ B′ (resp.
c-inf(f,B′ ∩J) = y for every interval J ⊂ I ′ with B ∩J 6= ∅ 6= B′ ∩J), then
we can choose g ∈ C (resp. g ∈ D).

P r o o f. Put A = {x ∈ B′ : max{c-lim(f¹B′, x−), c-lim(f¹B′, x+)}
<∞}. Then by Lemma 3.1, we have |B′ \A| < c. So we can use Lemma 3.2
to construct a function g : A → R such that (2) and (3) hold. Extend g to
the whole real line setting g(x) = max{c-lim(f, x−), c-lim(f, x+), f(x)} + 1
for x ∈ B′ \A and g(x) = y for x ∈ B. Then clearly g > f .

Let f < h < g. Observe that x ∈ B implies h(x) < g(x) = y. On the
other hand, if x ∈ B′ ∩ I ′, then h(x) > f(x) ≥ y. Hence [h = y] ∩ I ′ = ∅.
Since B 6= ∅ 6= B′ ∩ I ′, we obtain h 6∈ D. Thus (f, g) 6∈M(D).

Fix an x ∈ R. We consider three cases.
First let x ∈ B. Then c-lim(|g−g(x)|, x−) = c-lim(|g−g(x)|¹B, x−) = 0.

Similarly c-lim(|g − g(x)|, x+) = 0.
If x ∈ A, then by (3), c-lim(|g − g(x)|, x−) = c-lim(|g − g(x)|, x+) = 0.
Finally, let x ∈ B′ \ A. Then c-lim(g, x−) = c-lim(g, x+) = ∞ > g(x).

(Recall that B′ is nbcd, so A ∩ J 6= ∅.) On the other hand,

• if x is a left c-limit point of B, then c-lim(g, x−) ≤ y ≤ f(x) < g(x);
• otherwise c-lim(|g − g(x)|, x−) = 0. (We have used (3) and the fact

that f ∈ A.)

Similarly we can show that c-lim(g, x+) ≤ g(x).
Consequently, g ∈ C∗ ∩ C∗. Moreover, the first additional assumption

implies A = B′, whence g ∈ C.
Now suppose that the second additional assumption holds. Then the

first additional assumption holds as well, so A = B′. Let J be an interval. If
A∩J = ∅, then g[J ] = {y}. If B∩J = ∅, then by (3), the set g[J ] = g[A∩J ]
is an interval. Finally, B ∩ J 6= ∅ 6= A ∩ J yields c-inf(f,A ∩ J) ≤ y. Hence
and by (3), g[J ] is an interval with end points c-inf(f,A ∩ J) and ∞. Thus
g ∈ D.
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Lemma 3.8. Let f be an arbitrary function and g ∈ C∗. Assume that
a < a and y ∈ (min{f(a), f(a)},max{g(a), g(a)}) are such that the set
A′ = [f ≥ y] ∩ (a, a) is not nbcd. Then |[f < y < g] ∩ (a, a)| = c.

P r o o f. Choose a closed interval J such that intJ ⊂ (a, a), [g > y]∩J 6=
∅, and |[f ≥ y] ∩ J | < c. (If A′ = ∅, then we can set J = [a, a].) Using the
fact that g ∈ C∗ we obtain

|[f < y < g] ∩ (a, a)| ≥ |[f < y < g] ∩ J | = |[g > y] ∩ J | = c.

4. Main theorems. The next theorem follows directly from Lemma 3.6.
(Notice that if f 6∈ A, then by Proposition 3.4, f ∈M(C∗,D) vacuously.)

Theorem 4.1. (a) P(RR) = M(RR,D) = ∅.
(b) P(C∗) = M(C∗,D) = RR \A.

Theorem 4.2. For every function f ∈ A the following are equivalent :

(i) f ∈M(C∗ ∩C∗,D);
(ii) for every open interval I and y ∈ R, if the set [f ≥ y] ∩ I is nbcd ,

then cl I ⊂ [f ≥ y];
(iii) f ∈ P(C∗);
(iv) f ∈ P(C∗ ∩C∗);
(v) f ∈M(C∗,D).

P r o o f. The implications (iii)⇒(v) and (iv)⇒(i) follow from Theorem
2.1, and (iii)⇒(iv) and (v)⇒(i) are evident.

(i)⇒(ii). Assume that (ii) fails. There exist an open interval I and y ∈ R
such that [f ≥ y]∩I is nbcd and [f < y]∩cl I 6= ∅. By Lemma 3.5, if f 6∈ C∗,
then f 6∈ M(C∗ ∩ C∗,D). So suppose f ∈ C∗. Then [f < y] ∩ I is nbcd.
Consequently, there is a closed interval I ′ ⊂ I such that fr I ′ ⊂ [f ≥ y] and
[f < y] ∩ I ′ 6= ∅. By Lemma 3.7, we obtain f 6∈M(C∗ ∩C∗,D).

(ii)⇒(iii). Take a g ∈ C∗ with g > f , a < a, and y ∈ (min{f(a), f(a)},
max{g(a), g(a)}). Put A′ = [f ≥ y] ∩ (a, a). We have [f < y] ∩ [a, a] 6= ∅,
so by (ii), the set A′ is not nbcd. Thus by Lemma 3.8, we get |[f < y <
g] ∩ (a, a)| = c. Consequently, (f, g) ∈ P.

Theorem 4.3. For every function f ∈ A the following are equivalent :

(i) f ∈M(C,D);
(ii) for every open interval I and y ∈ R, if the set A′ = [f ≥ y] ∩ I is

nbcd , then either cl I ⊂ [f ≥ y] or max{c-lim(f¹A′, x−), c-lim(f¹A′, x+)} =
∞ for some x ∈ A′;

(iii) f ∈ P(C).

P r o o f. The implication (iii)⇒(i) follows from Theorem 2.1.
(i)⇒(ii). Assume that (ii) fails. There exist an open interval I and y ∈

R such that the set A′ = [f ≥ y] ∩ I is nbcd, [f < y] ∩ cl I 6= ∅, and
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max{c-lim(f, x−), c-lim(f, x+)} < ∞ for each x ∈ A′. By Lemma 3.5, if
f 6∈ C∗, then f 6∈ M(C,D). So suppose f ∈ C∗. Then [f < y] ∩ I is nbcd.
Consequently, there is a closed interval I ′ ⊂ I such that fr I ′ ⊂ [f ≥ y] and
[f < y] ∩ I ′ 6= ∅. By Lemma 3.7, we obtain f 6∈M(C,D).

(ii)⇒(i). Take a g ∈ C with g > f , a < a, and y ∈ (min{f(a), f(a)},
max{g(a), g(a)}). If A′ = [f ≥ y] ∩ (a, a) is not nbcd, then |[f < y < g] ∩
(a, a)| = c. (We use Lemma 3.8.) In the opposite case notice that [f < y] ∩
[a, a] 6= ∅. So by (ii), there exists an x ∈ A′ such that max{c-lim(f¹A′, x−),
c-lim(f¹A′, x+)} = ∞. Let y > g(x). Choose a closed interval J ⊂ (a, a)
such that x ∈ J and |[y ≤ f < y] ∩ J | < c. Since y ≤ f(x) < g(x) < y
and g ∈ C, we have

|[f < y < g]∩(a, a)| ≥ |[f < y < g]∩J | ≥ |[y < g < y]∩J \[y ≤ f < y]| = c.

Consequently, (f, g) ∈ P.

Theorem 4.4. For every function f ∈ A the following are equivalent :

(i) f ∈M(D,D);
(ii) for every open interval I and y ∈ R, if the set A′ = [f ≥ y] ∩ I

is nbcd , then either cl I ⊂ [f ≥ y] or there is an interval J ⊂ I such that
A′ ∩ J 6= ∅, |J \A′| = c, and c-inf(f,A′ ∩ J) > y;

(iii) f ∈ P(U);
(iv) f ∈ P(D);
(v) f ∈M(U,D).

P r o o f. The implications (iii)⇒(v) and (iv)⇒(i) follow from Theorem
2.1, and (iii)⇒(iv) and (v)⇒(i) are evident.

(i)⇒(ii). Assume that (ii) fails. There are an open interval I and y ∈ R
such that the set A′ = [f ≥ y] ∩ I is nbcd, [f < y] ∩ cl I 6= ∅, and for each
interval J ⊂ I if A′ ∩ J 6= ∅ and |J \ A′| = c, then c-inf(f,A′ ∩ J) = y.
By Lemma 3.5, if f 6∈ C∗, then f 6∈ M(D,D). So suppose f ∈ C∗. Then
[f < y]∩ I is nbcd. Consequently, there is a closed interval I ′ ⊂ I such that
fr I ′ ⊂ [f ≥ y] and [f < y]∩I ′ 6= ∅. By Lemma 3.7, we obtain f 6∈M(D,D).

(ii)⇒(iii). Take a g ∈ U with g > f , a < a, and y ∈ (min{f(a), f(a)},
max{g(a), g(a)}). If the set A′ = [f ≥ y] ∩ (a, a) is not nbcd, then |[f <
y < g] ∩ (a, a)| = c. (We use Lemma 3.8.) In the opposite case notice that
[f < y]∩[a, a] 6= ∅. By (ii), there is an interval J ⊂ (a, a) such that A′∩J 6= ∅,
|J \A′| = c, and y = c-inf(f,A′ ∩ J) > y. If J ⊂ [g > y], then

|[f < y < g] ∩ (a, a)| ≥ |[f < y] ∩ J | = |J \A′| = c.

In the opposite case observe that [g > y] ∩ J ⊃ [f ≥ y] ∩ J 6= ∅. So, since
g ∈ U, we obtain |[y < g < y] ∩ J | = c. Thus

|[f < y < g]∩(a, a)| ≥ |[f < y < g]∩J | ≥ |[y < g < y]∩J \[y ≤ f < y]| = c.
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(We have used the fact that |[y ≤ f < y] ∩ J | < c.) Consequently, (f, g)
∈ P.

Remark 4.1. By Theorem 4.1 and (1), we have

RR \A = M(C∗,D) = M(C∗ ∩C∗,D) \A

= M(C,D) \A = M(U,D) \A = M(D,D) \A.

On the other hand, by Lemmas 3.5 and 3.3, and Proposition 3.4, we obtain

M(C∗,D) = M(C∗ ∩C∗,D) ∩A ⊂M(C,D) ∩A ⊂M(U,D) ∩A(4)

= M(D,D) ∩A ⊂ C∗.

We will show later that the above inclusions are proper. (See Examples
5.1–5.3.)

Theorem 4.5. If A ∈ {D,U,C,C∗ ∩C∗,C∗}, then

A ∩M(A,D) = D ∩M(C∗,D).

P r o o f. By (4) and Proposition 3.4, we obtain A ⊂ A. Let f ∈ A \D.
There is an open interval I such that [f > y] ∩ cl I 6= ∅ 6= [f < y] ∩ cl I and
[f = y] ∩ I = ∅. Put A′ = [f > y] ∩ I = [f ≥ y] ∩ I.

• If f ∈ C∗, then A′ is nbcd. Thus f 6∈M(C∗,D) = M(C∗∩C∗,D)∩A.
(See Theorem 4.2.)
• If f ∈ C, then moreover max{c-lim(f¹A′, x−), c-lim(f¹A′, x+)} ≤

f(x) <∞ for each x ∈ A′. Thus f 6∈M(C,D). (See Theorem 4.3.)

It follows that C∗ ∩M(C∗,D) ⊂ D and A ∩M(A,D) ⊂ U.
Now let f ∈ U\M(C∗,D). By Theorem 4.2, there are an open interval I

and y ∈ R such that the set A′ = [f ≥ y] ∩ I is nbcd and [f < y] ∩ cl I 6= ∅.
Since f ∈ U, for each interval J ⊂ I if A′ ∩ J 6= ∅ and |[f < y] ∩ J | = c,
then c-inf(f,A′ ∩ J) = y. Thus f 6∈ M(D,D). (See Theorem 4.4.) By (1),
(4), and the first part of the proof, we obtain

A ∩M(A,D) ⊂ U ∩M(A,D) ⊂ U ∩M(D,D) ⊂ U ∩M(C∗,D)

⊂ C∗ ∩M(C∗,D) ⊂ D ∩M(C∗,D) ⊂ A ∩M(A,D).

The next theorem is a generalization of Theorem 2.3.

Theorem 4.6. Let f ∈ C∗ be such that for each y ∈ R the set [f < y]
is ambiguous, i.e., it is both an Fσ and a Gδ set. Then f ∈ P(C∗). In
particular , every upper semicontinuous function belongs to P(C∗).

P r o o f. Take an open interval I and y ∈ R such that the sets A′ = [f ≥
y]∩ I and [f < y]∩ cl I are nonempty. Since f ∈ C∗, the set B = [f < y]∩ I
is nbcd. Observe that A′ and B are disjoint nonempty ambiguous sets, and
A′ ∪ B = I. So by [16, Lemma 7], A′ is not nbcd. By Theorem 4.2, f ∈
P(C∗).
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5. Examples

Example 5.1. C∗ ∩C∗ ∩B2 ∩M(C,D) \M(C∗ ∩C∗,D) 6= ∅.
Construction. Use the Baire Category Theorem to construct a family,

{Fn : n ∈ N}, consisting of pairwise disjoint nonempty nowhere dense perfect
sets, such that for each interval I there is an n ∈ N with Fn ⊂ I. Define
f(x) = n if x ∈ Fn for some n ∈ N, and f(x) = 0 otherwise. Then clearly
f ∈ B2. Moreover, for each x ∈ R we have

c-lim(f, x−) = c-lim(f, x+) = 0 < f(x) <∞ = c-lim(f, x−) = c-lim(f, x+).

Thus f ∈ C∗ ∩C∗.
Take an open interval I and y ∈ R such that the set A′ = [f ≥ y] ∩ I is

nbcd and [f < y]∩cl I 6= ∅. There is an n ≥ y with Fn ⊂ I. Choose an x ∈ Fn
which is not a left limit point of Fn. Notice that y > 0, so for each y > y
and each sufficiently small δ > 0 we have [y ≤ f < y] ∩ (x− δ, x) = ∅. Thus
c-lim(f¹A′, x−) =∞. By Theorem 4.3, we obtain f ∈M(C,D).

Finally, observe that [f ≥ 1] ∩ (0, 1) is nbcd, and [f < 1] ∩ [0, 1] 6= ∅. So
by Theorem 4.2, f 6∈M(C∗ ∩C∗,D).

Example 5.2. C ∩B2 ∩M(D,D) \M(C,D) 6= ∅.
Construction. Let F ⊂ R\{−π/4, π/4} be an Fσ set such that |F ∩ I| =

|I \ F | = c for each interval I. (Cf. Example 5.1.) Define f(x) = |arctanx| ·
χF (x). Clearly f ∈ C ∩ B2. Using Theorem 4.4, one can easily show that
f ∈ M(D,D). Moreover, [f ≥ 1] ∩ (0, 1) is nbcd, and [f < 1] ∩ [0, 1] 6= ∅.
Since f is bounded, Theorem 4.3 yields f 6∈M(C,D).

Example 5.3. C ∩ P(C∗ ∩B) \M(D,D) 6= ∅.
Construction. Let B be a Bernstein set (i.e., a totally imperfect set whose

complement is also totally imperfect) and f = χB . It is clear that f ∈ C.
Notice that [f ≥ 1] ∩ (0, 1) is nbcd, and [f < 1] ∩ [0, 1] 6= ∅. Since f ≤ 1,
Theorem 4.4 shows that f 6∈M(D,D).

Take a g ∈ C∗ ∩ B with g > f . First observe that [g ≤ 1] is at most
countable. Indeed, otherwise there is a nonempty perfect set K ⊂ [g ≤ 1].
Then K ∩B 6= ∅ and g(x) ≤ 1 = f(x) for each x ∈ K ∩B, an impossibility.

Let a < a and y ∈ (min{f(a), f(a)},max{g(a), g(a)}). Clearly y > 0. If
y ≤ 1, then |[f < y < g]∩ (a, a)| ≥ |[f = 0]∩ (a, a) \ [g ≤ 1]| = c, and in the
opposite case |[f < y < g] ∩ (a, a)| = |[g > y] ∩ (a, a)| = c. Consequently,
f ∈ P(C∗ ∩B).

The above example suggests the following problem.

Problem 5.1. Let A ∈ {D,U,C,C∗∩C∗,C∗,C∗,RR}. Characterize the
classes P(A ∩B) and M(A ∩B,D).
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In the next example we will need several new notions. Let h ∈ RR.
We say that h is a strong Świątkowski function [11] if whenever a < a
and y is a number between h(a) and h(a), there is an x ∈ Ch ∩ (a, a)
with h(x) = y. (Clearly strong Świątkowski functions are both Darboux
and quasi-continuous in the sense of Kempisty [9].) We say that h satisfies
Banach’s condition T2 (see [2]) if the set {y ∈ R : |[h = y]| > ℵ0} has
Lebesgue measure zero. We say that h is a honorary Baire class two function
[1] if |[h 6= h]| ≤ ℵ0 for some h ∈ B1. Finally, h is almost continuous in the
sense of Stallings [15] if every open set V ⊂ R2 containing the graph of h
contains the graph of some continuous function as well. Recall that almost
continuous functions have the Darboux property, and that the converse is
not true [15]. Moreover, in Baire class one these two notions coincide [3].

T. Natkaniec showed in 1992 that there are almost continuous functions f
and g such that f < g and (f, g) 6∈M(D) [14, Example 1.8.1]. (See also [13].)
Example 5.4 generalizes this result as well as many results mentioned in
Section 2.

Example 5.4. Let C be the Cantor ternary set. There are bounded
functions f and g satisfying the following conditions:

• f is nonpositive, Df is a countable subset of C (so f ∈ B1), f is strong
Świątkowski, and it satisfies Banach’s condition T2;
• g is nonnegative, Dg = C, g is a honorary Baire class two function, it is

almost continuous, strong Świątkowski, and satisfies Banach’s condition T2;
• f < g and (f, g) 6∈M(D).

Construction. Let I = {In : n ∈ N} and J = {Jk : k ∈ N} be families of
components of [0, 1] \ C such that

(5)
(

cl
⋃

I
)
∩
(

cl
⋃

J
)

= C.

Let I0 = ∅. We will construct a sequence, {In : n ∈ N}, such that for each n
the following conditions hold:

(a) In−1 ⊂ In ⊂ I;
(b) cl

⋃
In =

⋃
I∈In

cl I;
(c) if I ∈ In−1 and x ∈ fr I, then x ∈ cl(

⋃
In \ I);

(d) In ∈ In.

Let n ∈ N and suppose that we have already defined families I0, . . . , In−1

so that the above conditions hold. Define

B =
⋃

I∈In−1∪{In}

(
(fr I) \ cl

(⋃
In−1 \ I

))
.

Clearly |B| ≤ ℵ0. Let B = {xp : p < r}, where r ∈ N∪ {∞}. For each p < r

use (5) to choose a monotone sequence of intervals, {Ĩp,m : m ∈ N} ⊂ I,
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converging to xp and such that
⋃
m∈N Ĩp,m ⊂ (xp − p−1, xp + p−1). Finally,

define In = In−1 ∪ {In} ∪
⋃
p<r{Ĩp,m : m ∈ N}. One can easily verify that

conditions (a)–(d) are satisfied.
For each n ∈ N and each I ∈ In let fn,I : cl I → [−21−n,−2−n] be

a continuous surjection such that fn,I [fr I] = {−2−n} and |f−1
n,I(y)| ≤ 2 for

each y ∈ R. Similarly, for each k ∈ N let gk : cl Jk → [k−1, 1] be a continuous
surjection such that gk[fr Jk] = {1} and |g−1

k (y)| ≤ 2 for each y ∈ R. Define
functions f and g as follows:

f(x) =
{
fn,I(x) if x ∈ cl I, I ∈ In, n ∈ N,
0 otherwise,

g(x) =

{
gk(x) if x ∈ cl Jk, k ∈ N,
0 if x ∈ ⋃I∈I cl I,
1 otherwise.

It is clear that f < g and f ≤ 0 ≤ g, Df =
⋃
I∈I fr I ⊂ C, Dg = C, and both

f and g are strong Świątkowski. Moreover, {y ∈ R : |[f = y]| > ℵ0} = {0}
and {y ∈ R : |[g = y]| > ℵ0} = {0, 1}. Thus both f and g satisfy Banach’s
condition T2.

Define g(x) = g(x) if x ∈ R \ C, and g(x) = 1 if x ∈ C. Then g ∈ B1

and |[g 6= g]| = ℵ0. So g is a honorary Baire class two function.
Let f < h < g. Then both [h < 0] and [h > 0] are nonempty, and

[h = 0] = ∅. Thus h 6∈ D and (f, g) 6∈M(D).
Finally, we prove that g is almost continuous. Let V ⊂ R2 be an open set

which contains the graph of g. Let S denote the set of all x ∈ R such that
for every t ∈ (−∞, x) \ C there is a continuous function h : (−∞, t] → R
with h(t) = g(t) whose graph is contained in V . Evidently (−∞, 0] ⊂ S.
We verify that s = supS =∞. By way of contradiction suppose s ∈ [0,∞).
Choose a τ > 0 such that

(s− τ, s+ τ)× (g(s)− τ, g(s) + τ) ⊂ V.
We now show s+ τ ∈ S, contradicting the definition of s.

Let t ∈ (−∞, s + τ) \ C. Without loss we may assume that t ≥ s. Let
s ∈ C be such that C ∩ (s, t] = ∅. There is a t1 ∈ (s − τ, s) \ C such that
|g(t1)− g(s)| < τ . Construct a continuous function h1 : (−∞, t1]→ R with
h1(t1) = g(t1) whose graph is contained in V . We consider two cases.

Case 1. First suppose that s ≤ s. Observe that g¹[a, a] is continuous
whenever C ∩ (a, a) = ∅. Define h(x) = h1(x) if x ≤ t1 and h(x) = g(x) if
x ∈ [s, t], and extend h linearly in the interval [t1, s]. Then h : (−∞, t]→ R,
h is continuous, h(t) = g(t), and the graph of h is contained in V .

Case 2. In the opposite case let τ ∈ (0, s− s) be such that

(s− τ , s+ τ)× (g(s)− τ , g(s) + τ) ⊂ V.
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Let k > 1/τ be such that Jk ⊂ (s − τ̄ , s). There are t2, t3 ∈ Jk such that
t2 < t3, |g(t2) − g(s)| < τ , and |g(t3) − g(s)| < τ . Define h(x) = h1(x)
if x ≤ t1 and h(x) = g(x) if x ∈ [t2, t3] ∪ [s, t], and extend h linearly in
the intervals [t1, t2] and [t3, s]. Then h : (−∞, t] → R, h is continuous,
h(t) = g(t), and the graph of h is contained in V .

We have proved that s+ τ ∈ S, an impossibility. Thus s =∞.
Let h : (−∞, 2] → R be a continuous function whose graph is con-

tained in V such that h(2) = g(2). Extend h to the whole real line setting
h(x) = g(x) for x > 2. The extended function is continuous and its graph is
contained in V . Thus g is almost continuous.
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