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On the insertion of Darboux functions
by

Aleksander Maliszewski (Bydgoszcz)

Abstract. The main goal of this paper is to characterize the family of all functions f
which satisfy the following condition: whenever g is a Darboux function and f < g on R
there is a Darboux function h such that f < h < g on R.

1. Preliminaries. We use mostly standard terminology and notation.
The letters R and N denote the real line and the set of positive integers,
respectively. We consider cardinals as ordinals not in one-to-one correspon-
dence with smaller ordinals. The word interval means a nondegenerate
bounded interval. The word function denotes a mapping from R into R
unless otherwise explicitly stated.

Let A C R. We use the symbols int A, cl A, fr A, x4, and |A| to denote
the interior, the closure, the boundary, the characteristic function, and the
cardinality of A, respectively. We write ¢ = |R| and 8y, = |N|. We say
that A is bilaterally c-dense-in-itself if |[A N J| = ¢ for every interval J
with AN J # (. The shortcut “A is nbed” means “A is nonempty and
bilaterally c¢-dense-in-itself.”

Let f be a function. For every y € Rlet [f <y] ={zx € R: f(z) < y}.
The symbols [f < y], [f > y], etc., are defined analogously. For every set
A C R with |A| = ¢ we define c-inf(f, A) = inf{y e R : |[f < y] N A| = c}.
If AC R and z is a left c-limit point of A (i.e., |[AN (x — d,2)| = ¢ for
every 6 > 0), then let

c-lim(f[A,27) = 5h%1+ c-inf(f, AN (z — d,x))
and c-lim(f[A,27) = — c-lim(—f A, z7). Similarly we define c-lim(f[A, x*)

and ¢-lim(f[A4,z7") if z is a right ¢-limit point of A. The symbols C; and D
denote the sets of points of continuity and of discontinuity of f, respectively.
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198 A. Maliszewski

The following classes of functions are considered.

e R consists of all functions.

e B consists of all Borel measurable functions.

e B, denotes the Baire class a (¢ <wi). Thus B =], Ba.

e D consists of all Darboux functions, i.e., f € D iff f[J] is connected
for every interval J.

e U consists of all functions f with the following property: for all a < @
and each set A C (a,a) with |A| < ¢ the set f[(a,a) \ A] is dense in the
interval [min{f(a), f(@)}, max{f(a), f(@)}]. Recall that U is the uniform
closure of D [6, Theorem 4.3].

e C consists of all functions f with the following property: for every open
interval P the set f~1(P) is either empty or nbed. Equivalently, f € C iff
for every x € R we have ¢-lim(|f — f(z)|,27) = ¢-lim(|f — f(z)|, ) = 0.

e C, consists of all functions f with the following property: for every
y € R the set [f < y] is either empty or nbed. Equivalently, f € C, iff for
every x € R we have max{c-lim(f,z7), c-lim(f,27)} < f(z).

e C* consists of all functions f with the following property: for every
y € R the set [f > y] is either empty or nbed. Equivalently, f € C* iff for
every x € R we have min{c-lim(f, ™), c-lim(f,z7)} > f(x).

Recall that we have the following proper inclusions:
(1) DcUccCccC,nC*cC..

For the proof of the inequality D # U see, e.g., [6, p. 72]. The other relations
are evident.

2. Introduction. Let f and g be arbitrary functions. The notation
“f < ¢g” means “f(x) < g(x) for each x € R.” We write (f,g) € P
(see [7]) if f < gand |[f < y < g] N (a,a)] = ¢ whenever a < @ and
y € (min{f(a), f(@)}, max{g(a),g(@)}). If A and B are families of functions,
then define

P@R)={feR*: (Vge)(f<g=(f9) €P)},

M(B) = {(f,9) eR* xR*: (3h € B)(f < h < g)}
and

M(A,B) = {f € R*: (Vg € A)(f < g= (f,9) € M(B))}.
One can easily verify that if 2; C 2y and By D B, then P(A;) D P(As)
and MM (Ay,B1) D M(As, Bo).
It is quite evident that the relation f < g does not imply (f, g) € M(D).

(See also Lemma 3.6.) So we can ask two questions:

1. Which assumptions on f and g (in addition to f < g) imply (f,g) €
M(D)?
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2. If f <gand (f,g9) € M(D), how “regular” can the functions f and g
be?

We now discuss briefly these questions.

1. In 1966 J. G. Ceder and M. L. Weiss proved the following theorem [8,
Theorem 1]. (See also [7, Theorem 1].)

THEOREM 2.1. P € M(D).

They also showed that D N B; C 9(D N By,D N By) [8, Theorem 4],
and asked whether D N B; C M(D N B;,D N By). This question has been
answered in the affirmative by A. M. Bruckner, J. G. Ceder, and T. L. Pear-
son [4, Theorem 1]. The latter authors also proved the next theorem, which
contains the answer to the first question in case f,g € D [5, Theorem 1].

THEOREM 2.2. Let f,g € D. Then (f,g) € M(D) if and only if f<g
and for all a < a and y € (min{f(a), f(@a)}, max{g(a),g(@)}) the set [f <
y < g] N (a,a) is nonempty and bilaterally dense-in-itself.

In 1968 J. G. Ceder and T. L. Pearson proved the following theorem [7,
Theorem 5.

THEOREM 2.3. Every continuous function belongs to P(C).

By Theorem 2.1, it follows that each continuous function belongs to
M(C,D). In Section 4 we characterize the class MM(A, D) for A €
{D,U,C,C,NC* C,,C* RF}.

2. In 1966 J. G. Ceder and M. L. Weiss constructed functions f,g €
D NB; such that f < g and (f,g) € M(D) [8, Example 1]. A. M. Bruckner,
J. G. Ceder, and T. L. Pearson showed in 1973 that there exist f € DN B,
and g € D N By such that f < g and (f,g9) € M(D) [4, Example, p. 165].
They also claimed that if f € D and the set f[€;N.J] is dense in f[J] for each
interval J, then f € 9(D, D) [4, Theorem 2]. We will see that this assertion
is false. In fact, this result does not hold even if we moreover assume that f
is continuous except on a countable set and f satisfies Banach’s condition T5
(Example 5.4). So [4, Corollary, p. 166] is also incorrect.

3. Auxiliary results. The next lemma follows by [7, Lemma 4, p. 285].
(See also [12, Lemma 1.3.2].)

LEMMA 3.1. Let A C R be nbed and f: A— R. Then
o € A max{clim(|f — £(z)],27), clim(|f — f(2)], )} > 0} <c. m

LEMMA 3.2. Assume that A C R is nbed, and f is a function such that
for each © € A we have max{c-lim(fA,z7),c-lim(flA,27)} < co. There
is a function g : A — R such that

(2) flx) <g(x) foreachxe A
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and
(3)  for each interval J, if AN J # 0, then g[AN J]= (c-inf(f,ANJ),00).

Proof. Set B = {z € R : max{clim(f,z7),c-lim(f,z7)} > f(x)}.
Then |B| < ¢. (See Lemma 3.1.) Arrange all intervals intersecting A in a
transfinite sequence, {J, : a < ¢}. For each o < c and n € N put y,,, =
max{c-inf(f, ANJy)+n"1, —n}, and define Ky, = [f < Ya.n] NANJT, \ B.
Then | K, | = ¢ for each a and n. Use [10, Lemma 5] to construct a family,
{Qa.n : a < ¢,n € N}, consisting of pairwise disjoint sets of cardinality c,
such that each Q.. is a subset of K, ,,. For each av and n let go p : Qan —
(Yau,n, 00) be a surjection. Define g(z) = gan(x) if € Qq,pn for some a < ¢
and n € N, and g(z) = max{c-lim(f[A,z7),c-im(f[A,z"), f(z)} + 1 if
reA \ Ua<c UneN Qa,n-

Clearly (2) holds. To prove (3) fix an interval J with AN J # (). Then
J = J, for some a < ¢. Hence

glAnJ] D U ga,n[Qa,n] = (¢-inf(f, AN J),00).
neN

On the other hand, by assumption, for each x € AN J we have
g(x) > max{elim(F1A,27), c-lim(f14,2%)} > cinf(f, AN .J). m
LEMMA 3.3. Let f € RE. There is a function g € C* with g > f.
Proof. Define A = {z € R : max{clim(f,z7),c-lim(f,z7)} < oo}.
Then by Lemma 3.1, we have |R\ A| < ¢. So we can use Lemma 3.2 to
construct a function g : A — R such that conditions (2) and (3) hold. Extend
g to the whole real line setting g(x) = f(x) + 1 for x ¢ A. Clearly g > f.

Moreover, by (3), for each € R we have ¢-lim(g, 27 ) = ¢-lim(g,2") = oo.
Thus g€ C*. m

The proof of the next proposition is similar to that of [5, Theorem 2].
(See also [12, Corollary VI.1.4].)

PROPOSITION 3.4. For every function f the following are equivalent:
(i) there is a function g € D with g > f;
(ii) there is a function g € U with g > f;
(iii) there is a function g € C with g > f;
(iv) there is a function g € C, N C* with g > f;
(v) there is a function g € C, with g > f;
(vi) for each z € R we have max{c-lim(f, 2~ ), c-im(f,z%)} < oco.
Proof. The implications (i)=-(ii)=-(iii)=(iv)=(v) are evident. To prove
(v)=-(vi) recall that, by definition, for each z € R we have
max{c'hﬂ(f’ x_)v C—liﬂ(f, $+)} < max{c'hﬂ(ga l'_)v C—liﬂ(g, :C+)}
< g(x) < 0.
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(vi)=(i). Use Lemma 3.2 with A = R to construct a function g satisfying
(2) and (3). Clearly ge Dand g > f. =

We denote the class of functions which satisfy condition (i) of Proposi-
tion 3.4 by A. Clearly C, C A. The next lemma shows that A N9M(D, C,)
c C..

LEMMA 3.5. Let f € A\ C.. There is a function g € D such that g > f
and (f,g)  M(C.).

Proof. By assumption, there is a y € R and an interval I such that
0 < |B| < ¢, where B=[f <y]NnI. Set A=R\ B. Use Lemma 3.2 to
construct a function g : A — R such that (2) and (3) hold. Extend g to
the whole real line setting g(x) = max{c-lim(f,z7), c-lim(f,z ")} for z € B.
One can easily verify that g > f and g € D. Let h be an arbitrary function
with f < h < g. Then for each x € B we have

h(z) < g(x) = max{elim(f,z7), c-lim(f, 27)}
< max{c-lim(h,z7), c-lim(h, z1)}.
Thus h ¢ C, and (f,g9) € M(C,). =

LEMMA 3.6. Let f € RR. There is a function g > f with (f,g) € M(D).
If moreover f € A, then we can choose g € C,.

Proof. If f is constant, then define g(z) = f(z) + [z] + x{oy (). It is
evident that ¢ > f and g € C,.. If f < h < g, then

c-lim(h,07) < ¢-lim(g,07) = f(0) < h(0).
Thus h ¢ D and (f,g) € M(D).

If f is not constant, then let y € R be such that [f < y] # 0 # [f > y].
If f & A, then define g(x) =y if f(z) <y, and g(z) = f(x) + 1 otherwise.
It is clear that ¢ > f. Let h be an arbitrary function with f < h < g.
Observe that if f(z) < y, then h(z) < g(z) = y, and f(z) > y implies
h(z) > f(x) > y. Hence [h = y] = 0. Furthermore, [h < y] # 0 # [h > y].
Thus h ¢ D and (f,g) € M(D).

Finally, let f € A. If f ¢ 9(D, D), then by definition, there exists a
function g € D C C, such that ¢ > f and (f, g) € M(D). Otherwise define
g(x) = y if f(2) <y, and g(z) = mas{e-lim(f, ), cln(f, 2+, £()} + 1 if
f(x) > y. Then clearly g > f, and the relation (f, g) ¢ M(D) can be proved
as in the previous case. To complete the proof we will verify that g € C,.

Let x € R, ¥ > g(x), and let J > = be an interval. If [f < y] N J # 0,
then

llg <wlnJI = |If <ylnJ|=c
(Notice that 7 > g(z) > y, and by Lemma 3.5, f € C,.)
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In the opposite case put B = {t € R : max{c-lim(f, ¢ ), c-lim(f, ¢")} >
f(t)}. By Lemma 3.1, we have | B| < ¢. Observe that ¢g(t) = f(t)+1 whenever
te J\ B, and

c—inf(f, J) < maX{c_him(fvxixc'him(fvar)} < g(x) -1<y-1
Thus |[f <y —1]NnJ|=cand |[g<yg|NJ|>|[f<yg—1NJ\Bl=c n

LEMMA 3.7. Let I' be a closed interval and y € R. Suppose that a func-
tion f € A is such that the sets B=[f <y]|NI" and B' =R\ B are nbcd.
There exists a function g € C, N C* such that g > f and (f,g9) € M(D). If
moreover max{c-lim(f|B’,x7), c-lim(f[B’,2")} < oo for each xz € B’ (resp.
c-inf(f, B'NJ) =y for every interval J C I' with BNJ # (0 # B'NJ), then
we can choose g € C (resp. g € D).

Proof. Put A = {z € B’ : max{clim(f|B,z7),c-lim(f[B",z")}
< 00}. Then by Lemma 3.1, we have |B"\ A| < ¢. So we can use Lemma 3.2
to construct a function g : A — R such that (2) and (3) hold. Extend g to
the whole real line setting g(z) = max{c-lim(f,z~), c-lim(f,a™), f(z)} + 1
for x € B\ A and g(z) =y for x € B. Then clearly g > f.

Let f < h < g. Observe that € B implies h(x) < g(x) = y. On the
other hand, if z € BN I, then h(z) > f(x) > y. Hence [h =y NI = 0.
Since B # () # B’ N I', we obtain h ¢ D. Thus (f, g) € M(D).

Fix an x € R. We consider three cases.

First let x € B. Then ¢-lim(|g — g(x)|, ™) = ¢-lim(|g — g(x)|[B,z~) = 0.
Similarly ¢-lim(|g — g(z)], ™) = 0.

If z € A, then by (3), e-lim(|lg — g(2)[,27) = e-lim(|lg — g(z)[,2™) = 0.

Finally, let x € B’ \ A. Then c¢-lim(g,27) = ¢-lim(g,2") = 00 > g(x).
(Recall that B’ is nbed, so AN J # (.) On the other hand,

o if  is a left ¢-limit point of B, then ¢-lim(g,z7) <y < f(x) < g(x);
e otherwise ¢-lim(|g — g(x)|,z~) = 0. (We have used (3) and the fact
that f € A.)

Similarly we can show that ¢-lim(g,z7) < g(z).

Consequently, g € C, N C*. Moreover, the first additional assumption
implies A = B’, whence g € C.

Now suppose that the second additional assumption holds. Then the
first additional assumption holds as well, so A = B’. Let J be an interval. If
ANJ =0, then g[J] = {y}. If BNJ =0, then by (3), the set g[J] = g[ANJ]
is an interval. Finally, BN J # () # AN J yields c¢-inf(f, AN J) < y. Hence
and by (3), g[/] is an interval with end points ¢-inf(f, AN J) and co. Thus
geD. n
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LEMMA 3.8. Let f be an arbitrary function and g € C*. Assume that
a < a and y € (min{f(a), f(a)}, max{g(a),g(a)}) are such that the set
A" =[f >yl N (a,a) is not nbed. Then |[f <y < g]N(a,a)| =rc.

Proof. Choose a closed interval J such that int J C (a,a), [¢g > y]NJ #
0, and |[f > y]NJ| <¢. (If A =0, then we can set J = [a,al.) Using the
fact that g € C* we obtain

Ilf <y<gln(a,a)| >|[f<y<glnJ|=]lg>y]NnJ|=c =

4. Main theorems. The next theorem follows directly from Lemma 3.6.
(Notice that if f & A, then by Proposition 3.4, f € 9(C,, D) vacuously.)

THEOREM 4.1. (a) P(R¥) = M(RE, D) = 0.
(b) P(C.) = M(C.,D) —=R*\ A. u

THEOREM 4.2. For every function f € A the following are equivalent:

(i) f e M(C,. NC*,D);
(i) for every open interval I and y € R, if the set [f > y] NI is nbed,
then clI C [f > y];
(iii) f € P(C*);
(iv) f € P(C,.NC¥);
(v) femC*, D).

Proof. The implications (iii)=-(v) and (iv)=-(i) follow from Theorem
2.1, and (iii)=(iv) and (v)=-(i) are evident.

(i)=-(ii). Assume that (ii) fails. There exist an open interval I and y € R
such that [f > y]NTI is nbed and [f < y]Necll # (. By Lemma 3.5, if f & C,,
then f ¢ M(C, N C*, D). So suppose f € C,. Then [f < y] NI is nbed.
Consequently, there is a closed interval I’ C I such that fr I’ C [f > y] and
[f <y]NI'#(. By Lemma 3.7, we obtain f ¢ 9(C, N C*,D).

(ii)=(iii). Take a g € C* with ¢ > f, a < @, and y € (min{f(a), f(@)},
max{g(a), g(a)}). Put A’ = [f > 3] N (a,a). We have [f < y] (1 [a,a] # 0.
so by (ii), the set A’ is not nbed. Thus by Lemma 3.8, we get |[f < y <
g] N (a,a)| = ¢. Consequently, (f,g) € P. m

THEOREM 4.3. For every function f € A the following are equivalent:

(i) f € M(C,D);

(i) for every open interval I and y € R, if the set A’ = [f > y] NI is
nbed, then either ¢l 1 C [f > y] or max{c-lim(fA’,x7), c-lim(fJA",2T)} =
oo for some x € A’;

(iii) f € P(C).

Proof. The implication (iii)=(i) follows from Theorem 2.1.

(i)=(ii). Assume that (ii) fails. There exist an open interval I and y €
R such that the set A" = [f > y] N[ is nbed, [f < y] Necll # 0, and
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max{c-lim(f,z7), ¢-lim(f,z7)} < oo for each x € A’. By Lemma 3.5, if
f & C,, then f & M(C,D). So suppose f € C,. Then [f < y] NI is nbed.
Consequently, there is a closed interval I’ C I such that fr I’ C [f > y] and
[f <y]NI'#(. By Lemma 3.7, we obtain f ¢ 9(C, D).

(ii)=(i). Take a g € C with ¢ > f, a < @, and y € (min{f(a), f(a)},
max{g(a),g(@)}). If A’ = [f > y] N (a,a) is not nbed, then |[f <y < g] N
(a,a@)| = c. (We use Lemma 3.8.) In the opposite case notice that [f < y] N
[a,a@] # 0. So by (ii), there exists an 2z € A’ such that max{c-lim(fTA", x7),
c-lim(f1A",z7)} = oo. Let ¥ > g(z). Choose a closed interval J C (a,a)
such that z € J and |[y < f <yl NJ| < ¢ Since y < f(z) < g(x) <7y
and g € C, we have

Ilf <y <gln(a,a) = |[f <y <glnJ[=|ly<g <ylNJ\[y < f <7]| =
Consequently, (f,g) € P. =
THEOREM 4.4. For every function f € A the following are equivalent:

(i) f € M(D, D);

(ii) for every open interval I and y € R, if the set A" = [f > y] NI
is nbed, then either c1I C [f > y]| or there is an interval J C I such that
ANT#0, |J\A|=c¢ and c-inf(f,A'NJT) > y;

(iii) f e P(U);

(iv) f € P(D);

(v) feMU,D).

Proof. The implications (iii)=-(v) and (iv)=-(i) follow from Theorem
2.1, and (iii)=(iv) and (v)=-(i) are evident.

(i)=-(ii). Assume that (ii) fails. There are an open interval I and y € R
such that the set A’ = [f > y] N1 is nbed, [f < y]Necll # B, and for each
interval J C Tif A’ NJ # 0 and |J \ A’| = ¢, then c¢-inf(f, A’ N J) = y.
By Lemma 3.5, if f ¢ C,, then f ¢ 9M(D,D). So suppose f € C,. Then
[f <y]NI is nbed. Consequently, there is a closed interval I’ C I such that
frI’ C [f > y] and [f < y]NI" # 0. By Lemma 3.7, we obtain f ¢ 9(D, D).

(ii)=(iii). Take a g € U with g > f, a < @, and y € (min{f(a), f(a)},
max{g(a),g(a)}). If the set A’ = [f > y] N (a,a) is not nbed, then |[f <
y < gl N (a,a)| = c. (We use Lemma 3.8.) In the opposite case notice that
[f < y]N[a,a] # 0. By (ii), there is an interval J C (a, @) such that A'NJ # 0,
|J\ A'| =¢, and § = c-inf(f, A’ NJ) >y. If J C [g > y], then

IIf <y <gln(a,a)|>|[f<y]lnJ|=]|J\A|=c

In the opposite case observe that [¢ > y]NJ D [f > 7] NJ # 0. So, since
g € U, we obtain |[y < g < 7] N J| = ¢. Thus

If <y <gln(a,a)] > |[f <y<glnJ| = |ly<g<ylNnJ\[y < f <]l =«
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(We have used the fact that |[y < f < y] N J| < ¢.) Consequently, (f,g)
EP. u

REMARK 4.1. By Theorem 4.1 and (1), we have
RE\ A =9(C,,D) =M(C,NC*, D)\ A
=M(C,D)\A=MU,D)\ A=mD,D)\ A.
On the other hand, by Lemmas 3.5 and 3.3, and Proposition 3.4, we obtain
(4) M ,D)=MC.NC*"D)NACMC,D)NACMUD)NA
=MmD,D)NnA CC..
We will show later that the above inclusions are proper. (See Examples
5.1-5.3.)
THEOREM 4.5. If 2 € {D,U,C,C, N C*,C*}, then
ANMEA, D) =D N M(C*, D).

Proof. By (4) and Proposition 3.4, we obtain 2l C A. Let f € 20\ D.
There is an open interval I such that [f > y]Necll # 0 # [f <y]Ncll and
[f=ylnI=0.PuwA=[f>yInI=[f>y]NI.

o If f € C*, then A’ is nbed. Thus f ¢ M(C*, D) = M(C.NC*,D)NA.
(See Theorem 4.2.)

e If f € C, then moreover max{c-lim(f[A’,z7), c-im(f]A,2T)} <
f(z) < oo for each z € A’. Thus f ¢ M(C, D). (See Theorem 4.3.)

It follows that C* N M(C*,D) C D and ANM(A, D) C U.

Now let f € U\IM(C*, D). By Theorem 4.2, there are an open interval [
and y € R such that the set A’ = [f > y|] N1 is nbed and [f < y]Nell # 0.
Since f € U, for each interval J C I'if A’NJ # @ and |[f < y]NJ| =,
then c-inf(f, A’ N J) = y. Thus f ¢ M(D, D). (See Theorem 4.4.) By (1),
(4), and the first part of the proof, we obtain

ANMEA,D) cUNMEA,D) c UnM(D,D) c UNM(C*, D)

cC'NMC,D)CDNMC*, D) CANMA, D). m

The next theorem is a generalization of Theorem 2.3.

THEOREM 4.6. Let f € C, be such that for each y € R the set [f < y]

is ambiguous, i.e., it is both an F, and a Gs set. Then f € P(C*). In
particular, every upper semicontinuous function belongs to P(C*).

Proof. Take an open interval I and y € R such that the sets A" = [f >
y]N T and [f < y]Ncl I are nonempty. Since f € C,, theset B =[f <y]NI
is nbed. Observe that A’ and B are disjoint nonempty ambiguous sets, and
A"UB = I. So by [16, Lemma 7], A" is not nbed. By Theorem 4.2, f €
P(C*). m
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5. Examples
EXAMPLE 5.1. C, N C* N By, NM(C, D) \ M(C, N C*, D) # 0.

Construction. Use the Baire Category Theorem to construct a family,
{F, : n € N}, consisting of pairwise disjoint nonempty nowhere dense perfect
sets, such that for each interval I there is an n € N with F,, C I. Define
f(z) =nif x € F, for some n € N, and f(z) = 0 otherwise. Then clearly
f € By. Moreover, for each x € R we have

C—hﬂ(f,x_) = C—hﬂ(f,$+) =0< f(SU) <0 = C—M(f,l‘_) = c—ﬂ(f, l‘+).

Thus f € C, N C*,

Take an open interval I and y € R such that the set A" =[f > y] N1 is
nbed and [f < y]Nel I # (0. There is ann > y with F,, C I. Choose an x € F,
which is not a left limit point of Fj,. Notice that y > 0, so for each § > y
and each sufficiently small § > 0 we have [y < f <y] N (z —,2) = 0. Thus
c-lim(f[A’,2~) = co. By Theorem 4.3, we obtain f € 9(C, D).

Finally, observe that [f > 1] N (0,1) is nbed, and [f < 1] N[0, 1] # 0. So
by Theorem 4.2, f € M(C, NC*, D). m

EXAMPLE 5.2. CN By NOM(D, D) \ M(C, D) # 0.

Construction. Let F C R\ {—n/4,7/4} be an F, set such that |[FNI| =
|1\ F| = ¢ for each interval I. (Cf. Example 5.1.) Define f(x) = |arctan x| -
xr(z). Clearly f € C N Ba. Using Theorem 4.4, one can easily show that
f € M(D,D). Moreover, [f > 1] N (0,1) is nbed, and [f < 1] N[0, 1] # 0.
Since f is bounded, Theorem 4.3 yields f & M(C,D). =

ExaMPLE 5.3. CNP(C*NB) \ M(D,D) # 0.

Construction. Let B be a Bernstein set (i.e., a totally imperfect set whose
complement is also totally imperfect) and f = xp. It is clear that f € C.
Notice that [f > 1] N (0,1) is nbed, and [f < 1] N [0,1] # (. Since f < 1,
Theorem 4.4 shows that f ¢ (D, D).

Take a g € C* N B with g > f. First observe that [g < 1] is at most
countable. Indeed, otherwise there is a nonempty perfect set K C [¢g < 1].
Then KN B # 0 and g(z) <1 = f(z) for each z € K N B, an impossibility.

Let a < @ and y € (min{f(a), f(a)}, max{g(a),g(a)}). Clearly y > 0. If
y <1, then |[f <y <g]n(a,a)| > |[f =0]N(a,a)\[g < 1]| = ¢, and in the
opposite case |[f <y < g] N (a,a)| = |[g > y] N (a,a)| = c¢. Consequently,
feP(C*NB). n

The above example suggests the following problem.

PROBLEM 5.1. Let 2 € {D, U, C,C,.NC*, C,, C*,R®}. Characterize the
classes P(A N B) and M(AN B, D).
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In the next example we will need several new notions. Let h € RE.
We say that h is a strong Swigtkowski function [11] if whenever a < @
and y is a number between h(a) and h(a), there is an = € C, N (a,a)
with h(z) = y. (Clearly strong Swigtkowski functions are both Darboux
and quasi-continuous in the sense of Kempisty [9].) We say that h satisfies
Banach’s condition Ty (see [2]) if the set {y € R : |[h = y]| > N} has
Lebesgue measure zero. We say that h is a honorary Baire class two function
[1] if |[h # h]| < N for some h € By. Finally, h is almost continuous in the
sense of Stallings [15] if every open set V' C R? containing the graph of h
contains the graph of some continuous function as well. Recall that almost
continuous functions have the Darboux property, and that the converse is
not true [15]. Moreover, in Baire class one these two notions coincide [3].

T. Natkaniec showed in 1992 that there are almost continuous functions f
and g such that f < g and (f,g) € M(D) [14, Example 1.8.1]. (See also [13].)
Example 5.4 generalizes this result as well as many results mentioned in
Section 2.

EXAMPLE 5.4. Let C' be the Cantor ternary set. There are bounded
functions f and g satisfying the following conditions:

e f is nonpositive, Dy is a countable subset of C' (so f € By), f is strong
Swigtkowski, and it satisfies Banach’s condition Tb;

e g is nonnegative, Dy = C, g is a honorary Baire class two function, it is
almost continuous, strong Swiatkowski, and satisfies Banach’s condition T5;

o f <gand(fg)¢MD,).

Construction. Let J = {I, : n € N} and J = {Ji : k € N} be families of
components of [0,1] \ C such that

(5) (dUJ)m(dUg) —C.

Let Jg = 0. We will construct a sequence, {J,, : n € N}, such that for each n
the following conditions hold:

(a) Ip—1 C I, CI;

(b) clUJn = UIEJn cll;

(c)if I €3,,—1 and x € fr I, then x € cl(UJ, \ I);

(d) I, € J,,.

Let n € N and suppose that we have already defined families Jg, ..., J,_1
so that the above conditions hold. Define

B= J ((frf)\cl(UJn,l\f)).
1€3,1U{I,,}

Clearly |B| < Xg. Let B = {z), : p < r}, where r € NU {oo}. For each p < r
use (5) to choose a monotone sequence of intervals, {I,,, : m € N} C J,
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converging to x, and such that (J,,cy jfpm C (zp —p~t,z, +p'). Finally,
define J,, = J,,_1 U{I,} U Up<7,{17p7m :m € N}. One can easily verify that
conditions (a)—(d) are satisfied.

For each n € N and each I € J,, let f, : clI — [-217" —27"] be
a continuous surjection such that f, r[frI] = {—27"} and |f;}(y)| < 2 for
each y € R. Similarly, for each k € N let g, : cl Jr — [k~1,1] be a continuous
surjection such that g[fr J;] = {1} and |g;, ' (y)| < 2 for each y € R. Define
functions f and ¢ as follows:

fz) = {fnl(x) ifxecl, I€d,, neN,

0 otherwise,

gr(x) ifx €cldg, k€N,
g(x) =40 if x € Ujeqcld,

1 otherwise.

It is clear that f < gand f <0< g, Dy = UIej frl c C,Dy = C, and both
f and g are strong Swiatkowski. Moreover, {y € R : |[f = y]| > o} = {0}
and {y € R: |[g = y]| > No} = {0,1}. Thus both f and g satisfy Banach’s
condition T5.

Define g(z) = g(z) if x € R\ C, and g(z) = 1 if x € C. Then g € B,
and |[g # g]| = No. So g is a honorary Baire class two function.

Let f < h < g. Then both [h < 0] and [h > 0] are nonempty, and
[h=0] =0. Thus h ¢ D and (f,g) € M(D).

Finally, we prove that g is almost continuous. Let V' C R? be an open set
which contains the graph of g. Let S denote the set of all x € R such that
for every t € (—oo,z) \ C there is a continuous function h : (—oo,t] — R
with h(t) = g(t) whose graph is contained in V. Evidently (—o0,0] C S.
We verify that s = sup S = oo. By way of contradiction suppose s € [0, 00).
Choose a 7 > 0 such that

(s—1,s+7) % (9(s) —7,9(s)+7)CV.

We now show s + 7 € S, contradicting the definition of s.

Let t € (—oo,s + 7) \ C. Without loss we may assume that ¢t > s. Let
5 € C be such that C' N (5,t] = 0. There is a t; € (s — 7,5) \ C such that
lg(t1) — g(s)| < 7. Construct a continuous function hy : (—o0,t;] — R with
hi(t1) = g(t1) whose graph is contained in V. We consider two cases.

CAsE 1. First suppose that 5 < s. Observe that g[[a, @] is continuous
whenever C' N (a,a) = 0. Define h(x) = hi(x) if z < t; and h(z) = g(z) if
x € [s,t], and extend h linearly in the interval [t1,s]. Then h : (—o0,t] — R,
h is continuous, h(t) = g(t), and the graph of h is contained in V.

CASE 2. In the opposite case let 7 € (0,5 — s) be such that
(53-7,54+7)x(g(3) -T,9(3) +7) C V.
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Let k > 1/7 be such that J, C (5 — 7,5). There are t9,t3 € Ji such that
to < t3, |g(t2) — g(s)| < 7, and |g(t3) — g(5)] < 7. Define h(z) = hi(x)
if v < t1 and h(z) = g(x) if © € [ta,t3] U [S,t], and extend h linearly in
the intervals [t1,t2] and [t3,5]. Then h : (—oo,t] — R, h is continuous,
h(t) = g(t), and the graph of h is contained in V.

We have proved that s + 7 € S, an impossibility. Thus s = co.

Let h : (—00,2] — R be a continuous function whose graph is con-
tained in V' such that h(2) = ¢g(2). Extend h to the whole real line setting
h(z) = g(z) for x > 2. The extended function is continuous and its graph is
contained in V. Thus ¢ is almost continuous. =
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