On the insertion of Darboux functions

by

Aleksander Maliszewski (Bydgoszcz)

Abstract

The main goal of this paper is to characterize the family of all functions f which satisfy the following condition: whenever g is a Darboux function and $f<g$ on \mathbb{R} there is a Darboux function h such that $f<h<g$ on \mathbb{R}.

1. Preliminaries. We use mostly standard terminology and notation. The letters \mathbb{R} and \mathbb{N} denote the real line and the set of positive integers, respectively. We consider cardinals as ordinals not in one-to-one correspondence with smaller ordinals. The word interval means a nondegenerate bounded interval. The word function denotes a mapping from \mathbb{R} into \mathbb{R} unless otherwise explicitly stated.

Let $A \subset \mathbb{R}$. We use the symbols int $A, \operatorname{cl} A, \operatorname{fr} A, \chi_{A}$, and $|A|$ to denote the interior, the closure, the boundary, the characteristic function, and the cardinality of A, respectively. We write $\mathfrak{c}=|\mathbb{R}|$ and $\aleph_{0}=|\mathbb{N}|$. We say that A is bilaterally \mathfrak{c}-dense-in-itself if $|A \cap J|=\mathfrak{c}$ for every interval J with $A \cap J \neq \emptyset$. The shortcut " A is nbcd" means " A is nonempty and bilaterally c -dense-in-itself."

Let f be a function. For every $y \in \mathbb{R}$ let $[f<y]=\{x \in \mathbb{R}: f(x)<y\}$. The symbols $[f \leq y]$, $[f>y]$, etc., are defined analogously. For every set $A \subset \mathbb{R}$ with $|A|=\mathfrak{c}$ we define $\mathfrak{c}-\inf (f, A)=\inf \{y \in \mathbb{R}:|[f<y] \cap A|=\mathfrak{c}\}$. If $A \subset \mathbb{R}$ and x is a left \mathfrak{c}-limit point of A (i.e., $|A \cap(x-\delta, x)|=\mathfrak{c}$ for every $\delta>0$), then let

$$
\mathfrak{c - l i m}\left(f\left\lceil A, x^{-}\right)=\lim _{\delta \rightarrow 0^{+}} \mathfrak{c - i n f}(f, A \cap(x-\delta, x))\right.
$$

and $\mathfrak{c - l i m}\left(f \upharpoonright A, x^{-}\right)=-\mathfrak{c}-\lim \left(-f \upharpoonright A, x^{-}\right)$. Similarly we define $\mathfrak{c}-\lim \left(f \upharpoonright A, x^{+}\right)$ and $\mathfrak{c}-\overline{\lim }\left(f \upharpoonright A, x^{+}\right)$if x is a right \mathfrak{c}-limit point of A. The symbols \mathcal{C}_{f} and \mathcal{D}_{f} denote the sets of points of continuity and of discontinuity of f, respectively.

[^0]The following classes of functions are considered.

- $\mathbb{R}^{\mathbb{R}}$ consists of all functions.
- B consists of all Borel measurable functions.
- \mathbf{B}_{α} denotes the Baire class $\alpha\left(\alpha<\omega_{1}\right)$. Thus $\mathbf{B}=\bigcup_{\alpha<\omega_{1}} \mathbf{B}_{\alpha}$.
- D consists of all Darboux functions, i.e., $f \in \mathbf{D}$ iff $f[J]$ is connected for every interval J.
- \mathbf{U} consists of all functions f with the following property: for all $a<\bar{a}$ and each set $A \subset(a, \bar{a})$ with $|A|<\mathfrak{c}$ the set $f[(a, \bar{a}) \backslash A]$ is dense in the interval $[\min \{f(a), f(\bar{a})\}, \max \{f(a), f(\bar{a})\}]$. Recall that \mathbf{U} is the uniform closure of \mathbf{D} [6, Theorem 4.3].
- C consists of all functions f with the following property: for every open interval P the set $f^{-1}(P)$ is either empty or nbcd. Equivalently, $f \in \mathbf{C}$ iff for every $x \in \mathbb{R}$ we have $\mathfrak{c}-\underline{\lim }\left(|f-f(x)|, x^{-}\right)=\mathfrak{c}-\lim \left(|f-f(x)|, x^{+}\right)=0$.
- \mathbf{C}_{*} consists of all functions f with the following property: for every $y \in \mathbb{R}$ the set $[f<y]$ is either empty or nbed. Equivalently, $f \in \mathbf{C}_{*}$ iff for every $x \in \mathbb{R}$ we have $\max \left\{\mathfrak{c}-\lim \left(f, x^{-}\right), \mathfrak{c}-\lim \left(f, x^{+}\right)\right\} \leq f(x)$.
- \mathbf{C}^{*} consists of all functions f with the following property: for every $y \in \mathbb{R}$ the set $[f>y]$ is either empty or nbed. Equivalently, $f \in \mathbf{C}^{*}$ iff for every $x \in \mathbb{R}$ we have $\min \left\{\mathfrak{c}-\overline{\lim }\left(f, x^{-}\right), \mathfrak{c}-\overline{\lim }\left(f, x^{+}\right)\right\} \geq f(x)$.

Recall that we have the following proper inclusions:

$$
\begin{equation*}
\mathbf{D} \subset \mathbf{U} \subset \mathbf{C} \subset \mathbf{C}_{*} \cap \mathbf{C}^{*} \subset \mathbf{C}_{*} . \tag{1}
\end{equation*}
$$

For the proof of the inequality $\mathbf{D} \neq \mathbf{U}$ see, e.g., [6, p. 72]. The other relations are evident.
2. Introduction. Let f and g be arbitrary functions. The notation " $f<g$ " means " $f(x)<g(x)$ for each $x \in \mathbb{R}$." We write $(f, g) \in \mathcal{P}$ (see [7]) if $f<g$ and $|[f<y<g] \cap(a, \bar{a})|=\mathfrak{c}$ whenever $a<\bar{a}$ and $y \in(\min \{f(a), f(\bar{a})\}, \max \{g(a), g(\bar{a})\})$. If \mathfrak{A} and \mathfrak{B} are families of functions, then define

$$
\begin{aligned}
\mathcal{P}(\mathfrak{A}) & =\left\{f \in \mathbb{R}^{\mathbb{R}}:(\forall g \in \mathfrak{A})(f<g \Rightarrow(f, g) \in \mathcal{P})\right\}, \\
\mathcal{M}(\mathfrak{B}) & =\left\{(f, g) \in \mathbb{R}^{\mathbb{R}} \times \mathbb{R}^{\mathbb{R}}:(\exists h \in \mathfrak{B})(f<h<g)\right\}
\end{aligned}
$$

and

$$
\mathfrak{M}(\mathfrak{A}, \mathfrak{B})=\left\{f \in \mathbb{R}^{\mathbb{R}}:(\forall g \in \mathfrak{A})(f<g \Rightarrow(f, g) \in \mathcal{M}(\mathfrak{B}))\right\} .
$$

One can easily verify that if $\mathfrak{A}_{1} \subset \mathfrak{A}_{2}$ and $\mathfrak{B}_{1} \supset \mathfrak{B}_{2}$, then $\mathcal{P}\left(\mathfrak{A}_{1}\right) \supset \mathcal{P}\left(\mathfrak{A}_{2}\right)$ and $\mathfrak{M}\left(\mathfrak{A}_{1}, \mathfrak{B}_{1}\right) \supset \mathfrak{M}\left(\mathfrak{A}_{2}, \mathfrak{B}_{2}\right)$.

It is quite evident that the relation $f<g$ does not imply $(f, g) \in \mathcal{M}(\mathbf{D})$. (See also Lemma 3.6.) So we can ask two questions:

1. Which assumptions on f and g (in addition to $f<g$) imply $(f, g) \in$ $\mathcal{N}(\mathbf{D})$?
2. If $f<g$ and $(f, g) \notin \mathcal{N}(\mathbf{D})$, how "regular" can the functions f and g be?

We now discuss briefly these questions.

1. In 1966 J. G. Ceder and M. L. Weiss proved the following theorem [8, Theorem 1]. (See also [7, Theorem 1].)

Theorem 2.1. $\mathcal{P} \subset \mathcal{M}(\mathbf{D})$.
They also showed that $\mathbf{D} \cap \mathbf{B}_{1} \subset \mathfrak{M}\left(\mathbf{D} \cap \mathbf{B}_{1}, \mathbf{D} \cap \mathbf{B}_{2}\right)$ [8, Theorem 4], and asked whether $\mathbf{D} \cap \mathbf{B}_{1} \subset \mathfrak{M}\left(\mathbf{D} \cap \mathbf{B}_{1}, \mathbf{D} \cap \mathbf{B}_{1}\right)$. This question has been answered in the affirmative by A. M. Bruckner, J. G. Ceder, and T. L. Pearson [4, Theorem 1]. The latter authors also proved the next theorem, which contains the answer to the first question in case $f, g \in \mathbf{D}$ [5, Theorem 1].

Theorem 2.2. Let $f, g \in \mathbf{D}$. Then $(f, g) \in \mathcal{M}(\mathbf{D})$ if and only if $f<g$ and for all $a<\bar{a}$ and $y \in(\min \{f(a), f(\bar{a})\}, \max \{g(a), g(\bar{a})\})$ the set $[f<$ $y<g] \cap(a, \bar{a})$ is nonempty and bilaterally dense-in-itself.

In 1968 J. G. Ceder and T. L. Pearson proved the following theorem [7, Theorem 5].

Theorem 2.3. Every continuous function belongs to $\mathcal{P}(\mathbf{C})$.
By Theorem 2.1, it follows that each continuous function belongs to $\mathfrak{M}(\mathbf{C}, \mathbf{D})$. In Section 4 we characterize the class $\mathfrak{M}(\mathfrak{A}, \mathbf{D})$ for $\mathfrak{A} \in$ $\left\{\mathbf{D}, \mathbf{U}, \mathbf{C}, \mathbf{C}_{*} \cap \mathbf{C}^{*}, \mathbf{C}_{*}, \mathbf{C}^{*}, \mathbb{R}^{\mathbb{R}}\right\}$.
2. In 1966 J. G. Ceder and M. L. Weiss constructed functions $f, g \in$ $\mathbf{D} \cap \mathbf{B}_{2}$ such that $f<g$ and $(f, g) \notin \mathcal{M}(\mathbf{D})$ [8, Example 1]. A. M. Bruckner, J. G. Ceder, and T. L. Pearson showed in 1973 that there exist $f \in \mathbf{D} \cap \mathbf{B}_{1}$ and $g \in \mathbf{D} \cap \mathbf{B}_{2}$ such that $f<g$ and $(f, g) \notin \mathcal{M}(\mathbf{D})$ [4, Example, p. 165]. They also claimed that if $f \in \mathbf{D}$ and the set $f\left[\mathrm{C}_{f} \cap J\right]$ is dense in $f[J]$ for each interval J, then $f \in \mathfrak{M}(\mathbf{D}, \mathbf{D})$ [4, Theorem 2]. We will see that this assertion is false. In fact, this result does not hold even if we moreover assume that f is continuous except on a countable set and f satisfies Banach's condition T_{2} (Example 5.4). So [4, Corollary, p. 166] is also incorrect.
3. Auxiliary results. The next lemma follows by [7, Lemma 4, p. 285]. (See also [12, Lemma I.3.2].)

Lemma 3.1. Let $A \subset \mathbb{R}$ be nbcd and $f: A \rightarrow \mathbb{R}$. Then

$$
\left|\left\{x \in A: \max \left\{\underline{\mathfrak{c}-\underline{\lim }}\left(|f-f(x)|, x^{-}\right), \mathfrak{c}-\underline{\lim }\left(|f-f(x)|, x^{+}\right)\right\}>0\right\}\right|<\mathfrak{c} .
$$

Lemma 3.2. Assume that $A \subset \mathbb{R}$ is nbcd, and f is a function such that for each $x \in A$ we have $\max \left\{\mathfrak{c - l i m}\left(f \upharpoonright A, x^{-}\right), \mathfrak{c}-\underline{\lim }\left(f \upharpoonright A, x^{+}\right)\right\}<\infty$. There is a function $g: A \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
f(x)<g(x) \quad \text { for each } x \in A \tag{2}
\end{equation*}
$$

and
(3) for each interval J, if $A \cap J \neq \emptyset$, then $g[A \cap J]=(\mathfrak{c}-\inf (f, A \cap J), \infty)$.

Proof. Set $B=\left\{x \in \mathbb{R}: \max \left\{\mathfrak{c}-\lim \left(f, x^{-}\right), \mathfrak{c}-\lim \left(f, x^{+}\right)\right\}>f(x)\right\}$. Then $|B|<\mathfrak{c}$. (See Lemma 3.1.) Arrange all intervals intersecting A in a transfinite sequence, $\left\{J_{\alpha}: \alpha<\mathfrak{c}\right\}$. For each $\alpha<\mathfrak{c}$ and $n \in \mathbb{N}$ put $y_{\alpha, n}=$ $\max \left\{\mathfrak{c}-\inf \left(f, A \cap J_{\alpha}\right)+n^{-1},-n\right\}$, and define $K_{\alpha, n}=\left[f<y_{\alpha, n}\right] \cap A \cap J_{\alpha} \backslash B$. Then $\left|K_{\alpha, n}\right|=\mathfrak{c}$ for each α and n. Use [10, Lemma 5] to construct a family, $\left\{Q_{\alpha, n}: \alpha<\mathfrak{c}, n \in \mathbb{N}\right\}$, consisting of pairwise disjoint sets of cardinality \mathfrak{c}, such that each $Q_{\alpha, n}$ is a subset of $K_{\alpha, n}$. For each α and n let $g_{\alpha, n}: Q_{\alpha, n} \rightarrow$ $\left(y_{\alpha, n}, \infty\right)$ be a surjection. Define $g(x)=g_{\alpha, n}(x)$ if $x \in Q_{\alpha, n}$ for some $\alpha<\mathfrak{c}$ and $n \in \mathbb{N}$, and $g(x)=\max \left\{\mathfrak{c}-\lim \left(f \upharpoonright A, x^{-}\right), \mathfrak{c}-\lim \left(f \upharpoonright A, x^{+}\right), f(x)\right\}+1$ if $x \in A \backslash \bigcup_{\alpha<c} \bigcup_{n \in \mathbb{N}} Q_{\alpha, n}$.

Clearly (2) holds. To prove (3) fix an interval J with $A \cap J \neq \emptyset$. Then $J=J_{\alpha}$ for some $\alpha<\boldsymbol{c}$. Hence

$$
g[A \cap J] \supset \bigcup_{n \in \mathbb{N}} g_{\alpha, n}\left[Q_{\alpha, n}\right]=(\mathfrak{c}-\inf (f, A \cap J), \infty)
$$

On the other hand, by assumption, for each $x \in A \cap J$ we have

$$
g(x)>\max \left\{\mathfrak{c}-\underline{\lim }\left(f\left\lceil A, x^{-}\right), \mathfrak{c}-\underline{\lim }\left(f \upharpoonright A, x^{+}\right)\right\} \geq \mathfrak{c}-\inf (f, A \cap J) .\right.
$$

Lemma 3.3. Let $f \in \mathbb{R}^{\mathbb{R}}$. There is a function $g \in \mathbf{C}^{*}$ with $g>f$.
Proof. Define $A=\left\{x \in \mathbb{R}: \max \left\{\mathbf{c}-\underline{\lim }\left(f, x^{-}\right), \mathfrak{c}-\underline{\lim }\left(f, x^{+}\right)\right\}<\infty\right\}$. Then by Lemma 3.1, we have $|\mathbb{R} \backslash A|<\overline{\mathfrak{c}}$. So we can use Lemma 3.2 to construct a function $g: A \rightarrow \mathbb{R}$ such that conditions (2) and (3) hold. Extend g to the whole real line setting $g(x)=f(x)+1$ for $x \notin A$. Clearly $g>f$. Moreover, by (3), for each $x \in \mathbb{R}$ we have $\mathfrak{c}-\overline{\lim }\left(g, x^{-}\right)=\mathfrak{c}-\overline{\lim }\left(g, x^{+}\right)=\infty$. Thus $g \in \mathbf{C}^{*}$.

The proof of the next proposition is similar to that of [5, Theorem 2]. (See also [12, Corollary VI.1.4].)

Proposition 3.4. For every function f the following are equivalent:
(i) there is a function $g \in \mathbf{D}$ with $g>f$;
(ii) there is a function $g \in \mathbf{U}$ with $g>f$;
(iii) there is a function $g \in \mathbf{C}$ with $g>f$;
(iv) there is a function $g \in \mathbf{C}_{*} \cap \mathbf{C}^{*}$ with $g>f$;
(v) there is a function $g \in \mathbf{C}_{*}$ with $g>f$;
(vi) for each $x \in \mathbb{R}$ we have $\max \left\{\mathfrak{c - l i m}\left(f, x^{-}\right), \mathfrak{c - l i m}\left(f, x^{+}\right)\right\}<\infty$.

Proof. The implications (i) \Rightarrow (ii) $\Rightarrow(\mathrm{iii}) \Rightarrow($ iv $) \Rightarrow(\mathrm{v})$ are evident. To prove $(\mathrm{v}) \Rightarrow(\mathrm{vi})$ recall that, by definition, for each $x \in \mathbb{R}$ we have

$$
\begin{aligned}
\max \left\{\mathbf{c}-\underline{\lim }\left(f, x^{-}\right), \mathbf{c}-\underline{\lim }\left(f, x^{+}\right)\right\} & \leq \max \left\{\mathbf{c}-\underline{\lim }\left(g, x^{-}\right), \mathfrak{c}-\underline{\lim }\left(g, x^{+}\right)\right\} \\
& \leq g(x)<\infty .
\end{aligned}
$$

$(\mathrm{vi}) \Rightarrow(\mathrm{i})$. Use Lemma 3.2 with $A=\mathbb{R}$ to construct a function g satisfying (2) and (3). Clearly $g \in \mathbf{D}$ and $g>f$.

We denote the class of functions which satisfy condition (i) of Proposition 3.4 by A. Clearly $\mathbf{C}_{*} \subset \mathbf{A}$. The next lemma shows that $\mathbf{A} \cap \mathfrak{M}\left(\mathbf{D}, \mathbf{C}_{*}\right)$ $\subset \mathbf{C}_{*}$.

Lemma 3.5. Let $f \in \mathbf{A} \backslash \mathbf{C}_{*}$. There is a function $g \in \mathbf{D}$ such that $g>f$ and $(f, g) \notin \mathcal{M}\left(\mathbf{C}_{*}\right)$.

Proof. By assumption, there is a $y \in \mathbb{R}$ and an interval I such that $0<|B|<\mathfrak{c}$, where $B=[f<y] \cap I$. Set $A=\mathbb{R} \backslash B$. Use Lemma 3.2 to construct a function $g: A \rightarrow \mathbb{R}$ such that (2) and (3) hold. Extend g to the whole real line setting $g(x)=\max \left\{\mathfrak{c}-\lim \left(f, x^{-}\right), \mathfrak{c}-\lim \left(f, x^{+}\right)\right\}$for $x \in B$. One can easily verify that $g>f$ and $g \in \mathbf{D}$. Let h be an arbitrary function with $f<h<g$. Then for each $x \in B$ we have

$$
\begin{aligned}
h(x)<g(x) & =\max \left\{\mathfrak{c}-\underline{\lim }\left(f, x^{-}\right), \mathfrak{c}-\underline{\lim }\left(f, x^{+}\right)\right\} \\
& \leq \max \left\{\mathfrak{c}-\underline{\lim }\left(h, x^{-}\right), \mathfrak{c}-\underline{\lim }\left(h, x^{+}\right)\right\} .
\end{aligned}
$$

Thus $h \notin \mathbf{C}_{*}$ and $(f, g) \notin \mathcal{N}\left(\mathbf{C}_{*}\right)$.
Lemma 3.6. Let $f \in \mathbb{R}^{\mathbb{R}}$. There is a function $g>f$ with $(f, g) \notin \mathcal{M}(\mathbf{D})$. If moreover $f \in \mathbf{A}$, then we can choose $g \in \mathbf{C}_{*}$.

Proof. If f is constant, then define $g(x)=f(x)+|x|+\chi_{\{0\}}(x)$. It is evident that $g>f$ and $g \in \mathbf{C}_{*}$. If $f<h<g$, then

$$
\mathfrak{c -} \overline{\lim }\left(h, 0^{-}\right) \leq \mathfrak{c}-\overline{\lim }\left(g, 0^{-}\right)=f(0)<h(0) .
$$

Thus $h \notin \mathbf{D}$ and $(f, g) \notin \mathcal{M}(\mathbf{D})$.
If f is not constant, then let $y \in \mathbb{R}$ be such that $[f<y] \neq \emptyset \neq[f \geq y]$. If $f \notin \mathbf{A}$, then define $g(x)=y$ if $f(x)<y$, and $g(x)=f(x)+1$ otherwise. It is clear that $g>f$. Let h be an arbitrary function with $f<h<g$. Observe that if $f(x)<y$, then $h(x)<g(x)=y$, and $f(x) \geq y$ implies $h(x)>f(x) \geq y$. Hence $[h=y]=\emptyset$. Furthermore, $[h<y] \neq \emptyset \neq[h>y]$. Thus $h \notin \mathbf{D}$ and $(f, g) \notin \mathcal{N}(\mathbf{D})$.

Finally, let $f \in \mathbf{A}$. If $f \notin \mathfrak{M}(\mathbf{D}, \mathbf{D})$, then by definition, there exists a function $g \in \mathbf{D} \subset \mathbf{C}_{*}$ such that $g>f$ and $(f, g) \notin \mathcal{M}(\mathbf{D})$. Otherwise define $g(x)=y$ if $f(x)<y$, and $g(x)=\max \left\{\mathbf{c}-\lim \left(f, x^{-}\right), \mathbf{c}-\lim \left(f, x^{+}\right), f(x)\right\}+1$ if $f(x) \geq y$. Then clearly $g>f$, and the relation $(f, g) \notin \mathcal{M}(\mathbf{D})$ can be proved as in the previous case. To complete the proof we will verify that $g \in \mathbf{C}_{*}$.

Let $x \in \mathbb{R}, \bar{y}>g(x)$, and let $J \ni x$ be an interval. If $[f<y] \cap J \neq \emptyset$, then

$$
|[g<\bar{y}] \cap J| \geq|[f<y] \cap J|=\mathbf{c} .
$$

(Notice that $\bar{y}>g(x) \geq y$, and by Lemma 3.5, $f \in \mathbf{C}_{*}$.)

In the opposite case put $B=\left\{t \in \mathbb{R}: \max \left\{\mathfrak{c}-\underline{\lim }\left(f, t^{-}\right), \mathfrak{c}-\underline{\lim }\left(f, t^{+}\right)\right\}>\right.$ $f(t)\}$. By Lemma 3.1, we have $|B|<\mathfrak{c}$. Observe that $g(t)=f(t)+1$ whenever $t \in J \backslash B$, and

$$
\mathfrak{c}-\inf (f, J) \leq \max \left\{\mathfrak{c}-\underline{\lim }\left(f, x^{-}\right), \mathfrak{c} \underline{\lim }\left(f, x^{+}\right)\right\} \leq g(x)-1<\bar{y}-1
$$

Thus $|[f<\bar{y}-1] \cap J|=\mathfrak{c}$ and $|[g<\bar{y}] \cap J| \geq|[f<\bar{y}-1] \cap J \backslash B|=\mathfrak{c}$.
Lemma 3.7. Let I^{\prime} be a closed interval and $y \in \mathbb{R}$. Suppose that a function $f \in \mathbf{A}$ is such that the sets $B=[f<y] \cap I^{\prime}$ and $B^{\prime}=\mathbb{R} \backslash B$ are nbcd. There exists a function $g \in \mathbf{C}_{*} \cap \mathbf{C}^{*}$ such that $g>f$ and $(f, g) \notin \mathcal{M}(\mathbf{D})$. If moreover $\max \left\{\mathfrak{c}-\underline{\lim }\left(f \upharpoonright B^{\prime}, x^{-}\right), \mathfrak{c}-\underline{\lim }\left(f \upharpoonright B^{\prime}, x^{+}\right)\right\}<\infty$ for each $x \in B^{\prime}$ (resp. $\mathfrak{c}-\inf \left(f, B^{\prime} \cap J\right)=y$ for every interval $J \subset I^{\prime}$ with $\left.B \cap J \neq \emptyset \neq B^{\prime} \cap J\right)$, then we can choose $g \in \mathbf{C}$ (resp. $g \in \mathbf{D}$).

Proof. Put $A=\left\{x \in B^{\prime}: \max \left\{\mathfrak{c}-\underline{\lim }\left(f \upharpoonright B^{\prime}, x^{-}\right), \mathfrak{c} \underline{\lim }\left(f \upharpoonright B^{\prime}, x^{+}\right)\right\}\right.$ $<\infty\}$. Then by Lemma 3.1, we have $\left|B^{\prime} \backslash A\right|<\mathfrak{c}$. So we can use Lemma 3.2 to construct a function $g: A \rightarrow \mathbb{R}$ such that (2) and (3) hold. Extend g to the whole real line setting $g(x)=\max \left\{\mathfrak{c}-\underline{\lim }\left(f, x^{-}\right), \mathfrak{c}-\underline{\lim }\left(f, x^{+}\right), f(x)\right\}+1$ for $x \in B^{\prime} \backslash A$ and $g(x)=y$ for $x \in B$. Then clearly $g>f$.

Let $f<h<g$. Observe that $x \in B$ implies $h(x)<g(x)=y$. On the other hand, if $x \in B^{\prime} \cap I^{\prime}$, then $h(x)>f(x) \geq y$. Hence $[h=y] \cap I^{\prime}=\emptyset$. Since $B \neq \emptyset \neq B^{\prime} \cap I^{\prime}$, we obtain $h \notin \mathbf{D}$. Thus $(f, g) \notin \mathcal{M}(\mathbf{D})$.

Fix an $x \in \mathbb{R}$. We consider three cases.
First let $x \in B$. Then $\mathfrak{c - l i m}\left(|g-g(x)|, x^{-}\right)=\mathfrak{c - l i m}\left(|g-g(x)| \upharpoonright B, x^{-}\right)=0$. Similarly $\mathfrak{c - l i m}\left(|g-g(x)|, x^{+}\right)=0$.

If $x \in A$, then by $(3), \mathfrak{c - l i m}\left(|g-g(x)|, x^{-}\right)=\mathfrak{c}-\underline{\lim }\left(|g-g(x)|, x^{+}\right)=0$.
Finally, let $x \in B^{\prime} \backslash A$. Then $\mathfrak{c -} \overline{\lim }\left(g, x^{-}\right)=\mathfrak{c} \overline{\lim }\left(g, x^{+}\right)=\infty>g(x)$. (Recall that B^{\prime} is nbcd, so $A \cap J \neq \emptyset$.) On the other hand,

- if x is a left \mathfrak{c}-limit point of B, then $\mathfrak{c}-\underline{\lim }\left(g, x^{-}\right) \leq y \leq f(x)<g(x)$;
- otherwise \mathfrak{c}-lim$\left(|g-g(x)|, x^{-}\right)=0$. (We have used (3) and the fact that $f \in \mathbf{A}$.)

Similarly we can show that $\mathfrak{c}-\underline{\lim }\left(g, x^{+}\right) \leq g(x)$.
Consequently, $g \in \mathbf{C}_{*} \cap \mathbf{C}^{*}$. Moreover, the first additional assumption implies $A=B^{\prime}$, whence $g \in \mathbf{C}$.

Now suppose that the second additional assumption holds. Then the first additional assumption holds as well, so $A=B^{\prime}$. Let J be an interval. If $A \cap J=\emptyset$, then $g[J]=\{y\}$. If $B \cap J=\emptyset$, then by (3), the set $g[J]=g[A \cap J]$ is an interval. Finally, $B \cap J \neq \emptyset \neq A \cap J$ yields $\mathfrak{c}-\inf (f, A \cap J) \leq y$. Hence and by $(3), g[J]$ is an interval with end points $\mathfrak{c}-\inf (f, A \cap J)$ and ∞. Thus $g \in \mathbf{D}$.

Lemma 3.8. Let f be an arbitrary function and $g \in \mathbf{C}^{*}$. Assume that $a<\bar{a}$ and $y \in(\min \{f(a), f(\bar{a})\}, \max \{g(a), g(\bar{a})\})$ are such that the set $A^{\prime}=[f \geq y] \cap(a, \bar{a})$ is not nbcd. Then $|[f<y<g] \cap(a, \bar{a})|=\mathfrak{c}$.

Proof. Choose a closed interval J such that $\operatorname{int} J \subset(a, \bar{a}),[g>y] \cap J \neq$ \emptyset, and $|[f \geq y] \cap J|<\mathfrak{c}$. (If $A^{\prime}=\emptyset$, then we can set $J=[a, \bar{a}]$.) Using the fact that $g \in \mathbf{C}^{*}$ we obtain

$$
|[f<y<g] \cap(a, \bar{a})| \geq|[f<y<g] \cap J|=|[g>y] \cap J|=\mathfrak{c} .
$$

4. Main theorems. The next theorem follows directly from Lemma 3.6. (Notice that if $f \notin \mathbf{A}$, then by Proposition 3.4, $f \in \mathfrak{M}\left(\mathbf{C}_{*}, \mathbf{D}\right)$ vacuously.)

Theorem 4.1. (a) $\mathcal{P}\left(\mathbb{R}^{\mathbb{R}}\right)=\mathfrak{M}\left(\mathbb{R}^{\mathbb{R}}, \mathbf{D}\right)=\emptyset$.
(b) $\mathcal{P}\left(\mathbf{C}_{*}\right)=\mathfrak{M}\left(\mathbf{C}_{*}, \mathbf{D}\right)=\mathbb{R}^{\mathbb{R}} \backslash \mathbf{A}$.

Theorem 4.2. For every function $f \in \mathbf{A}$ the following are equivalent:
(i) $f \in \mathfrak{M}\left(\mathbf{C}_{*} \cap \mathbf{C}^{*}, \mathbf{D}\right)$;
(ii) for every open interval I and $y \in \mathbb{R}$, if the set $[f \geq y] \cap I$ is $n b c d$, then $\mathrm{cl} I \subset[f \geq y]$;
(iii) $f \in \mathcal{P}\left(\mathbf{C}^{*}\right)$;
(iv) $f \in \mathcal{P}\left(\mathbf{C}_{*} \cap \mathbf{C}^{*}\right)$;
(v) $f \in \mathfrak{M}\left(\mathbf{C}^{*}, \mathbf{D}\right)$.

Proof. The implications (iii) \Rightarrow (v) and (iv) \Rightarrow (i) follow from Theorem 2.1 , and (iii) \Rightarrow (iv) and (v) \Rightarrow (i) are evident.
(i) \Rightarrow (ii). Assume that (ii) fails. There exist an open interval I and $y \in \mathbb{R}$ such that $[f \geq y] \cap I$ is nbed and $[f<y] \cap \operatorname{cl} I \neq \emptyset$. By Lemma 3.5, if $f \notin \mathbf{C}_{*}$, then $f \notin \mathfrak{M}\left(\mathbf{C}_{*} \cap \mathbf{C}^{*}, \mathbf{D}\right)$. So suppose $f \in \mathbf{C}_{*}$. Then $[f<y] \cap I$ is nbed. Consequently, there is a closed interval $I^{\prime} \subset I$ such that $\operatorname{fr} I^{\prime} \subset[f \geq y]$ and $[f<y] \cap I^{\prime} \neq \emptyset$. By Lemma 3.7, we obtain $f \notin \mathfrak{M}\left(\mathbf{C}_{*} \cap \mathbf{C}^{*}, \mathbf{D}\right)$.
(ii) \Rightarrow (iii). Take a $g \in \mathbf{C}^{*}$ with $g>f, a<\bar{a}$, and $y \in(\min \{f(a), f(\bar{a})\}$, $\max \{g(a), g(\bar{a})\})$. Put $A^{\prime}=[f \geq y] \cap(a, \bar{a})$. We have $[f<y] \cap[a, \bar{a}] \neq \emptyset$, so by (ii), the set A^{\prime} is not nbed. Thus by Lemma 3.8, we get |[f $f=y<$ $g] \cap(a, \bar{a}) \mid=\boldsymbol{c}$. Consequently, $(f, g) \in \mathcal{P}$.

Theorem 4.3. For every function $f \in \mathbf{A}$ the following are equivalent:
(i) $f \in \mathfrak{M}(\mathbf{C}, \mathbf{D})$;
(ii) for every open interval I and $y \in \mathbb{R}$, if the set $A^{\prime}=[f \geq y] \cap I$ is $n b \mathbf{c} d$, then either $\mathrm{cl} I \subset[f \geq y]$ or $\max \left\{\mathfrak{c}-\underline{\lim }\left(f\left\lceil A^{\prime}, x^{-}\right), \mathfrak{c}-\underline{\lim }\left(f \upharpoonright A^{\prime}, x^{+}\right)\right\}=\right.$ ∞ for some $x \in A^{\prime}$;
(iii) $f \in \mathcal{P}(\mathbf{C})$.

Proof. The implication (iii) \Rightarrow (i) follows from Theorem 2.1.
(i) \Rightarrow (ii). Assume that (ii) fails. There exist an open interval I and $y \in$ \mathbb{R} such that the set $A^{\prime}=[f \geq y] \cap I$ is nbed, $[f<y] \cap \operatorname{cl} I \neq \emptyset$, and
$\max \left\{\mathfrak{c}-\lim \left(f, x^{-}\right), \mathfrak{c}-\lim \left(f, x^{+}\right)\right\}<\infty$ for each $x \in A^{\prime}$. By Lemma 3.5, if
 Consequently, there is a closed interval $I^{\prime} \subset I$ such that $\operatorname{fr} I^{\prime} \subset[f \geq y]$ and $[f<y] \cap I^{\prime} \neq \emptyset$. By Lemma 3.7, we obtain $f \notin \mathfrak{M}(\mathbf{C}, \mathbf{D})$.
(ii) \Rightarrow (i). Take a $g \in \mathbf{C}$ with $g>f, a<\bar{a}$, and $y \in(\min \{f(a), f(\bar{a})\}$, $\max \{g(a), g(\bar{a})\})$. If $A^{\prime}=[f \geq y] \cap(a, \bar{a})$ is not nbed, then $\mid[f<y<g] \cap$ $(a, \bar{a}) \mid=\boldsymbol{c}$. (We use Lemma 3.8.) In the opposite case notice that $[f<y] \cap$ $[a, \bar{a}] \neq \emptyset$. So by (ii), there exists an $x \in A^{\prime}$ such that $\max \left\{\mathfrak{c}-\lim \left(f \upharpoonright A^{\prime}, x^{-}\right)\right.$, $\left.\mathfrak{c}-\underline{\lim }\left(f \backslash A^{\prime}, x^{+}\right)\right\}=\infty$. Let $\bar{y}>g(x)$. Choose a closed interval $J \subset(a, \bar{a})$ such that $x \in J$ and $|[y \leq f<\bar{y}] \cap J|<\mathfrak{c}$. Since $y \leq f(x)<g(x)<\bar{y}$ and $g \in \mathbf{C}$, we have
$|[f<y<g] \cap(a, \bar{a})| \geq|[f<y<g] \cap J| \geq|[y<g<\bar{y}] \cap J \backslash[y \leq f<\bar{y}]|=\boldsymbol{c}$.
Consequently, $(f, g) \in \mathcal{P}$.
Theorem 4.4. For every function $f \in \mathbf{A}$ the following are equivalent:
(i) $f \in \mathfrak{M}(\mathbf{D}, \mathbf{D})$;
(ii) for every open interval I and $y \in \mathbb{R}$, if the set $A^{\prime}=[f \geq y] \cap I$ is nbcd, then either $\operatorname{cl} I \subset[f \geq y]$ or there is an interval $J \subset I$ such that $A^{\prime} \cap J \neq \emptyset,\left|J \backslash A^{\prime}\right|=\mathfrak{c}$, and $\mathfrak{c}-\inf \left(f, A^{\prime} \cap J\right)>y ;$
(iii) $f \in \mathcal{P}(\mathbf{U})$;
(iv) $f \in \mathcal{P}(\mathbf{D})$;
(v) $f \in \mathfrak{M}(\mathbf{U}, \mathbf{D})$.

Proof. The implications (iii) \Rightarrow (v) and (iv) \Rightarrow (i) follow from Theorem 2.1, and (iii) \Rightarrow (iv) and (v) \Rightarrow (i) are evident.
(i) \Rightarrow (ii). Assume that (ii) fails. There are an open interval I and $y \in \mathbb{R}$ such that the set $A^{\prime}=[f \geq y] \cap I$ is nbcd, $[f<y] \cap \operatorname{cl} I \neq \emptyset$, and for each interval $J \subset I$ if $A^{\prime} \cap J \neq \emptyset$ and $\left|J \backslash A^{\prime}\right|=\mathfrak{c}$, then $\mathfrak{c}-\inf \left(f, A^{\prime} \cap J\right)=y$. By Lemma 3.5, if $f \notin \mathbf{C}_{*}$, then $f \notin \mathfrak{M}(\mathbf{D}, \mathbf{D})$. So suppose $f \in \mathbf{C}_{*}$. Then $[f<y] \cap I$ is nbcd. Consequently, there is a closed interval $I^{\prime} \subset I$ such that fr $I^{\prime} \subset[f \geq y]$ and $[f<y] \cap I^{\prime} \neq \emptyset$. By Lemma 3.7, we obtain $f \notin \mathfrak{M}(\mathbf{D}, \mathbf{D})$.
(ii) \Rightarrow (iii). Take a $g \in \mathbf{U}$ with $g>f, a<\bar{a}$, and $y \in(\min \{f(a), f(\bar{a})\}$, $\max \{g(a), g(\bar{a})\})$. If the set $A^{\prime}=[f \geq y] \cap(a, \bar{a})$ is not nbcd, then $\mid[f<$ $y<g] \cap(a, \bar{a}) \mid=\boldsymbol{c}$. (We use Lemma 3.8.) In the opposite case notice that $[f<y] \cap[a, \bar{a}] \neq \emptyset$. By (ii), there is an interval $J \subset(a, \bar{a})$ such that $A^{\prime} \cap J \neq \emptyset$, $\left|J \backslash A^{\prime}\right|=\mathfrak{c}$, and $\bar{y}=\mathfrak{c}-\inf \left(f, A^{\prime} \cap J\right)>y$. If $J \subset[g>y]$, then

$$
|[f<y<g] \cap(a, \bar{a})| \geq|[f<y] \cap J|=\left|J \backslash A^{\prime}\right|=\mathfrak{c} .
$$

In the opposite case observe that $[g>\bar{y}] \cap J \supset[f \geq \bar{y}] \cap J \neq \emptyset$. So, since $g \in \mathbf{U}$, we obtain $|[y<g<\bar{y}] \cap J|=\boldsymbol{c}$. Thus
$|[f<y<g] \cap(a, \bar{a})| \geq|[f<y<g] \cap J| \geq|[y<g<\bar{y}] \cap J \backslash[y \leq f<\bar{y}]|=\boldsymbol{c}$.
(We have used the fact that $|[y \leq f<\bar{y}] \cap J|<$ c.) Consequently, (f, g) $\in \mathcal{P}$.

Remark 4.1. By Theorem 4.1 and (1), we have

$$
\begin{aligned}
\mathbb{R}^{\mathbb{R}} \backslash \mathbf{A} & =\mathfrak{M}\left(\mathbf{C}_{*}, \mathbf{D}\right)=\mathfrak{M}\left(\mathbf{C}_{*} \cap \mathbf{C}^{*}, \mathbf{D}\right) \backslash \mathbf{A} \\
& =\mathfrak{M}(\mathbf{C}, \mathbf{D}) \backslash \mathbf{A}=\mathfrak{M}(\mathbf{U}, \mathbf{D}) \backslash \mathbf{A}=\mathfrak{M}(\mathbf{D}, \mathbf{D}) \backslash \mathbf{A} .
\end{aligned}
$$

On the other hand, by Lemmas 3.5 and 3.3, and Proposition 3.4, we obtain

$$
\begin{align*}
\mathfrak{M}\left(\mathbf{C}^{*}, \mathbf{D}\right) & =\mathfrak{M}\left(\mathbf{C}_{*} \cap \mathbf{C}^{*}, \mathbf{D}\right) \cap \mathbf{A} \subset \mathfrak{M}(\mathbf{C}, \mathbf{D}) \cap \mathbf{A} \subset \mathfrak{M}(\mathbf{U}, \mathbf{D}) \cap \mathbf{A} \tag{4}\\
& =\mathfrak{M}(\mathbf{D}, \mathbf{D}) \cap \mathbf{A} \subset \mathbf{C}_{*} .
\end{align*}
$$

We will show later that the above inclusions are proper. (See Examples 5.1-5.3.)

Theorem 4.5. If $\mathfrak{A} \in\left\{\mathbf{D}, \mathbf{U}, \mathbf{C}, \mathbf{C}_{*} \cap \mathbf{C}^{*}, \mathbf{C}^{*}\right\}$, then

$$
\mathfrak{A} \cap \mathfrak{M}(\mathfrak{A}, \mathbf{D})=\mathbf{D} \cap \mathfrak{M}\left(\mathbf{C}^{*}, \mathbf{D}\right)
$$

Proof. By (4) and Proposition 3.4, we obtain $\mathfrak{A} \subset \mathbf{A}$. Let $f \in \mathfrak{A} \backslash \mathbf{D}$. There is an open interval I such that $[f>y] \cap \operatorname{cl} I \neq \emptyset \neq[f<y] \cap \operatorname{cl} I$ and $[f=y] \cap I=\emptyset$. Put $A^{\prime}=[f>y] \cap I=[f \geq y] \cap I$.
\bullet If $f \in \mathbf{C}^{*}$, then A^{\prime} is nbcd. Thus $f \notin \mathfrak{M}\left(\mathbf{C}^{*}, \mathbf{D}\right)=\mathfrak{M}\left(\mathbf{C}_{*} \cap \mathbf{C}^{*}, \mathbf{D}\right) \cap \mathbf{A}$. (See Theorem 4.2.)

- If $f \in \mathbf{C}$, then moreover $\max \left\{\mathbf{c}-\lim \left(f \upharpoonright A^{\prime}, x^{-}\right), \mathfrak{c}-\lim \left(f \upharpoonright A^{\prime}, x^{+}\right)\right\} \leq$ $f(x)<\infty$ for each $x \in A^{\prime}$. Thus $f \notin \mathfrak{M}(\mathbf{C}, \mathbf{D})$. (See Theorem 4.3.)

It follows that $\mathbf{C}^{*} \cap \mathfrak{M}\left(\mathbf{C}^{*}, \mathbf{D}\right) \subset \mathbf{D}$ and $\mathfrak{A} \cap \mathfrak{M}(\mathfrak{A}, \mathbf{D}) \subset \mathbf{U}$.
Now let $f \in \mathbf{U} \backslash \mathfrak{M}\left(\mathbf{C}^{*}, \mathbf{D}\right)$. By Theorem 4.2, there are an open interval I and $y \in \mathbb{R}$ such that the set $A^{\prime}=[f \geq y] \cap I$ is nbed and $[f<y] \cap \operatorname{cl} I \neq \emptyset$. Since $f \in \mathbf{U}$, for each interval $J \subset I$ if $A^{\prime} \cap J \neq \emptyset$ and $|[f<y] \cap J|=\mathfrak{c}$, then $\mathfrak{c}-\inf \left(f, A^{\prime} \cap J\right)=y$. Thus $f \notin \mathfrak{M}(\mathbf{D}, \mathbf{D})$. (See Theorem 4.4.) By (1), (4), and the first part of the proof, we obtain

$$
\begin{aligned}
\mathfrak{A} \cap \mathfrak{M}(\mathfrak{A}, \mathbf{D}) & \subset \mathbf{U} \cap \mathfrak{M}(\mathfrak{A}, \mathbf{D}) \subset \mathbf{U} \cap \mathfrak{M}(\mathbf{D}, \mathbf{D}) \subset \mathbf{U} \cap \mathfrak{M}\left(\mathbf{C}^{*}, \mathbf{D}\right) \\
& \subset \mathbf{C}^{*} \cap \mathfrak{M}\left(\mathbf{C}^{*}, \mathbf{D}\right) \subset \mathbf{D} \cap \mathfrak{M}\left(\mathbf{C}^{*}, \mathbf{D}\right) \subset \mathfrak{A} \cap \mathfrak{M}(\mathfrak{A}, \mathbf{D}) .
\end{aligned}
$$

The next theorem is a generalization of Theorem 2.3.
Theorem 4.6. Let $f \in \mathbf{C}_{*}$ be such that for each $y \in \mathbb{R}$ the set $[f<y]$ is ambiguous, i.e., it is both an F_{σ} and $a G_{\delta}$ set. Then $f \in \mathcal{P}\left(\mathbf{C}^{*}\right)$. In particular, every upper semicontinuous function belongs to $\mathcal{P}\left(\mathbf{C}^{*}\right)$.

Proof. Take an open interval I and $y \in \mathbb{R}$ such that the sets $A^{\prime}=[f \geq$ $y] \cap I$ and $[f<y] \cap \mathrm{cl} I$ are nonempty. Since $f \in \mathbf{C}_{*}$, the set $B=[f<y] \cap I$ is nbed. Observe that A^{\prime} and B are disjoint nonempty ambiguous sets, and $A^{\prime} \cup B=I$. So by [16, Lemma 7], A^{\prime} is not nbed. By Theorem 4.2, $f \in$ $\mathcal{P}\left(\mathbf{C}^{*}\right)$.

5. Examples

Example 5.1. $\mathbf{C}_{*} \cap \mathbf{C}^{*} \cap \mathbf{B}_{2} \cap \mathfrak{M}(\mathbf{C}, \mathbf{D}) \backslash \mathfrak{M}\left(\mathbf{C}_{*} \cap \mathbf{C}^{*}, \mathbf{D}\right) \neq \emptyset$.
Construction. Use the Baire Category Theorem to construct a family, $\left\{F_{n}: n \in \mathbb{N}\right\}$, consisting of pairwise disjoint nonempty nowhere dense perfect sets, such that for each interval I there is an $n \in \mathbb{N}$ with $F_{n} \subset I$. Define $f(x)=n$ if $x \in F_{n}$ for some $n \in \mathbb{N}$, and $f(x)=0$ otherwise. Then clearly $f \in \mathbf{B}_{2}$. Moreover, for each $x \in \mathbb{R}$ we have
$\mathfrak{c}-\underline{\lim }\left(f, x^{-}\right)=\mathfrak{c - l} \underline{\lim }\left(f, x^{+}\right)=0<f(x)<\infty=\mathfrak{c}-\overline{\lim }\left(f, x^{-}\right)=\mathfrak{c} \overline{\lim }\left(f, x^{+}\right)$.
Thus $f \in \mathbf{C}_{*} \cap \mathbf{C}^{*}$.
Take an open interval I and $y \in \mathbb{R}$ such that the set $A^{\prime}=[f \geq y] \cap I$ is nbcd and $[f<y] \cap \operatorname{cl} I \neq \emptyset$. There is an $n \geq y$ with $F_{n} \subset I$. Choose an $x \in F_{n}$ which is not a left limit point of F_{n}. Notice that $y>0$, so for each $\bar{y}>y$ and each sufficiently small $\delta>0$ we have $[y \leq f<\bar{y}] \cap(x-\delta, x)=\emptyset$. Thus $\mathfrak{c - l i m}\left(f \upharpoonright A^{\prime}, x^{-}\right)=\infty$. By Theorem 4.3, we obtain $f \in \mathfrak{M}(\mathbf{C}, \mathbf{D})$.

Finally, observe that $[f \geq 1] \cap(0,1)$ is nbcd, and $[f<1] \cap[0,1] \neq \emptyset$. So by Theorem 4.2, $f \notin \mathfrak{M}\left(\mathbf{C}_{*} \cap \mathbf{C}^{*}, \mathbf{D}\right)$.

Example 5.2. $\mathbf{C} \cap \mathbf{B}_{2} \cap \mathfrak{M}(\mathbf{D}, \mathbf{D}) \backslash \mathfrak{M}(\mathbf{C}, \mathbf{D}) \neq \emptyset$.
Construction. Let $F \subset \mathbb{R} \backslash\{-\pi / 4, \pi / 4\}$ be an F_{σ} set such that $|F \cap I|=$ $|I \backslash F|=\mathfrak{c}$ for each interval I. (Cf. Example 5.1.) Define $f(x)=|\arctan x|$. $\chi_{F}(x)$. Clearly $f \in \mathbf{C} \cap \mathbf{B}_{2}$. Using Theorem 4.4, one can easily show that $f \in \mathfrak{M}(\mathbf{D}, \mathbf{D})$. Moreover, $[f \geq 1] \cap(0,1)$ is nbed, and $[f<1] \cap[0,1] \neq \emptyset$. Since f is bounded, Theorem 4.3 yields $f \notin \mathfrak{M}(\mathbf{C}, \mathbf{D})$.

Example 5.3. $\mathbf{C} \cap \mathcal{P}\left(\mathbf{C}^{*} \cap \mathbf{B}\right) \backslash \mathfrak{M}(\mathbf{D}, \mathbf{D}) \neq \emptyset$.
Construction. Let B be a Bernstein set (i.e., a totally imperfect set whose complement is also totally imperfect) and $f=\chi_{B}$. It is clear that $f \in \mathbf{C}$. Notice that $[f \geq 1] \cap(0,1)$ is nbcd, and $[f<1] \cap[0,1] \neq \emptyset$. Since $f \leq 1$, Theorem 4.4 shows that $f \notin \mathfrak{M}(\mathbf{D}, \mathbf{D})$.

Take a $g \in \mathbf{C}^{*} \cap \mathbf{B}$ with $g>f$. First observe that $[g \leq 1]$ is at most countable. Indeed, otherwise there is a nonempty perfect set $K \subset[g \leq 1]$. Then $K \cap B \neq \emptyset$ and $g(x) \leq 1=f(x)$ for each $x \in K \cap B$, an impossibility.

Let $a<\bar{a}$ and $y \in(\min \{f(a), f(\bar{a})\}, \max \{g(a), g(\bar{a})\})$. Clearly $y>0$. If $y \leq 1$, then $|[f<y<g] \cap(a, \bar{a})| \geq|[f=0] \cap(a, \bar{a}) \backslash[g \leq 1]|=\mathfrak{c}$, and in the opposite case $|[f<y<g] \cap(a, \bar{a})|=|[g>y] \cap(a, \bar{a})|=\mathfrak{c}$. Consequently, $f \in \mathcal{P}\left(\mathbf{C}^{*} \cap \mathbf{B}\right)$.

The above example suggests the following problem.
Problem 5.1. Let $\mathfrak{A} \in\left\{\mathbf{D}, \mathbf{U}, \mathbf{C}, \mathbf{C}_{*} \cap \mathbf{C}^{*}, \mathbf{C}_{*}, \mathbf{C}^{*}, \mathbb{R}^{\mathbb{R}}\right\}$. Characterize the classes $\mathcal{P}(\mathfrak{A} \cap \mathbf{B})$ and $\mathfrak{M}(\mathfrak{A} \cap \mathbf{B}, \mathbf{D})$.

In the next example we will need several new notions. Let $h \in \mathbb{R}^{\mathbb{R}}$. We say that h is a strong Światkowski function [11] if whenever $a<\bar{a}$ and y is a number between $h(a)$ and $h(\bar{a})$, there is an $x \in \mathcal{C}_{h} \cap(a, \bar{a})$ with $h(x)=y$. (Clearly strong Świątkowski functions are both Darboux and quasi-continuous in the sense of Kempisty [9].) We say that h satisfies Banach's condition T_{2} (see [2]) if the set $\left\{y \in \mathbb{R}:|[h=y]|>\aleph_{0}\right\}$ has Lebesgue measure zero. We say that h is a honorary Baire class two function [1] if $|[h \neq \bar{h}]| \leq \aleph_{0}$ for some $\bar{h} \in \mathbf{B}_{1}$. Finally, h is almost continuous in the sense of Stallings [15] if every open set $V \subset \mathbb{R}^{2}$ containing the graph of h contains the graph of some continuous function as well. Recall that almost continuous functions have the Darboux property, and that the converse is not true [15]. Moreover, in Baire class one these two notions coincide [3].
T. Natkaniec showed in 1992 that there are almost continuous functions f and g such that $f<g$ and $(f, g) \notin \mathcal{M}(\mathbf{D})$ [14, Example 1.8.1]. (See also [13].) Example 5.4 generalizes this result as well as many results mentioned in Section 2.

Example 5.4. Let C be the Cantor ternary set. There are bounded functions f and g satisfying the following conditions:

- f is nonpositive, \mathcal{D}_{f} is a countable subset of C (so $f \in \mathbf{B}_{1}$), f is strong Świątkowski, and it satisfies Banach's condition T_{2};
- g is nonnegative, $\mathcal{D}_{g}=C, g$ is a honorary Baire class two function, it is almost continuous, strong Świątkowski, and satisfies Banach's condition T_{2};
- $f<g$ and $(f, g) \notin \mathcal{M}(\mathbf{D})$.

Construction. Let $\mathcal{J}=\left\{I_{n}: n \in \mathbb{N}\right\}$ and $\mathcal{J}=\left\{J_{k}: k \in \mathbb{N}\right\}$ be families of components of $[0,1] \backslash C$ such that

$$
\begin{equation*}
(\operatorname{cl} \bigcup \mathcal{J}) \cap(\mathrm{cl} \bigcup \mathcal{J})=C . \tag{5}
\end{equation*}
$$

Let $\mathcal{J}_{0}=\emptyset$. We will construct a sequence, $\left\{\mathcal{J}_{n}: n \in \mathbb{N}\right\}$, such that for each n the following conditions hold:
(a) $\mathcal{J}_{n-1} \subset \mathcal{J}_{n} \subset \mathcal{J}$;
(b) $\mathrm{cl} \bigcup \mathcal{J}_{n}=\bigcup_{I \in \mathcal{I}_{n}} \mathrm{cl} I$;
(c) if $I \in \mathcal{J}_{n-1}$ and $x \in \operatorname{fr} I$, then $x \in \operatorname{cl}\left(\cup \mathcal{J}_{n} \backslash I\right)$;
(d) $I_{n} \in \mathcal{J}_{n}$.

Let $n \in \mathbb{N}$ and suppose that we have already defined families $\mathfrak{J}_{0}, \ldots, \mathfrak{J}_{n-1}$ so that the above conditions hold. Define

$$
B=\bigcup_{I \in \mathcal{I}_{n-1} \cup\left\{I_{n}\right\}}\left((\operatorname{fr} I) \backslash \operatorname{cl}\left(\bigcup^{J_{n-1}} \backslash I\right)\right) .
$$

Clearly $|B| \leq \aleph_{0}$. Let $B=\left\{x_{p}: p<r\right\}$, where $r \in \mathbb{N} \cup\{\infty\}$. For each $p<r$ use (5) to choose a monotone sequence of intervals, $\left\{\widetilde{I}_{p, m}: m \in \mathbb{N}\right\} \subset \mathcal{J}$,
converging to x_{p} and such that $\bigcup_{m \in \mathbb{N}} \widetilde{I}_{p, m} \subset\left(x_{p}-p^{-1}, x_{p}+p^{-1}\right)$. Finally, define $\mathcal{J}_{n}=\mathcal{J}_{n-1} \cup\left\{I_{n}\right\} \cup \bigcup_{p<r}\left\{\widetilde{I}_{p, m}: m \in \mathbb{N}\right\}$. One can easily verify that conditions (a)-(d) are satisfied.

For each $n \in \mathbb{N}$ and each $I \in \mathcal{J}_{n}$ let $f_{n, I}: \operatorname{cl} I \rightarrow\left[-2^{1-n},-2^{-n}\right]$ be a continuous surjection such that $f_{n, I}[\operatorname{fr} I]=\left\{-2^{-n}\right\}$ and $\left|f_{n, I}^{-1}(y)\right| \leq 2$ for each $y \in \mathbb{R}$. Similarly, for each $k \in \mathbb{N}$ let $g_{k}: \operatorname{cl} J_{k} \rightarrow\left[k^{-1}, 1\right]$ be a continuous surjection such that $g_{k}\left[\operatorname{fr} J_{k}\right]=\{1\}$ and $\left|g_{k}^{-1}(y)\right| \leq 2$ for each $y \in \mathbb{R}$. Define functions f and g as follows:

$$
\begin{aligned}
& f(x)= \begin{cases}f_{n, I}(x) & \text { if } x \in \operatorname{cl} I, I \in \mathcal{J}_{n}, n \in \mathbb{N}, \\
0 & \text { otherwise, }\end{cases} \\
& g(x)= \begin{cases}g_{k}(x) & \text { if } x \in \operatorname{cl} J_{k}, k \in \mathbb{N}, \\
0 & \text { if } x \in \bigcup_{I \in \mathcal{I}} \operatorname{cl} I, \\
1 & \text { otherwise. }\end{cases}
\end{aligned}
$$

It is clear that $f<g$ and $f \leq 0 \leq g, \mathcal{D}_{f}=\bigcup_{I \in \mathcal{J}}$ fr $I \subset C, \mathcal{D}_{g}=C$, and both f and g are strong Świątkowski. Moreover, $\left\{y \in \mathbb{R}:|[f=y]|>\aleph_{0}\right\}=\{0\}$ and $\left\{y \in \mathbb{R}:|[g=y]|>\aleph_{0}\right\}=\{0,1\}$. Thus both f and g satisfy Banach's condition T_{2}.

Define $\bar{g}(x)=g(x)$ if $x \in \mathbb{R} \backslash C$, and $g(x)=1$ if $x \in C$. Then $\bar{g} \in \mathbf{B}_{1}$ and $|[g \neq \bar{g}]|=\aleph_{0}$. So g is a honorary Baire class two function.

Let $f<h<g$. Then both $[h<0]$ and $[h>0$] are nonempty, and $[h=0]=\emptyset$. Thus $h \notin \mathbf{D}$ and $(f, g) \notin \mathcal{M}(\mathbf{D})$.

Finally, we prove that g is almost continuous. Let $V \subset \mathbb{R}^{2}$ be an open set which contains the graph of g. Let S denote the set of all $x \in \mathbb{R}$ such that for every $t \in(-\infty, x) \backslash C$ there is a continuous function $h:(-\infty, t] \rightarrow \mathbb{R}$ with $h(t)=g(t)$ whose graph is contained in V. Evidently $(-\infty, 0] \subset S$. We verify that $s=\sup S=\infty$. By way of contradiction suppose $s \in[0, \infty)$. Choose a $\tau>0$ such that

$$
(s-\tau, s+\tau) \times(g(s)-\tau, g(s)+\tau) \subset V
$$

We now show $s+\tau \in S$, contradicting the definition of s.
Let $t \in(-\infty, s+\tau) \backslash C$. Without loss we may assume that $t \geq s$. Let $\bar{s} \in C$ be such that $C \cap(\bar{s}, t]=\emptyset$. There is a $t_{1} \in(s-\tau, s) \backslash C$ such that $\left|g\left(t_{1}\right)-g(s)\right|<\tau$. Construct a continuous function $h_{1}:\left(-\infty, t_{1}\right] \rightarrow \mathbb{R}$ with $h_{1}\left(t_{1}\right)=g\left(t_{1}\right)$ whose graph is contained in V. We consider two cases.

CASE 1. First suppose that $\bar{s} \leq s$. Observe that $g \upharpoonright[a, \bar{a}]$ is continuous whenever $C \cap(a, \bar{a})=\emptyset$. Define $h(x)=h_{1}(x)$ if $x \leq t_{1}$ and $h(x)=g(x)$ if $x \in[s, t]$, and extend h linearly in the interval $\left[t_{1}, s\right]$. Then $h:(-\infty, t] \rightarrow \mathbb{R}$, h is continuous, $h(t)=g(t)$, and the graph of h is contained in V.

CASE 2. In the opposite case let $\bar{\tau} \in(0, \bar{s}-s)$ be such that

$$
(\bar{s}-\bar{\tau}, \bar{s}+\bar{\tau}) \times(g(\bar{s})-\bar{\tau}, g(\bar{s})+\bar{\tau}) \subset V
$$

Let $k>1 / \bar{\tau}$ be such that $J_{k} \subset(\bar{s}-\bar{\tau}, \bar{s})$. There are $t_{2}, t_{3} \in J_{k}$ such that $t_{2}<t_{3},\left|g\left(t_{2}\right)-g(s)\right|<\tau$, and $\left|g\left(t_{3}\right)-g(\bar{s})\right|<\bar{\tau}$. Define $h(x)=h_{1}(x)$ if $x \leq t_{1}$ and $h(x)=g(x)$ if $x \in\left[t_{2}, t_{3}\right] \cup[\bar{s}, t]$, and extend h linearly in the intervals $\left[t_{1}, t_{2}\right]$ and $\left[t_{3}, \bar{s}\right]$. Then $h:(-\infty, t] \rightarrow \mathbb{R}, h$ is continuous, $h(t)=g(t)$, and the graph of h is contained in V.

We have proved that $s+\tau \in S$, an impossibility. Thus $s=\infty$.
Let $h:(-\infty, 2] \rightarrow \mathbb{R}$ be a continuous function whose graph is contained in V such that $h(2)=g(2)$. Extend h to the whole real line setting $h(x)=g(x)$ for $x>2$. The extended function is continuous and its graph is contained in V. Thus g is almost continuous.

References

[1] F. Bagemihl and G. Piranian, Boundary functions defined in a disk, Michigan Math. J. 8 (1961), 201-207.
[2] S. Banach, Sur une classe des fonctions continues, Fund. Math. 8 (1926), 166-172.
[3] J. B. Brown, Almost continuous Darboux functions and Reed's pointwise convergence criteria, Fund. Math. 86 (1974), 1-7.
[4] A. M. Bruckner, J. G. Ceder, and T. L. Pearson, On the insertion of Darboux, Baire-one functions, ibid. 80 (1973), 157-167.
[5] -, On Darboux functions, Rev. Roumaine Math. Pures Appl. 19 (1974), 977-988.
[6] A. M. Bruckner, J. G. Ceder, and M. L. Weiss, Uniform limits of Darboux functions, Colloq. Math. 15 (1966), 65-77.
[7] J. G. Ceder and T. L. Pearson, Insertion of open functions, Duke Math. J. 35 (1968), 277-288.
[8] J. G. Ceder and M. L. Weiss, Some in-between theorems for Darboux functions, Michigan Math. J. 13 (1966), 225-233.
[9] S. Kempisty, Sur les fonctions quasicontinues, Fund. Math. 19 (1932), 184-197.
[10] A. Maliszewski, Sums of bounded Darboux functions, Real Anal. Exchange 20 (1994-95), 673-680.
[11] -, On the limits of strong Światkowski functions, Zeszyty Nauk. Politech. Łódz. Mat. 27 (1995), 87-93.
[12] -, Darboux property and quasi-continuity. A uniform approach, WSP, Słupsk, 1996.
[13] T. Natkaniec, Almost continuity, Real Anal. Exchange 17 (1991-92), 462-520.
[14] -, Almost continuity, WSP, Bydgoszcz, 1992.
[15] J. Stallings, Fixed point theorem for connectivity maps, Fund. Math. 47 (1959), 249-263.
[16] Z. Zahorski, Sur la première dérivée, Trans. Amer. Math. Soc. 69 (1950), 1-54.
Department of Mathematics
Pedagogical University
Pl. Weyssenhoffa 11
85-072 Bydgoszcz, Poland
E-mail: AMal@wsp.bydgoszcz.pl

[^0]: 1991 Mathematics Subject Classification: Primary 26A21, 54C30; Secondary 26A15, 54C08.

 Key words and phrases: Darboux function, insertion of functions.

