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Almost all submaximal groups
are paracompact and σ-discrete

by

O. T. A l a s (São Paulo), I. V. P r o t a s o v (Kiev),
M. G. T k a č e n k o (México, D.F.), V. V. T k a c h u k (México, D.F.),

R. G. W i l s o n (México, D.F.) and I. V. Y a s c h e n k o (Moscow)

Abstract. We prove that any topological group of a non-measurable cardinality is
hereditarily paracompact and strongly σ-discrete as soon as it is submaximal. Conse-
quently, such a group is zero-dimensional. Examples of uncountable maximal separable
spaces are constructed in ZFC.

0. Introduction. This paper has been motivated by several unsolved
problems in general topology and topological algebra. The concepts we are
mainly going to deal with are maximality and submaximality of general
topological spaces introduced in [He] more than fifty years ago. Recall that
a topological space X is called submaximal if every dense subset of X
is open. In this paper we consider only submaximal spaces without iso-
lated points, so “submaximal” is to be read “submaximal dense in itself ”.
A dense-in-itself space X is called maximal if any strictly stronger topology
on X has isolated points. Although it is not evident at first glance, every
maximal space is submaximal. Let us mention that all definitions and formu-
lations related to the topic will be given in Section 1 (Notation and terminol-
ogy) or in the main text. A reader who has not got the hang of the subject
can be referred to an excellent paper of van Douwen [vD] which combines
detailed and transparent proofs with covering practically everything impor-
tant in the theory of maximal and submaximal spaces up to the year 1990.
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The concepts of maximality and submaximality, although technical at
first sight, can serve as an important tool in the study of extreme cases
one comes across when studying the family of topologies without isolated
points on a given set. The first attempt to provide an insight into the matter
was made by E. Hewitt [He]. He was the first to discover a general way of
constructing maximal topologies. The core of his method (which, by the
way, is still in use) is the observation that any chain of topologies on the
same set has an upper bound with the same separation axioms. This makes
it possible to construct maximal and submaximal topologies by transfinite
induction, taking care of the desired properties at successor steps.

There were some obstacles to progress in understanding the nature of
maximality and submaximality which were discovered quite early. For ex-
ample, it was not clear until very recently whether there existed a ZFC
example of a maximal Tikhonov space. The breakthrough here is due to van
Douwen [vD], who established that there is a countable regular maximal
space in ZFC. Another brilliant result is the one of V. I. Malykhin [Ma]: Un-
der Martin’s axiom there exists a non-discrete Hausdorff topological group
whose underlying space is maximal.

It seems that the first systematic study of submaximal spaces was un-
dertaken in the paper of A. V. Arkhangel’skĭı and P. J. Collins [ArCo]. They
gave various necessary and sufficient conditions for a space to be submax-
imal and showed that every submaximal space is left-separated. This led
naturally to the question whether every submaximal dense-in-itself space is
σ-discrete (Problem 1.12 of [ArCo]). J. Schröder [Sch] established that this
is not so if there is a measurable cardinal. It is quite possible that measur-
able cardinals show up with good reason, because in this paper we prove
that if G is a topological submaximal group of non-measurable cardinal-
ity, then G is paracompact and strongly σ-discrete. This implies that G is
zero-dimensional if its cardinality is not measurable, thus giving a consistent
answer to Problem 8.18 of [ArCo].

Another question of Arkhangel’skĭı and Collins (Problem 8.6) is moti-
vated by their result that every separable submaximal topological group
is countable. They asked whether there exists a submaximal separable un-
countable Hausdorff (Tikhonov) space. In this paper we construct an ex-
ample of a Hausdorff separable maximal space of power 22ω and a Tikhonov
maximal separable space of cardinality 2ω. We also prove that any submax-
imal group with the Suslin property is countable, strengthening the cor-
responding result of Arkhangel’skĭı and Collins for separable submaximal
groups.

1. Notation and terminology. All topological spaces are supposed to
be Hausdorff and dense in themselves if the opposite is not stated explicitly.
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IfX is a space, then τ(X) is its topology and τ∗(X) = τ(X)\{∅}. The closure
of a set A in X is denoted byA or by cl(A). A space is said to be of first cat-
egory if it can be represented as a countable union of nowhere dense subsets.
A (strongly) σ-discrete space is one which is a countable union of (closed)
discrete subspaces. If X is a space and x ∈ X, then the dispersion character
∆(x,X) of X at the point x is the minimum of the cardinalities of open sub-
sets of X containing x. The cardinal number ∆(X) = min{∆(x,X) : x ∈ X}
is called the dispersion character of X.

A space (X, τ) is called maximal if for any topology µ on X strictly finer
than τ , the space (X,µ) has an isolated point. A space X is submaximal if
any dense subset of X is open. A non-empty family D of dense subsets of a
space X is called a filter of dense subsets of X if D is closed with respect to
finite intersections and D ∈ D, D ⊂ D1 ⊂ X implies D1 ∈ D. The family
D is called an ultrafilter of dense subsets of X if there is no filter of dense
subsets of X that properly contains D.

If D is an ultrafilter of dense subsets of (X, τ), then the topology gener-
ated by the subbase τ ∪ D is known to be submaximal [GRS] and is called
the submaximal extension of τ by D.

A space is called irresolvable if it is not the union of two disjoint dense
subsets. If G is a group and A ⊂ G, then 〈A〉 is the group generated by A,
i.e. the smallest subgroup of G containing A.

A space X is called collectionwise Hausdorff if for any discrete subset
A of X it is possible to choose an open Vp 3 p for every p ∈ A in such a
way that the family {Vp : p ∈ A} is discrete. A space X is metacompact if
every open cover of X has a point-finite refinement. A space X is called a
Q-set if every subset of X is of type Gδ. The symbol c, as well as 2ω, denotes
the power of continuum. All other notions are standard and can be found
in [En].

2. Submaximal and maximal spaces. For the reader who is not a
specialist in this area, we formulate without proofs some well-known simple
facts about submaximal and maximal spaces. For details see [ArCo], [vD]
and [GRS].

2.0. Facts. (1) Every maximal space is submaximal ;
(2) a space X is submaximal iff every subset of X is the intersection of

a closed and an open subset of X;
(3) if X is submaximal , then any subset of X with empty interior is

closed and discrete;
(4) a space is maximal iff it is submaximal and extremally disconnected ;
(5) every submaximal space is irresolvable;
(6) if (X, τ) is a Hausdorff space, then there exists a maximal Hausdorff
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topology µ ⊃ τ on X without isolated points, and then µ is a maximal
topology ;

(7) if (X, τ) is a submaximal space, and µ is a topology on X finer
than τ , then (X,µ) is submaximal.

2.1. Definition. Call a space X weakly collectionwise Hausdorff if for
any closed discrete A = {xs : s ∈ S} ⊂ X there exists a disjoint family
γ = {Us : s ∈ S} ⊂ τ(X) such that xs ∈ Us for every s ∈ S. The family γ
will be called separating for A.

V. I. Malykhin [Ma] proved that every collectionwise Hausdorff maximal
space is hereditarily paracompact. The theorem that follows improves this
result.

2.2. Theorem. A submaximal weakly collectionwise Hausdorff space is
hereditarily paracompact.

P r o o f. Suppose that X is submaximal and weakly collectionwise Haus-
dorff. We first establish that X is hereditarily normal.

2.3. Lemma. A submaximal space Z is hereditarily normal if and only
if any two disjoint closed discrete subspaces of Z have disjoint open neigh-
bourhoods.

P r o o f. It suffices to prove the “if ” part. Let Y be an arbitrary subspace
of Z. If P,Q are disjoint closed subspaces of Y , then P = U ∪ A and Q =
V ∪B, where U = Int(P ), V = Int(Q) (the interiors are taken in Z) and the
sets A and B are closed and discrete in Z. By the hypothesis of the lemma,
there exist disjoint open sets U1 and V1 such that A ⊂ U1 and B ⊂ V1.
Let U0 = U1 \ V and V0 = V1 \ U . It can easily be checked that the sets
UP = U ∪ U0 and UQ = V ∪ V0 are disjoint open neighbourhoods of P and
Q respectively.

Returning to the proof of Theorem 2.2, we can conclude that X is hered-
itarily normal. Indeed, if A and B are disjoint closed and discrete sub-
sets of X, let γ ⊂ τ(X) be a separating family for A ∪ B. Then the sets
UA =

⋃{U : U ∈ γ and U ∩A 6= ∅} and UB =
⋃{U : U ∈ γ and U ∩B 6= ∅}

are open disjoint neighbourhoods of A and B so that by Lemma 2.3 the
space X is hereditarily normal.

Let us show that X is hereditarily collectionwise normal. By the hered-
itary normality of X it suffices to check that for every Y ⊂ X and for any
discrete (in Y ) family F = {Fs : s ∈ S} of closed subsets of Y there is a
disjoint family U = {Us : s ∈ S} ⊂ τ(Y ) with Fs ⊂ Us for all s ∈ S.

Let Os = Int(Fs) (the interiors in Y ) and As = Fs \ Os for any s ∈ S.
The sets As are closed and discrete in Y and the family {As : s ∈ S} is
discrete in Y . Therefore the set A =

⋃{As : s ∈ S} is closed and discrete in
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Y and hence in X (here we use 2.0(3)). Let γ ⊂ τ(Y ) be a separating family
for A obtained in an obvious way from a separating family for A in X. For
every s ∈ S consider the set Vs =

⋃{U : U ∈ γ, U ∩ As 6= ∅}. Now if we
put Ws = Vs \

⋃{Ot : t ∈ S \ {s}} (the closures in Y ) and Us = Os ∪Ws,
then Us is open in Y (because the family {Os : s ∈ S} is discrete in Y ), and
contains Fs since

⋃{Ot : t ∈ S \ {s}} ∩ Fs = ∅.
We claim that the family {Us : s ∈ S} is disjoint. Indeed, if s 6= t, then

Us ∩ Ut = (Os ∪Ws) ∩ (Ot ∪Wt)

= (Os ∩Ot) ∪ (Os ∩Wt) ∪ (Ws ∩Ot) ∪ (Ws ∩Wt),

and all intersections in the above union are empty. Thus we have established
collectionwise normality of Y .

Recall that in the presence of collectionwise normality paracompactness
is equivalent to metacompactness [En, Theorem 5.3.3], so let us prove that
any subspace Y of X is metacompact.

Take an open cover U = {Us : s ∈ S} ⊂ τ(Y ) of Y , where S is considered
to be well-ordered. For each s ∈ S, let Vs = Us \

⋃{Ut : t < s} (the closure
in Y ). It is clear that the family V = {Vs : s ∈ S} is disjoint and

⋃V is
dense in Y . Thus the set D = Y \⋃V is closed and discrete in Y and hence
in X. For every d ∈ D fix a Ud ∈ U such that d ∈ Ud. Pick a separating
family γ for D in Y and let Vd = Ud∩U , where U is the unique element of γ
which contains d. It is clear that the family V ∪{Vd : d ∈ D} is a point-finite
refinement of U and hence Y is paracompact.

2.4. Proposition. Suppose that (X, τ) is a submaximal space. If µ is a
maximal topology on X stronger than τ , then

(1) (X, τ) and (X,µ) have the same Suslin numbers;
(2) (X, τ) and (X,µ) have the same densities;
(3) a subset D ⊂ X is τ -discrete iff it is µ-discrete;
(4) if (X, τ) is regular , then (X,µ) is Tikhonov ;
(5) if (X, τ) is normal , then so is (X,µ);
(6) if (X, τ) is collectionwise Hausdorff , then so is (X,µ);
(7) if (X, τ) is paracompact , then so is (X,µ).

P r o o f. To prove (1) it suffices to show that c(X,µ) ≤ c(X, τ). Let
γ ⊂ µ∗(X) be disjoint. Then each U ∈ γ is µ-dense in itself and hence τ -
dense in itself. Thus, the τ -interior of U is non-empty so that the family of τ -
interiors of the elements of γ does not exceed c(X, τ). Therefore |γ| ≤ c(X, τ)
and (1) is proved.

Let D be τ -dense in X. If it were not µ-dense, then there would exist
a µ-open set U ⊂ X with U ∩D = ∅. But U is µ-dense in itself and hence
τ -dense in itself. This implies that the τ -interior of U is not empty, which
gives a contradiction since D is τ -dense. Thus, we have proved (2).
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To show that (3) holds it suffices to verify that if D is µ-discrete, then
it is τ -discrete. But if it were not so, then D would have non-empty interior
in (X, τ) and hence in (X,µ), giving a contradiction.

Assume that (X, τ) is regular. Take any point x ∈ X and a µ-closed
subset F ⊂ X with x 6∈ F . Let O be the τ -interior of F . The set F \ O is
closed and discrete in (X, τ) so that there is a τ -open neighbourhood Vx of
x and U ∈ τ such that U ⊃ F \O and Vx ∩ U = ∅.

Now let Wx = Vx \O (the closure in µ) and WF = O∪U . It is immediate
thatWx andWF are µ-open disjoint neighbourhoods of x and F respectively,
and hence µ is regular. To finish the proof of (4) observe that any regular
extremally disconnected space is Tikhonov.

By Lemma 2.3, to settle (5) we only have to prove that any two closed
and discrete subsets A and B of (X,µ) can be separated by disjoint open
sets. But it follows from (3) that A and B are also τ -discrete (and thus
closed). Therefore they can be separated in (X, τ) and the same open sets
will separate them in (X,µ).

If (X, τ) is collectionwise Hausdorff andD is closed and discrete in (X,µ),
then D is closed and discrete in (X, τ) by (3). Now the same open sets
which separate the points of D in (X, τ) will separate them in (X,µ). This
settles (6). Condition (7) is an immediate consequence of (6) and Theo-
rem 2.2.

Arkhangel’skĭı and Collins [ArCo] proved that every submaximal sepa-
rable topological group is countable and asked whether there exists a sub-
maximal separable uncountable Hausdorff or Tikhonov space ([ArCo, Prob-
lem 8.6]). We answer this question by constructing examples of separable
maximal uncountable spaces.

2.5. Example. There is a maximal Hausdorff separable space of cardi-
nality 22ω .

P r o o f. E. K. van Douwen [vD] constructed a ZFC example of a count-
able Tikhonov maximal space Y . Every maximal space has to be extremally
disconnected [vD, Theorem 2.2], so that |βY | = 22ω . Consider the set βY
with the topology τ such that

(1) any open subset of Y belongs to τ ;
(2) if z ∈ βY \ Y , then the family Bz = {{z} ∪ ((U ∩ Y ) \ N) : U runs

over all open neighbourhoods of z in βY and N over closed discrete subsets
of Y } is a base of z in τ .

Denote by X the space βY with the topology introduced in (1) and (2).
It is clear that X is separable, Hausdorff and |X| = 22ω .

Let us prove that X is submaximal. Take any dense subset D of X. As
Y is dense and open in X, the set D∩Y is dense in Y and hence open in Y .
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It follows from the maximality of Y that E = Y \D is closed and discrete
in Y . Applying (2) we can conclude that E is closed and discrete in X as
well.

The set X \D = E ∪ ((X \ Y ) \D) is closed and discrete because so are
E and (X \ Y ) \ D. Thus, the complement to D in X is closed and D is
open, which proves submaximality of X.

There exists a Hausdorff maximal topology µ on X stronger than τ . By
Proposition 2.4(2) the space (X,µ) is separable.

2.6. Example. There is a maximal Tikhonov separable space X of
power 2ω.

P r o o f. We will use once more van Douwen’s space Y mentioned in the
proof of 2.5. Take any infinite closed discrete subset A = {an : n ∈ ω} ⊂ Y
with ai 6= aj if i 6= j. Denote byM a quasi-disjoint family of infinite subsets
of ω of power 2ω.

We construct a topology on the set X = (Y \A)∪M. If y ∈ Y \A, then
we define the base of X at y to be the family of all open neighbourhoods of
y in Y \A.

If ξ ∈ M, then the base of X at ξ consists of the sets of the form
{ξ}∪⋃{Uk : k ∈ ξ \P}, where the set P ⊂ ξ is finite, and Uk = Vk ∩ (Y \A)
for some open (in Y ) neighbourhood Vk of the point ak, and the sets Vk are
disjoint.

Let us check that the space X is Tikhonov and submaximal. Of course,
it is evident that X is separable and its cardinality is 2ω.

It suffices to establish complete regularity of X at each point ξ ofM. Let
U = {ξ} ∪⋃{Uk : k ∈ ξ \ C} be a basic open neighbourhood of ξ. Without
loss of generality we may assume that Uk is clopen in Y \A. Represent ξ \C
as a strictly increasing subsequence {ni : i ∈ ω} of ω. Let f(ξ) = 0, f(x) =
1/(i + 1) if x ∈ Uni and f(x) = 1 if x 6∈ U . It is immediate to verify that
f is a continuous function on X which witnesses complete regularity of X
at x.

To establish submaximality, take a dense subset D of X. Then D ∩
(Y \ A) is open since it is open in X and Y \ A is submaximal. Therefore
N = (Y \A) \D is closed and discrete in Y . Remembering the definition of
basic neighbourhoods at all points ofM we conclude that N is closed in X
as well. Hence X \D = N ∪ (M\D) is closed and discrete in X, whence D
is open in X and we have proved that X is submaximal.

To finish the proof, consider a maximal Hausdorff topology µ on X which
is stronger than τ(X). Using 2.0(6) we conclude that (X,µ) is a maximal
space. It follows from 2.4(2) and 2.4(4) that the space (X,µ) is Tikhonov
and separable.
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The following proposition shows that the cardinality of the previous ex-
ample is the largest possible.

2.7. Proposition. If X is a submaximal regular space, then |X| ≤
2d(X). In particular , if X is separable, then |X| ≤ 2ω.

P r o o f. Let κ = d(X) and choose a dense subset D of X with |D| = κ.
It is open together with every superset of D by submaximality of X. Hence
X \D is a closed discrete subset of X. For each x ∈ X \D choose an open
neighbourhood Ux of x such that Ux ∩ (X \ D) = {x}. It is easy to check
that the correspondence x→ Ux is an injection of X \D into the set of all
subsets of D. Therefore |X| = |D|+ |X \D| ≤ 2κ.

Arkhangel’skĭı and Collins [ArCo] asked whether every submaximal
space is σ-discrete. Schröder [Sch] showed that this is equivalent to asking
whether every maximal space is σ-discrete and gave an example of a maximal
space of measurable cardinality which does not have countable pseudochar-
acter. But the question of whether every maximal space of non-measurable
cardinality is σ-discrete remains open. We prove that this is the same as
asking whether every submaximal space has countable pseudocharacter.

2.8. Proposition. The following statements are equivalent :

(1) every submaximal space of non-measurable cardinality has countable
pseudocharacter ;

(2) every submaximal space of non-measurable cardinality is σ-discrete;
(3) every maximal space of non-measurable cardinality is σ-discrete;
(4) no submaximal space of non-measurable cardinality has a P -point.

P r o o f. The equivalence of (2) and (3) was proved by Schröder [Sch].
It is evident that (2) implies (1). Therefore (3)⇒(1). Let us check that (1)
implies (3).

Suppose that (X, τ) is a maximal space which is not σ-discrete and let D
denote the discrete space of cardinality ω1. Denote by Y the set (X×D)∪{p},
where p 6∈ X ×D, with the following topology:

(i) X ×D has the product topology and
(ii) U is a neighbourhood of p if p ∈ U and U ∩ (X × {d}) is dense in

X × {d} for all but countably many d ∈ D.

It is straightforward to verify that Y is submaximal. Since X is not
σ-discrete, a countable intersection of dense subsets of X is non-empty and
hence ψ(Y ) = ω1.

As it is trivial that (1)⇒(4) we only have to show that (4)⇒(1), and this
is equivalent to (4)⇒(3).

If there exists a maximal space X, no open subset of which is σ-discrete,
then any countable intersection of dense subsets of X is open and dense, and
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hence p is a P -point of Y , where Y is the space constructed in the proof of
(1)⇒(3). However, if Z is any maximal space which is not σ-discrete, then we
define C to be a maximal pairwise disjoint family of open σ-discrete subsets
of Z. It follows that

⋃ C is open and σ-discrete and cl(
⋃ C)\⋃ C is discrete.

Thus X = Z \ cl(
⋃ C) 6= ∅ and each open set of X fails to be σ-discrete.

Now that we have shown that (4)⇒(3) the proposition is proved.

Let us prove that under some additional conditions submaximal spaces
do have countable pseudocharacter.

2.9. Theorem. Let (X, τ) be a submaximal space such that χ(X) = ω1.
Then ψ(X) = ω.

P r o o f. Assume that for some x ∈ X we have ψ(x,X) = ω1, and let
Bx = {Vα : α ∈ ω1} be a local base at x. For each δ ∈ ω1, observe that
Int(

⋂{Vα : α ∈ δ}) 6= ∅ since otherwise this set would be closed and discrete
and hence we could find an open set U with U ∩ ⋂{Vα : α ∈ δ} = {x} so
that {x} would be a Gδ.

Denote by Hδ the set
⋂{Vα : α ∈ δ} and note that x ∈ cl(Int(Hδ)), since

otherwise Hδ \cl(Int(Hδ)) = {x}∪ (Hδ \cl(Int(Hδ))) has empty interior and
hence is closed and discrete. A repeat of the above argument would again
make {x} a Gδ.

Now choose x0 ∈ V0 \ {x} and recursively

xα ∈
⋂
{Vβ : β ∈ α} \ ({x} ∪ {xβ : β ∈ α}).

To show that this choice can be made for all α ∈ ω1, suppose to the
contrary that for some δ ∈ ω1,

⋂
{Vα : α ∈ δ} ⊂ {xα : α ∈ δ} ∪ {x}.

Then ⋂
{Vα : α ∈ δ} ∩

⋂
{X \ {xγ} : γ ∈ δ}

is a Gδ equal to {x}. Thus we can choose xα for each α ∈ ω1; let M = {xα :
α ∈ ω1}.

Note first that Int(M) 6= ∅, since otherwise M would be closed and
discrete and hence X \M would be a neighbourhood of x, contradicting the
fact that the well-ordered net {xα : α ∈ ω1} converges to x.

Secondly, we claim that Int(M) cannot be countable, for otherwise M \
Int(M) is closed and discrete and for some γ ∈ ω1, contains {xα : γ ∈ α},
again giving a contradiction.

However, since the net M converges to x, it follows that each point
xα ∈ Int(M) must have a countable neighbourhood contained in Int(M). Let
{Cα : α ∈ ω1} be a maximal disjoint family of countable open sets contained
in Int(M), and for each α ∈ ω1, choose yα ∈ Cα. The set D = {yα : α ∈ ω1}
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is closed and discrete and x 6∈ D. Thus for some ν ∈ ω1, X \D ⊃ Vν , again
giving a contradiction.

2.10. Proposition. Let X be a submaximal Hausdorff space with
πw(X) ≤ κ. Then the set L = {x ∈ X : ∆(x,X) < κ} is dense in X,
and X is the union of less than κ closed discrete subspaces.

P r o o f. If ∆(x,X) = κ for all x ∈ X, then choosing recursively two
distinct points in each element of the π-base, in such a way that all the points
chosen are distinct, gives two disjoint dense subsets of X, contradicting the
submaximality of X. Thus L 6= ∅. If L is not dense, then X \ cl(L) would
be a submaximal Hausdorff space with π-weight less than or equal to κ, but
with ∆(X) = κ, again giving a contradiction.

To prove the second assertion, let C be a maximal disjoint family of open
sets, each of cardinality less than κ. Clearly

⋃ C ⊂ L and
⋃ C is dense in X,

for otherwise L \ cl(
⋃ C) 6= ∅, contradicting the maximality of C. It follows

that X \ ⋃ C is closed and discrete. Furthermore, if for each C ∈ C, we
choose xC ∈ C, then the set {xC : C ∈ C} has empty interior and hence is
closed and discrete. Thus, since each element of C is of cardinality less than
κ, it follows that

⋃ C is the union of less than κ closed discrete subsets. It
follows that X = (X \ ⋃ C) ∪ ⋃ C and the first set is closed and discrete,
while the second is the union of less than κ closed and discrete sets; the
result follows.

2.11. Corollary. If X is a submaximal Hausdorff space with πw(X)
≤ ℵ1, then X is strongly σ-discrete.

2.12. Corollary. If X is a submaximal Hausdorff space such that
c(X) < cf(πw(X)), then d(X) < πw(X).

P r o o f. Since c(X) < πw(X), each element of the family C of Propo-
sition 2.10 is of cardinality less than πw(X) and |C| ≤ c(X). The result
follows since

⋃ C is dense in X.

2.13. Corollary. If X is a submaximal Hausdorff space with πw(X)
= ℵ1, then c(X) = d(X).

However, for every cardinal κ, submaximal spaces with c(X) = ω <
d(X) = κ can easily be constructed as the following example shows:

2.14. Example. Let D denote the filter of subsets of I2κ whose com-
plement is of cardinality less than κ, and let U be any ultrafilter of dense
subsets of I2κ containing D. If we denote by (X, τ) the submaximal exten-
sion of I2κ by U , then clearly d(X) ≥ κ, but it is well known that each open
set in (X, τ) is dense in some open subset of I2κ and hence c(X) = ω. It is
easy to see that πw(X) > |X|.
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That e(X) = s(X) = |X| ≤ w(X) for all submaximal spaces has been
shown in [ArCo, Proposition 5.3]. It is a long-standing open question whether
w(X) ≤ 22d(X)

for all Hausdorff spaces X, although since |X| ≤ 22d(X)
, it is

clear that w(X) ≤ 222d(X)

. However, as we now show, the former inequality is
valid for Hausdorff submaximal spaces and is a consequence of the following
simple result.

2.15. Proposition. If (X, τ) is a Hausdorff submaximal space, then
w(X) ≤ |X| · 2d(X).

P r o o f. Let D be a dense, hence open, subset of X of cardinality d(X);
hence w(X) ≤ w(D)|X \D| sup{χ(X,x) : x ∈ X \D)}. Furthermore, since
X \ D is discrete, each point of X \ D has a neighbourhood of the form
{x} ∪ U , where U ⊂ D. Thus for each x ∈ X \D, χ(X,x) ≤ 2d(X) and the
result follows since |X \D| ≤ |X| and w(D) ≤ 2d(X).

From Example 2.14 we infer that there are submaximal Hausdorff spaces
with countable Suslin number and w(X) > |X| ≥ 2ω. Hence d(X) cannot
be replaced by c(X) in Proposition 2.15.

The following example shows that the bound for w(X) obtained in 2.15
is the best possible.

2.16. Example. Suppose now that X is the submaximal extension of βR
by some ultrafilter of dense sets which contains the rationals. Then it is easy
to verify that c(X) = d(X) = ω, while ω < πw(X) ≤ c < w(X) = |X| = 2c.
Furthermore, if Y is the discrete space of cardinality c then X × Y is sub-
maximal and d(X × Y ) = πw(X × Y ) = c.

The following proposition deals with weakly collectionwise Hausdorff
spaces. Theorem 2.2 implies that every maximal weakly collectionwise Haus-
dorff space is hereditarily paracompact. However, not all maximal spaces are
even Tikhonov: the example we constructed in 2.5 is not completely regular
because otherwise it would have cardinality at most continuum by Proposi-
tion 2.7.

It is worth mentioning that under some set-theoretic assumptions
V. I. Malykhin [Ma] constructed examples of Tikhonov non-normal max-
imal spaces as well as of normal non-paracompact maximal spaces.

2.17. Proposition. Every weakly collectionwise Hausdorff maximal
space of non-measurable cardinality is a Q-set.

P r o o f. We need to show that every subset of X is a Gδ; however, every
subset of a submaximal space is the intersection of an open set with a closed
set (see [ArCo]) and hence we need only show that each closed subset of
X is a Gδ. To this end, let C be a closed set in X; then C = cl(Int(C)) ∪
(C \cl(Int(C))), which, since X is extremally disconnected and submaximal,
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is the union of an open set and a closed discrete set. Thus to show that every
closed set is a Gδ, it suffices to show that every closed discrete subset of X is
a Gδ. Now if D is a closed discrete subset of X then for any x ∈ D there is an
open Ux 3 x such that the family {Ux : x ∈ D} is disjoint. For each x ∈ D
choose open sets Fn(x) ⊂ Ux such that

⋂{Fn(x) : n ∈ ω} = {x}—this
is possible because |X| is non-measurable and the open neighbourhoods of
a point in a maximal space form an ultrafilter on the complement of the
point [vD]. Clearly then D =

⋂{⋃{Fn(x) : x ∈ D} : n ∈ ω}.

It is an old unsolved problem whether every regular submaximal space
is disconnected. In any submaximal space the boundary of every open set is
closed and discrete. We show that if a submaximal space has a base of open
sets with finite boundaries, then it has a lot of clopen subsets.

2.18. Theorem. If X is a regular submaximal space which has a base
consisting of sets with finite boundaries, then X has a π-base of clopen sets.

P r o o f. Fix a base B in X such that the boundary Bd(U) is finite for
every U ∈ B. Let O be a non-empty open subset of X. Fix a point p ∈ O and
let γ be a maximal disjoint family of open subsets of X with the following
properties:

(1) U ∩ V = ∅ for distinct U, V ∈ γ;
(2) p 6∈ U for every U ∈ γ.

If W =
⋃
γ, then A = Bd(W ) is closed and discrete in X. Hence there

exists a neighbourhood U ∈ B of the point p such that U ⊂ O and U ∩ (A \
{p}) = ∅.

No finite subfamily of γ can cover the set U \ {p} because of (2). There-
fore, there is a V ∈ γ with V ∩ U 6= ∅ and V ∩ Bd(U) = ∅.

The set V ∩U is clopen in X. Indeed, the boundary of U ∩V is contained
in Bd(U)∪Bd(V ). But U ∩ V ∩ (Bd(U)∪Bd(V )) = ∅ and we have found a
non-empty clopen subset of X which lies in O.

3. Nice properties of arbitrary submaximal groups. Topological
groups often behave better than Tikhonov spaces. We confirm this once
more for submaximal and similar groups.

3.1. Proposition. Let G be a group of cardinality κ > ω (without any
topology). Then for each α < κ there exist subsets Gα and Hα of G with
the following properties:

(1) Gα is a subgroup of G for all α < κ;
(2) if α < β < κ, then Gα ⊂ Gβ and Gα 6= Gβ ;
(3) |Gα| = |α| for all α < κ;
(4) Gα =

⋃{Hν : ν ≤ α} for all α < κ;
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(5)
⋃{Hα : α < κ} = G and Hα ∩Hβ = ∅ if α 6= β;

(6) if g ∈ Hα and α < β, then g ·Hβ = Hβ · g = Hβ ;
(7) Hα = H−1

α for all α < κ;
(8) if A is a cofinal subset of κ, then the cardinality of

⋃{Hα : α ∈ A}
is κ.

We call the family {Hα : α < κ} a canonical decomposition of G.

P r o o f. Let G = {gα : α < κ}, where gα 6= gβ if α 6= β. Our first step is
to set G0 = 〈{g0}〉. Suppose that β < κ and that for every α < β we have
constructed a subgroup Gα of G with the following properties:

(i) Gα ⊂ Gγ and Gα 6= Gγ if α < γ < β;
(ii) |Gα| = |α| for all α < β;

(iii) {gγ : γ ≤ α} ⊂ Gα for every α < β.

Let Pβ =
⋃{Gα : α < β}. Then it follows from (ii) that Pβ 6= G and we

can choose β∗ = min{α < κ : gα 6∈ Pβ}. Now we can construct the group
Gβ = 〈Pβ ∪ {gβ∗}〉. After we are through with the construction of Gα for
all α < κ, the family {Gα : α < κ} satisfies (i)–(iii) as well as the property

(iv)
⋃{Gα : α < κ} = G.

For every α < κ let Hα = Gα \
⋃{Gβ : β < α}.

It is evident that the sets Gα and Hα satisfy (1)–(5). To prove (6) observe
that g ∈ Gα and Gα is a subgroup of Gγ for every γ such that α ≤ γ ≤ β.
This implies g ·Gγ = Gγ · g = Gγ for all γ and g ·Hβ = Hβ · g = Hβ so that
(6) also holds. The property (7) is evident.

To see that (8) holds, take any cofinal A ⊂ κ. Since |Hα+1| = |Gα| = |α|
we have ∣∣∣

⋃
{Hα : α ∈ A}

∣∣∣ =
∣∣∣
⋃
{Gα : α ∈ A}

∣∣∣ = |G| = κ.

3.2. Proposition. Suppose that G is a group with a non-discrete ir-
resolvable topology τ such that all left (or all right) translations in G are
continuous and |G| = ∆(G, τ) = κ > ω. Take any canonical decomposition
{Hα : α < κ} of G. For a subset A ⊂ κ, let HA =

⋃{Hα : α ∈ A}. Then
the family ξ = {A ⊂ κ : Int(HA) 6= ∅} is a free ultrafilter on κ.

P r o o f. Let A ⊂ κ. The sets HA and Hκ\A are disjoint and G =
HA∪Hκ\A. Consequently, one of the sets HA or Hκ\A has non-empty interior
as G is irresolvable. Hence A ∈ ξ or κ \A ∈ ξ.

We will show that both these sets cannot belong to ξ, because the one
whose interior is not empty has to be dense in G.

Suppose, for example, that U = Int(HA) 6= ∅. If U is not dense in G,
then there is a non-empty open V ⊂ G with V ∩ U = ∅. Pick x ∈ U and
y ∈ V . Then W = (yx−1 · U) ∩ V 6= ∅. The set W is open and non-empty,
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which implies |W | = κ. On the other hand, W is a subset of a translate
of HA.

Claim. For every g ∈ G, the set (g ·HA)\HA has cardinality less than κ.

P r o o f. Pick an α < κ such that g ∈ Hα ⊂ Gα =
⋃{Hν : ν ≤ α}

(see 3.1(4)). Now if α < β, then g ·Hβ = Hβ , by 3.1(6). Thus, (g ·HA)\HA ⊂
Gα and we can apply 3.1(3).

It follows from the Claim that |W \ HA| < k and hence W \ HA has
empty interior in G. But W lies outside U = Int(HA), which implies that

W = (W \HA) ∪ (W ∩HA) ⊂ (W \HA) ∪ (HA \ U).

Thus W is covered by two disjoint subsets W \HA and HA \U with empty
interior, and hence both are dense in W . As a consequence, W is resolvable.
W. Comfort and Li Feng [CoLF] proved that a union of resolvable spaces
is resolvable. Since all possible left translates of W cover the group G, we
conclude that G is resolvable, which is a contradiction.

We have shown that if U = Int(HA) 6= ∅, then U is dense in G. Hence
exactly one of the sets A and κ \A belongs to ξ and it is established that ξ
is an ultrafilter on κ. The fact that ξ is a free ultrafilter follows from Hα 6∈ ξ
for all α ∈ κ and 3.1(5).

3.3. Theorem. Suppose that G is a group of non-measurable cardinality
κ > ω with a non-discrete topology τ such that all left (or all right) trans-
lations are continuous, ∆(G, τ) = κ and (G, τ) is irresolvable. Take any
canonical decomposition {Hα : α < κ} of the group G. Then there exists a
family {An : n ∈ ω} of subsets of κ such that :

(1)
⋃{An : n ∈ ω} = κ;

(2) each set Hn = HAn =
⋃{Hα : α ∈ An} is closed and nowhere dense

in G;
(3)

⋃{Hn : n ∈ ω} = G.

In particular , (G, τ) is of first category.

P r o o f. Use Proposition 3.2 to conclude that the family ξ = {A ⊂ κ :
Int(HA) 6= ∅} is a free ultrafilter on κ. As κ is a non-measurable cardinal,
there exists a family {Bn : n ∈ ω} such that Bn ∈ ξ for every n and⋂{Bn : n ∈ ω} = ∅. It is easy to see that

⋂{HBn : n ∈ ω} = ∅ and therefore⋃{Hκ\Bn : n ∈ ω} = G. Let An = κ \ Bn. Every subset Hn = HAn has
empty interior, because An 6∈ ξ for all n ∈ ω. Therefore {Hn : n ∈ ω} is
a family of nowhere dense sets whose union covers G, and this proves our
theorem.

3.4. Corollary. Let G be a group of non-measurable cardinality. If τ
is a non-discrete irresolvable topology on G such that all left (or all right)
translations are continuous, then (G, τ) is of first category.
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P r o o f. If G is such a group, denote by κ its dispersion character. The
case κ = ω is trivial, so we assume that κ > ω. There is an open neigh-
bourhood U of the identity with |U | = κ. Then the group G0 = 〈U〉 is open
in G and the dispersion character of G0 coincides with its power. But then
G0 is of first category by Theorem 3.3. Now G contains an open set of first
category, and hence is of first category.

3.5. Corollary. Every irresolvable topological group of non-measurable
cardinality is of first category.

3.6. Corollary. Every submaximal topological group of non-measurable
cardinality is strongly σ-discrete.

P r o o f. Indeed, in a submaximal space every nowhere dense subset is
closed and discrete and every submaximal space is irresolvable, so we can
apply 3.5.

3.7. Corollary. If there is no measurable cardinal , then every irresolv-
able topological group is of first category.

3.8. Corollary. If there is no measurable cardinal , then every submax-
imal topological group is a countable union of its closed discrete subspaces.

3.9. Remark. The result of Corollary 3.8 is true in ZFC for maximal
topological groups, because every such group has an open countable sub-
group by a result of Malykhin [Ma].

Following Guran [Gu] we say that a topological group G is κ-bounded
for some cardinal κ if for every open neighbourhood U of the identity there
exists a subset A ⊂ G with |A| ≤ κ such that A · U = G. It is known
that if G satisfies one of the conditions c(G) ≤ κ or l(G) ≤ κ, then G is
κ-bounded [Gu]. One can easily verify that a subgroup of a κ-bounded group
is also κ-bounded. This fact will be used below.

3.10. Theorem. Let κ be an infinite cardinal number. If G is a κ-
bounded submaximal topological group, then |G| ≤ κ.

P r o o f. Let λ be the dispersion character of G. Take an open subgroup
N of G such that |N | = λ. Then G is a discrete union of translates of N and
it is impossible to cover G by less than |G/N | translates of N . Therefore
|G/N | ≤ κ, so that if we show that λ = |N | ≤ κ, then the theorem will be
proved.

Consider first the case when λ is a limit cardinal. We need the following
simple result, which seems to be known as a part of mathematical folklore
(see, for example, the proof of Theorem 1.1 of [CoRo]).

3.11. Lemma. Let G be a topological group. Suppose that H is a closed
and discrete subgroup of G. Take any open neighbourhood V of the identity
in G such that V ∩H = {e}.
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(1) If U is an open symmetric neighbourhood of the identity with U2⊂V ,
then H 6⊂ A · U for any A ⊂ G such that |A| < |H|.

(2) If U is an open symmetric neighbourhood of the identity with U4⊂V ,
then the family U = {U · g : g ∈ H} is discrete in G.

P r o o f. Indeed, if there were an A as in (1), then for some a ∈ A the set
a·U would contain at least two elements of H; so let h, g ∈ H∩(a·U), h 6= g.
Then there exist u, v ∈ U such that h = au and g = av. Therefore g−1h =
v−1u ∈ U2 ⊂ V and e 6= hg−1 ∈ H, which is a contradiction.

To prove (2), take any g ∈ G. We prove that U ·g can intersect at most one
element of U . If not, then there are u, u1, v, v1 ∈ U and distinct f, h ∈ H such
that uf = u1g and vh = v1g. Therefore e 6= fh−1 = u−1u1v

−1
1 v ∈ U4 ⊂ V

and this contradiction proves the second part of the lemma.

To continue the proof of the theorem, suppose that κ < λ and take a
subset P ⊂ N such that κ < |P | = γ < λ. Then |〈P 〉| = γ and hence
H = 〈P 〉 is closed and discrete in G. By Lemma 3.11(1) the group G is not
κ-bounded, which is a contradiction. Hence our theorem is proved for all
limit cardinals λ.

Now if λ is a successor cardinal, then λ = cf(λ). The group N is submax-
imal and the cardinality and dispersion character of N coincide, so we can
take a canonical decomposition {Hα : α < λ} for N . It follows from Propo-
sition 3.2 that there is a cofinal set A ⊂ λ such that HA =

⋃{Hα : α ∈ A}
is closed and discrete in G and does not contain the identity of G.

Now pick a point xα ∈ Hα for every α ∈ A. The set Y = {xα : α ∈ A}
is closed and discrete in G, being a subset of HA. Since A is cofinal in λ,
the cardinality of Y is λ. There is an open neighbourhood U of the identity
such that U ∩HA = ∅. Choose an open symmetric neighbourhood V of the
identity with V 2 ⊂ U .

Let us verify that

(∗) if P ⊂ G and |P | < λ, then P · V 6= G.

Assume, on the contrary, that P · V = G for some P ⊂ G with |P | < λ.
The set Y has cardinality λ, while |P | < λ. Therefore, there is a p ∈ P such
that p · V contains at least two different points of Y , say xα and xβ , where
α < β. Thus, there are u, v ∈ V such that pu = xα and pv = xβ . It follows
that p = xαu

−1 = xβv
−1 so that

(∗∗) x−1
β · xα = v−1 · u.

It follows from 3.1(7) that x−1
β ∈ Hβ , and hence x−1

β · xα ∈ Hβ ⊂ HA

by 3.1(6). But it is immediate from (∗∗) that x−1
β · xα ∈ V · V ⊂ U ; this

contradiction proves that P · V 6= G. Now, (∗) implies κ ≥ λ.
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The following corollary strengthens Theorem 8.4 of [ArCo] which states
that the density and cardinality of any submaximal group are equal.

3.12. Corollary. c(G) = |G| for every submaximal group G. In partic-
ular , a submaximal group with the Suslin property is countable.

P r o o f. It is known that if c(G) ≤ κ, then G is κ-bounded [Gu]. Now
apply Theorem 3.11 to conclude that |G| ≤ κ.

The following lemma will be of use for proving hereditary paracompact-
ness of some submaximal topological groups.

3.13. Lemma. Let X be a regular space. Suppose that X=
⋃{Hn : n∈ω},

where the subsets Hn have the following properties:

(1) Hi is closed and discrete in X for all i ∈ ω;
(2) Hi ∩Hj = ∅ if i 6= j;
(3) for every x ∈ X there is an open neighbourhood Vx of x such that

for any i ∈ ω the family {Vx : x ∈ Hi} is discrete in X.

Then X is weakly collectionwise Hausdorff.

P r o o f. Let D be a closed discrete subset of X. Then D=
⋃{Dn : n∈ω},

where Dn = D ∩Hn for all n ∈ ω.
For every point x ∈ D0, let Wx be an open neighbourhood of x such that

Wx ⊂ Vx and Wx ∩ (D \ {x}) = ∅. Then the family δ0 = {Wx : x ∈ D0} is
discrete and

⋃
δ0 ∩ (D \D0) = ∅.

Suppose that n ≥ 1 and that for every k < n and for all x ∈ Dk we have
defined an open neighbourhood Wx of x with Wx ⊂ Vx and such that the
families δk = {Wx : x ∈ Dk}, k = 0, . . . , n−1, have the following properties:

(i) δk is discrete for every k = 0, 1, . . . , n− 1;
(ii)

⋃
δk ∩ (D \Dk) = ∅;

(iii) (
⋃
δi) ∩ (

⋃
δj) = ∅ if i 6= j.

Every point x ∈ Dn has an open neighbourhood Wx in X such that
Wx ⊂ Vx, Wx ∩ (D \ {x}) = ∅, and

Wx ∩
(⋃

δ0 ∪ . . . ∪
⋃
δn−1

)
= ∅.

It is clear that the family δn = {Wx : x ∈ Dn} satisfies (i)–(iii) as well.
Thus,when we construct δn for all natural n, the family {Wx : x ∈ D} will
be disjoint and x ∈ Wx for every x ∈ D. This proves that X is weakly
collectionwise Hausdorff.

3.14. Theorem. Every submaximal group G of non-measurable cardinal-
ity is hereditarily paracompact.
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P r o o f. By Theorem 2.2 it suffices to prove that G is weakly collec-
tionwise Hausdorff. It is clear that G has an open subgroup whose cardi-
nality and dispersion character are equal. If we prove hereditary paracom-
pactness of this open subgroup of G, then G will be hereditarily paracom-
pact. Therefore, without loss of generality we may assume that |G| = κ
is an uncountable cardinal which coincides with the dispersion character
of G.

Take a canonical decomposition {Hα : α < κ} of G. Applying The-
orem 3.3 find a family {An : n ∈ ω} of subsets of κ such that

⋃{An :
n ∈ ω} = κ and Hn = HAn =

⋃{Hα : α ∈ An} is closed and discrete in
G. For each n ∈ ω find an open neighbourhood Un of the identity e with
Un ∩Hn ⊂ {e}. There exists a symmetric open neighbourhood Vn of e such
that V 4

n ⊂ Un.
For every α ∈ An, let Wn

α = Vn · Hα. We will show that the family
γn = {Wn

α : α ∈ An} is discrete in G for all n ∈ ω.
Let g ∈ G. It suffices to prove that O = Vn · g can intersect at most one

element of γn.
Suppose, on the contrary, that there exist α, β ∈ An, α < β, such

that Wn
α ∩ O 6= ∅ 6= Wn

β ∩ O. Then there are p ∈ Hα and q ∈ Hβ with
the property that (Vn · p) ∩ O 6= ∅ 6= (Vn · q) ∩ O. Pick u, v, u1, v1 ∈ Vn
such that ug = vp and u1g = v1q. Note that these equalities imply e 6=
pq−1 = v−1uu−1

1 v1 ∈ V 4 ⊂ U . But q−1 ∈ Hβ by 3.1(7) and pq−1 ∈ Hβ by
3.1(6). The contradiction with Hn∩Un ⊂ {e} shows that each γn is discrete
in G.

For every α ∈ An, the subgroup Gα =
⋃{Hν : ν ≤ α} is closed and

discrete in G because |Gα| < κ. Let U be an open neighbourhood of e such
that U ∩ Gα = {e}. Choose a symmetric open neighbourhood V of e with
V 4 ⊂ U . Then the family µ = {V ·x : x ∈ Gα} is discrete in G—this follows
from Lemma 3.11(2).

Take any n ∈ ω. If α ∈ An and p ∈ Hα, let Vp = (V · p) ∩Wn
α . It is

straightforward to check that the family µn = {Vp : p ∈ Hn} is discrete in
G and p ∈ Vp for every p ∈ Hn.

Thus, we have obtained a family {Hn : n ∈ ω} for the group G which
satisfies the conditions (1)–(3) of Lemma 3.13. Thus G is hereditarily para-
compact by Theorem 2.2.

3.15. Corollary. If a submaximal topological group G has non-measu-
rable cardinality , then dim(G) = 0. In particular , G cannot be connected.

P r o o f. If a normal space is a countable union of its strongly zero-
dimensional (in this case even discrete) subspaces, then it is strongly zero-
dimensional [En, Theorem 7.2.1].
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3.16. Corollary. If there are no measurable cardinals, then every sub-
maximal topological group is hereditarily paracompact and zero-dimensional
in the sense of the dimension dim. In particular , no submaximal infinite
topological group is connected.

This corollary gives a partial answer to Problem 8.18 of [ArCo]. It turns
out that for Abelian submaximal groups no set-theoretic assumptions are
needed to prove that they are paracompact and strongly σ-discrete.

3.17. Proposition. Any infinite Abelian submaximal topological group
is hereditarily paracompact and strongly σ-discrete.

P r o o f. Let G be an Abelian submaximal group. It is proved in [Pr] that
every irresolvable (and hence every submaximal) Abelian group contains a
countable open subgroup. Therefore G is a discrete union of its countable
subspaces and the result follows.

3.18. Corollary. Any Abelian submaximal topological group is strongly
zero-dimensional.
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