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and Y. S t e r n f e l d (Haifa)

Abstract. Let X be an atom (= hereditarily indecomposable continuum). Define a
metric % on X by letting %(x, y) = W (Axy) where Ax,y is the (unique) minimal subcontin-
uum of X which contains x and y and W is a Whitney map on the set of subcontinua of X
with W (X) = 1. We prove that % is an ultrametric and the topology of (X, %) is stronger
than the original topology of X. The %-closed balls C(x, r) = {y ∈ X : %(x, y) ≤ r} coin-
cide with the subcontinua of X. (C(x, r) is the unique subcontinuum of X which contains
x and has Whitney value r.) It is proved that for any two (nontrivial) atoms and any
Whitney maps on them, the corresponding ultrametric spaces are isometric. This implies
in particular that the combinatorial structure of subcontinua is identical in all atoms.

The set M(X) of all monotone upper semicontinuous decompositions of X is a lattice
when ordered by refinement. It is proved that for two atoms X and Y , M(X) is lattice
isomorphic to M(Y ) if and only if X is homeomorphic to Y .

1. Introduction. A continuum is a compact metrizable connected space.
A continuum X is decomposable if it is representable as X = X1 ∪ X2

with Xi proper subcontinua of X. All common naturally described continua
are decomposable. Brouwer constructed an indecomposable continuum, and
Knaster [Kn] constructed a hereditarily indecomposable continuum, i.e., a
continuum all of whose subcontinua are indecomposable. Following [Lev-St3]
we call such continua atoms. Bing [Bi] proved the existence of atoms of all
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dimensions. Krasinkiewicz [Kra] (see also [Lev]) proved that if M is a man-
ifold then for every compact metrizable space X the functions f : X → M
such that for each m ∈ M every component of f−1(m) is an atom, form a
dense Gδ set in the function space C(X,M). This indicates, in particular,
that “most” subcontinua of X are atoms.

In recent years atoms have been applied in various cases to solve problems
which were originally unrelated to atoms (see [Po1], [St], [Po2], [Lev-St3],
[Lev-St4], [Lev]) and a comprehensive text on atoms [Lew] is in preparation.

The usefulness of atoms follows from the rather simple relationships be-
tween their subcontinua:

1.1. If A and B are subcontinua of an atom and A∩B 6= ∅, then A ⊂ B
or B ⊂ A.

(This is immediate—if not, A∪B would be a decomposable continuum.)
In this article we study the combinatorial structures of the family of

subcontinua of an atom X, and that of the upper semicontinuous decompo-
sitions of X into continua, denoted by M(X).

It turns out that in spite of the large diversity of atoms, the combinatorial
structure of their subcontinua is the same in all of them: given two nontrivial
atoms X and Y there exists a one-to-one function f of X onto Y such that
both f and f−1 carry continua to continua. (This result is due to Nikiel
[Ni].) The construction of f and the exhibition of its properties depend on
the following consequence of 1.1.

1.2. Let X be an atom. Then

(a) any two points x, y ∈ X are contained in a unique minimal subcon-
tinuum Axy; and

(b) if z is yet another point of X, then two of the continua Axy, Axz and
Ayz coincide and contain the third.

For the proof of (b) observe that (by 1.1) the family {Axy, Axz, Ayz}
is nested. Assume e.g. that Axy ⊂ Axz ⊂ Ayz. If Axz 6= Ayz then Axz =
Axz ∪ Axy is a continuum which contains both y and z and hence must
contain Ayz, a contradiction.

For any Whitney map W (see §2 for a definition) on the set C(X) of all
subcontinua of an atom X we let

(∗) %(x, y) = W (Axy) for x, y ∈ X.
It follows immediately from 1.2 and properties of Whitney maps that % is a
metric and

(∗∗) %(x, y) ≤ max{%(x, z), %(y, z)} for x, y, z ∈ X.
We call the metric space (X, %) an ultrametric atom associated with the
Whitney map W ; the name is motivated by the fact that a metric % on
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a set X which satisfies the strong form (∗∗) of the triangle inequality is
called an ultrametric ([Sch], [VR]). We prove (see Theorem 2.4) that any
two nontrivial ultrametric atoms are isometric and this is the central result
of §2; it implies, in particular, that the combinatorial structure of the set of
all subcontinua of a nontrivial atom is independent of that atom. Clearly, the
isometries between two ultrametric atoms (X, %) and (Y, τ) are in general
discontinuous in the original topologies of X and Y (and are of necessity
such if X is not homeomorphic to Y ).

In §3 we turn to the study of the collection M(X) of upper semicontin-
uous decompositions of X into subcontinua. We show that, in contrast, the
lattice M(X) determines the atom X uniquely (see Theorem 3.11).

The authors express their thanks to both referees for their detailed and
helpful comments.

2. The ultrametric atom. Let (X, %) be a metric space. For x ∈ X
and 0 ≤ r ≤ 1, we let B(x, r) = {y ∈ X : %(x, y) < r}, C(x, r) = {y ∈ X :
%(x, y) ≤ r} and S(x, r) = {y ∈ X : %(x, y) = r} denote (respectively) the
open r-ball, the closed r-ball and r-sphere with center x and radius r. Note
that if r = 0 then B(x, r) = ∅ and C(x, r) = S(x, r) = {x}.

Lemma 2.1. Let % be an ultrametric on a set X. Then the following hold
(cf. [Sch], [VR]).

(1) If r > 0 then B(x, r), C(x, r) and S(x, r) are clopen subsets of the
metric space (X, %).

(2) If y ∈ B(x, r) then B(x, r) = B(y, r).
(3) If y ∈ C(x, r) then C(x, r) = C(y, r).
(4) If two closed balls C(x, r) and C(y, s) intersect and r ≥ s, then

C(x, r) ⊃ C(y, s).
(5) Every family of mutually intersecting closed balls or open balls is

nested.
(6) For any three points x, y, and z in X, the two largest of the three

reals %(x, y), %(x, z) and %(y, z) coincide. That is, every triangle in (X, %) is
isosceles and the two equal sides dominate the third side.

Before continuing, we define Whitney maps and present other general
facts that will be applied in the sequel. Let X be a compact metrizable space.
Let 2X denote the space of all nonempty closed subsets of X equipped with
the Hausdorff metric and let C(X) ⊂ 2X denote the set of its subcontinua.

2.2. A continuous function W : C(X) → [0, 1] is called a Whitney map
if W ({x}) = 0 for every x ∈ X, W (X) = 1 and A  B ∈ C(X) implies
W (A) < W (B). Whitney maps exist for every nontrivial X (see e.g. [Na],
or [Lev-St4] for a simple construction).
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Let X be an atom and let x ∈ X. The composant of x in X is the union
of all proper subcontinua of X which contain x. Every composant is the
union of countably many continua. (Take, e.g., C =

⋃{An : n ≥ 1} where
An is the continuum with x ∈ An and W (An) = 1− 1/n, where W is some
Whitney map.) As proper subcontinua of atoms have an empty interior
(see e.g. [Ho-Yo]) composants are sets of first category in X. The Baire
Category theorem thus implies that every atom contains uncountably many
composants. Mazurkiewicz [Ma] improved this observation; he proved that
every atom X contains a perfect Gδ subset Y which intersects a composant
in one point at most. Y must contain a Cantor set and it follows that the
cardinality of the set of composants in an atom is c = 2ℵ0 .

Proposition 2.3. Every ultrametric atom (X, %) satisfies the following :

(1) The identity map id : (X, %)→ X is continuous.
(2) For 0 ≤ r ≤ 1 and x ∈ X, C(x, r) is the unique subcontinuum A of

X (with respect to the original topology on X) which contains x and with
W (A) = r. In particular , C(x, 1) = X.

(3) For r > 0 and x ∈ X, B(x, r) is the composant of x relative to the
continuum C(x, r).

(4) Every family of mutually intersecting closed balls in (X, %) has a
nonempty intersection. Moreover , if {C(xα, rα)} are mutually intersecting
balls, then

⋂{C(xα, rα)} = C(x, r) where x is any point in the intersection
and r = inf ra. (This property is referred to in [Sch] and [VR] as “spherical
completeness;” a related property, called “hyperconvexity” was introduced
by [Ar-Pa]; in [Li] and [Li-Tz] it is called “the 2-∞ intersection property.”)

(5) For every x ∈ X the range of the function %(x, ·) is [0, 1].
(6) The weight wt(X, %) (=minimal cardinality of a dense set) of (X, %)

is c = 2ℵ0 .
(7) In every closed ball C(x, r) for r > 0 in (X, %) the cardinality of the

family of distinct open balls {B(y, r) : y ∈ C(x, r)} is c = 2ℵ0 . (Note that
by 2.1(5) two such balls are either disjoint or coincide.)

P r o o f. (1) Let xn → x0 in (X, %), i.e., %(x0, xn) = W (Ax0xn) →
W (Ax0x0) = 0. Since x0 ∈ Ax0xn for every n, it follows from 1.1 that
the family {Ax0xn} is nested. Since W (Ax0xn) → 0, it also follows that⋂
n≥1Ax0xn = {x0}. Hence, diam(Ax0xn) → 0. (Here, diam refers to diam-

eter with respect to the original metric d on X.) That is, d(x0, xn)→ 0.
(5) Let x ∈ X. Then L(x) = {A ∈ C(X) : x ∈ A} is an arc in C(X)

with end points {x} and X (see [Ku, p. 186]). Also W : L(x)→ [0, 1] is an
embedding. It follows that for each 0 ≤ r ≤ 1 there exists a unique A ∈ L(x)
such that W (A) = r. Let E denote the composant of x in A. If r > 0 then
E  A (by 2.2). Let y ∈ A \ E. It follows that A = Axy, and hence that
%(x, y) = r.
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(2) C(x, r) = {y ∈ X : %(x, y) ≤ r} = {y ∈ X : W (Axy) ≤ r}. Let y ∈ X
be such that %(x, y) = r. Such a y exists by (5). Then for A = Axy we have
x ∈ A and W (A) = r. If some other subcontinuum A′ satisfies x ∈ A′ and
W (A′) = r, then, since A′ ⊂ A or A ⊂ A′, we must have A = A′ since W is
strictly monotone. Now it is clear that Axy ⊂ C(x, r) and so W (C(x, r)) ≥ r.
If W (C(x, r)) > r, then by (5) there is a z ∈ C(x, r) with W (Axz) > r, i.e.
%(x, z) > r, an impossibility. Thus, if %(x, y) = r, then C(x, r) = Axy.

(3) B(x, r) = {y ∈ X : %(x, y) < r} =
⋃{C(x, s) : s < r}. By (2),

{C(x, s) : s < r} ranges over all subcontinua of X which contain x and have
Whitney value < r, i.e., all proper subcontinua of C(x, r) which contain x.
This is precisely the composant of x in C(x, r).

(4) Let {C(xα, rα)} be a family of mutually intersecting closed balls
in (X, %). By 2.1(5) and 2.3(2), {Aα = C(xα, rα)} is a nested family of
continua in X with W (Aα) = rα. By compactness and continuity of W ,
A =

⋂
Aα 6= ∅, W (A) = inf ra = r and A = C(x, r) for each x ∈ A.

(7) By (2) and (4), {B(y, r) : y ∈ C(x, r)} is the set of composants
of the continuum C(x, r). By [Ma] (see also [Ku, p. 213, Remark (i)]) the
cardinality of this set is c = 2ℵ0 .

(6) This follows immediately since by (7), (X, %) contains c mutually
distinct open balls. But here is a simpler and more elementary argument:
for 0 < r < 1 the collection {C(x, r) : x ∈ X} is a decomposition of
X into disjoint continua. It is easy to verify that this decomposition is
continuous (with respect to the original atom topology on X). It follows
that the quotient map q : X → Y maps X onto a nontrivial atom Y, and
for each y ∈ Y , q−1(y) = C(x, r) for some x ∈ X. As the cardinality of Y
is c and the balls q−1(y) are distinct, it follows that wt(X, %) ≥ c. (Clearly,
wt(X, %) ≤ card X = c. )

Theorem 2.4. Any two nontrivial ultrametric atoms (X, %) and (Y, τ)
are isometric. Moreover , given a subset X ′ ⊂ X with wt%(X ′) < c (i.e., the
weight of X ′ as a subspace of (X, %)) and an isometry f : X ′ → (Y, τ), f is
extendable to an isometry of (X, %) onto (Y, τ).

Remark 2.5. The restriction wt%(X ′) < c is essential.
We demonstrate this by an example. Let X be an atom. Let E ⊂ X

be a subset which consists of a single representative of each composant of
X, i.e., for every composant B of X, B ∩ E consists of a single point. Let
(X, %) be the associated ultrametric atom. Then for x 6= y ∈ E, %(x, y) = 1.
(If %(x, y) < 1 then x and y are in the same composant of X.) By 2.3(7),
card(E) = c and hence wt%(E) = c. Let x0 ∈ E and let f : E \ {x0} → E
be one-to-one and onto. Then f is an isometry of E \ {x0} onto E. But f
is not extendable to an isometry of (X, %) onto itself. As a matter of fact,
f is not even extendable over E. Indeed, in order to extend f to x0, f(x0)
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must satisfy %(f(x), f(x0)) = 1 for all x ∈ E \ {x0}. But %(f(x), f(x0)) = 1
if and only if f(x) and f(x0) belong to different composants of X, and since
f(E\{x0}) = E and since E meets each composant, there are no composants
left in which to put f(x0).

Before proving Theorem 2.4 we present some corollaries.

Corollary 2.6. Let (X, %) and (Y, τ) be ultrametric atoms, let x ∈ X,
y ∈ Y and 0 ≤ r ≤ 1. Then BX(x, r) is isometric to BY (y, r), CX(x, r) is
isometric to CY (y, r) and SX(x, r) is isometric to SY (y, r).

P r o o f. Let f be the isometry of (X, %) onto (Y, τ) with f(x) = y. Then
f maps BX(x, r) and CX(x, r) onto BY (y, r) and CY (y, r), respectively.

Corollary 2.7. Let x0 ∈ X and 1 ≥ r > 0. Then S(x0, r) = C(x0, r) \
B(x0, r) is isometric to C(x0, r). In particular , X \ B(x0, 1) = C(x0, 1) \
B(x0, 1) is isometric to (X, %).

P r o o f. As in 2.5, let E ⊂ C(x0, r) be a set which contains x0 and
which intersects every composant of C(x0, r) (i.e., every ball B(y, r), y ∈
C(x0, r)) in exactly one point. Let f : E0 = E \ {x0} → E be one-to-
one and onto. Then f is an isometry since for y 6= z ∈ E, %(y, z) = r.
Extend f to an isometry F : C(x0, r) \ B(x0, r) → C(x0, r) as follows. Let
x ∈ S(x0, r). Then x belongs to a unique ball B(y, r) for some y ∈ E \ {x0}.
By 2.6 there exists an isometry fy : B(y, r) → B(f(y), r) and we define
F (x) = fy(x), i.e., F |B(y,r) = fy for y ∈ E \ {x0}. F is an isometry since
for y1 6= y2 ∈ E \ {x0}, w ∈ B(y1, r) and z ∈ B(y2, r), we have %(w, z) = r,
and F (S(x0, r)) = C(x0, r), since S(x0, r) =

⋃{B(y, r) : y ∈ E \ {x0}} and
C(x0, r) =

⋃{B(y, r) : y ∈ E}.
A similar argument can be applied to prove the following.

Corollary 2.8. Let (X, %) and (Y, τ) be ultrametric atoms, let x0 ∈ X,
y0 ∈ Y , and let 0 < r ≤ 1. Let D ⊂ CX(x0, r) and E ⊂ CY (y0, r) be
subsets with the same cardinality such that the balls BX(x, r), x ∈ D, and
BY (y, r), y ∈ E, are mutually disjoint , i.e., D (respectively E) intersects
every composant of CX(x0, r) (respectively CY (y0, r)) in at most one point.
Then

⋃{BX(x, r) : x ∈ D} and
⋃{BY (y, r) : y ∈ E} are isometric.

The following lemma will be applied in our proof of Theorem 2.4.

Lemma 2.9. Let (X, %) and (Y, τ) be ultrametric atoms. Let E ⊂ X be
closed in (X, %) with wt%(E) < c, and let f : E → (Y, τ) be an isometry. Let
e ∈ X \ E. Then f is extendable over E ∪ {e}.

P r o o f. We need to find a point v = f(e) in Y such that τ(f(x), v) =
%(x, e) for every x ∈ E. Evidently, v has this property if and only if
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v ∈
⋂

x∈E
SY (f(x), %(x, e))(2.10)

=
⋂

x∈E
CY (f(x), %(x, e)) \BY (f(x), %(x, e))

=
⋂

x∈E
CY (f(x), %(x, e)) \

⋃

x∈E
BY (f(x), %(x, e)),

and we shall show that the intersection in (2.10) is not empty.
Because E is closed in (X, %) and e 6∈ E, r = dist%(e,E) > 0. Consider

the following two cases:

Case (i): The distance r = dist%(e,E) is not attained. In this case, let
(xn)n≥1 be points in E such that the sequence (%(xn, e)) is strictly decreasing
to r. Let x ∈ E. Then for some n, it follows that %(xn, e) < %(x, e) and by
2.1(6), %(xn, x) = %(x, e). Hence also τ(f(x), f(xn)) = %(x, e) and it follows
that f(xn) ∈ CY (f(x), %(x, e)). By 2.1(3) and 2.1(4), we conclude that

CY (f(x), %(x, e)) = CY (f(xn), %(x, e)) ⊃ CY (f(xn), %(xn, e)).

It follows that A =
⋂{CY (f(x), %(x, e)) : x ∈ E} =

⋂{CY (f(xn), %(xn, e)) :
n ≥ 1}. But CY (f(xn), %(xn, e)) is a decreasing sequence of closed balls in
(Y, τ) and by spherical completeness (2.3(4)), A 6= ∅; in fact, A = CY (y, r)
for some (every) y ∈ A.

Let us return to the arbitrary element x ∈ E which satisfies %(xn, e) <
%(x, e) = %(x, xn). ThenBY (f(x), %(x, e)) does not meet CY (f(xn), %(xn, e)).
To see this, note that τ(f(xn), f(x)) = %(xn, x) = %(x, e), which implies that
f(xn) 6∈ BY (f(x), %(x, e)) and CY (f(xn), %(xn, e)) is a ball of smaller radius.

In particular, BY (f(x), %(x, e)) ∩A = ∅. Hence
⋃
{BY (f(x), %(x, e)) : x ∈ E} ∩A = ∅

and the intersection in (2.10) agrees with A. This completes case (i).

Case (ii): The distance r = dist%(e,E) is attained. Let E ⊃ E1 =
{z ∈ E : %(z, e) = r}. For z, w ∈ E1, %(z, e) = %(w, e) = r and by 2.1(2),
r ≥ %(z, w). Let E2 ⊂ E1 be a nonempty subset with %(z, w) = r for
z, w ∈ E2, z 6= w, and such that E2 is maximal with respect to this property.
Since E2 is r-discrete, card(E2) ≤ wt(E) < c. (Note that E2 may be finite
or even consist of a single point. Recall that in the example in Remark 2.5
we had E = E1 = E2 with r = 1 and card(E2) = c, and the conclusion of
the lemma failed.)

Consider the intersection

(2.11) D =
⋂

z∈E2

SY (f(z), r) =
⋂

z∈E2

CY (f(z), r) \
⋃

z∈E2

BY (f(z), r).
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Since for w, z ∈ E2, τ(f(w), f(z)) = %(w, z) = r, all the closed balls
CY (f(z), r) coincide. So

⋂{CY (f(z), r) : z ∈ E2} = CY (f(z0), r) for some
z0 ∈ E2. By 2.3(7), CY (f(z0), r) contains c mutually disjoint open balls
BY (y, r) for y ∈ CY (f(z0), r), while

⋃{BY (f(z), r) : z ∈ E2} is the union
of at most card(E2) < c such balls. It follows that

⋃{BY (f(z), r) : z ∈ E2}
does not exhaust all of CY (f(z0), r) and hence D 6= ∅. We claim that
D ⊂ ⋂{SY (f(x), %(x, e)) : x ∈ E}, i.e., if v ∈ D then for all x ∈ E,
τ(f(x), v) = %(x, e).

To establish this claim, first note that if x ∈ E2 this follows from 2.11. If
x ∈ E1\E2, then by the maximality of E2 there is some z ∈ E2 with %(x, z) <
r = %(z, e) and by 2.1(6), %(z, e) = %(x, e) = r. Now τ(f(x), f(z)) = %(x, z)
and since v ∈ D, τ(f(x), v) = r > τ(f(x), f(z)). Applying 2.1(6) once again,
it follows that τ(f(x), v) must equal τ(f(z), v) = r = %(x, e), and we are
done.

Finally, if x ∈ E \ E1, again let z ∈ E2. Then %(z, e) = r < %(x, e) and
hence by 2.1(6), %(x, e) = %(x, z) = τ(f(x), f(z)). Thus, r = τ(f(z), v) <
τ(f(x), f(z)) and another application of 2.1(6) yields

τ(f(x), v) = τ(f(x), f(z)) = %(x, e).

Proof of Theorem 2.4. Let (X, %) and (Y, τ) be ultrametric atoms, let
X ′ ⊂ X with wt%(X ′) < c, and let f : X ′ → Y be an isometry. We must
show that f is extendable to X.

Note first that since (X, %) and (Y, τ) are complete metric spaces (which
follows from spherical completeness), f is extendable over the closure of X ′.
Hence we may assume that X ′ and Y ′ = f(X ′) are closed. Let A ⊂ X \X ′
and B ⊂ Y \Y ′ be dense in X \X ′ and Y \Y ′ respectively, with card(A) =
card(B) = c. Well order A and B by indexing their elements with ordinals
< c. Let A = {xα : α < c} and B = {yα : α < c}. By transfinite in-
duction we construct for each ordinal α < c subsets Xα ⊃ X ′ of X and
Yα ⊃ Y ′ of Y with (i) {xβ ∈ A : β ≤ α} ⊂ Xα, (ii) {yβ ∈ B : β ≤ α} ⊂ Yα,
(iii) wt%(Xα) < c and wtτ (Yα) < c and an isometric extension fα :
Xα → Yα of f .

This is done by a routine back and forth argument. SetX0 = X ′ and Y0 =
Y ′. Apply Lemma 2.9 twice, first to extend f over X0∪{x0} to Y0∪{f(x0)},
and then (if necessary) to extend f−1 over Y1 = Y0∪{f(x0)}∪{y0} to X1 =
X0∪{x0}∪{f−1(y0)}. Let α < c be an ordinal. Assume that fβ , Xβ and Yβ
have been constructed for all ordinals β < α. If α = β+1 for some β, then we
repeat the above argument to construct fβ+1, Xβ+1 = Xβ∪{xβ}∪{f−1(yβ)}
and Yβ+1 = Yβ ∪{f(xβ)}∪{yβ}. Note that if xβ ∈ Xβ already then we take
Xβ+1 = Xβ and similarly if yβ ∈ Yβ . If α is a limit ordinal then first we
apply completeness to extend f to f ′α :

⋃
β<αXβ →

⋃
β<α Yβ (with closure

in (X, %) and (Y, τ) respectively). Now apply Lemma 2.9 to add xα ∈ A and
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yα ∈ B. Note that the weights of both Xα and Yα remain < c during the
whole procedure. Eventually we obtain an isometric extension of f over a
closed set containing A into a closed set containing B, and as A and B are
dense, this function maps X onto Y .

Theorem 2.4 shows that there is a unique atomic ultrametric space up to
an isometry. We conclude this section with a concrete model for this space.
It turns out that only the following properties of an atomic ultrametric space
(X, %) were applied in the proof of Theorem 2.4.

2.12. (1) (X, %) is an ultrametric space.
(2) Spherical completeness (2.3(4)).
(3) In every closed ball C(x, r), r > 0, the cardinality of the family of

disjoint open balls B(y, r) for y ∈ C(x, r) is c (2.3(7)).

Note that (3) also implies that wt%(X, %) ≥ c and that the sphere
S(x, r) = C(x, r) \ B(x, r) is not empty (2.3(7)). Also, spherical complete-
ness implies completeness. It follows that every metric space which satisfies
2.12 is isometric to the ultrametric atom. The following space (J, %) is such
an example.

Example 2.13. (i) J consists of all real-valued continuous functions f
on [0, 1] with f(1) = 0.

(ii) For f, g ∈ J , %(f, g) ≤ r if f(x) = g(x) for all r ≤ x ≤ 1, i.e., if f
and g agree on [r, 1].

Note that %(f, g) = r if %(f, g) ≤ r but f and g do not agree on [s, 1]
for any s < r. We leave it to the reader to verify that (J, %) satisfies 2.12. It
follows that every ultrametric atom is isometric to (J, %).

3. The tree of subcontinua and the lattice of monotone upper
semicontinuous decompositions of an atom. The fact that any two
ultrametric atoms are isometric, as proved in §2, indicates that the combi-
natorial structure of subcontinua is the same in all nondegenerate atoms. In
this section we study a richer structure which distinguishes between different
atoms.

Let X be a compact metrizable space. Define an equivalence relation on
the family of all continuous functions (= maps) of X into any Hausdorff
space by

Definition 3.1. f : X → f(X) and g : X → g(X) are equivalent
(f ∼ g) if there exists a homeomorphism h : f(X) → g(X) such that
g = hf .

For a map f : X → f(X) and x ∈ X set (x)f = f−1f(x), the fiber of f
at x. One checks easily that f ∼ g if and only if (x)f = (x)g for all x ∈ X,
i.e., if f and g induce the same decomposition on X.
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Let D(X) denote that set of all maps of X into a Hausdorff space modulo
the equivalence relation∼. Recall that a decomposition F ofX into mutually
disjoint closed sets is called upper semicontinuous if whenever a sequence
(An)n≥1 of elements of F converges to some closed subset A of X in 2X

then A is contained in some element of F . If every such limit A is itself an
element of F then F is called a continuous decomposition.

A map f : X → f(X) has a Hausdorff range if and only if the decompo-
sition {(x)f : x ∈ X} is upper semicontinuous (see [Ku, p. 66]). It follows
that an element of D(X) represents an upper semicontinuous decomposition
of X, and we call D(X) the space of upper semicontinuous decompositions.
Note that an element of D(X) is a continuous decomposition if and only if
it represents an open mapping.

Although an element of D(X) is a decomposition of X we shall take some
liberties and also use functional notation. Thus, for example, for f ∈ D(X),

f = {(x)f : x ∈ X} = {f−1(y) : y ∈ f(X)},
and A ∈ f if A = (x)f for some x ∈ X. The class of the identity map is
denoted by id, while const denotes the class of the constant maps.

3.2. D(X) carries a natural order relation: f ≤ g if g refines f , i.e., if the
decomposition g of X refines the decomposition f , or, equivalently, if for all
x ∈ X, (x)g ⊂ (x)f . With this order, D(X) is a complete lattice. Indeed,
for E ⊂ D(X),

∨
E = supE = g is defined by

(3.3) (x)g =
⋂
{(x)f : f ∈ E}.

That is, g = supE is the class of the product map : X →∏{f(X) : f ∈ E}
whose f coordinate, f ∈ E, is f itself.

In particular, for f, g ∈ D(X), (x)(f ∨ g) = (x)f ∩ (x)g and f ∨ g is
the class of the product map (f, g) : X → f(X) × g(X), where (f, g)(x) =
(f(x), g(x)).

Also,

(3.4)
∧
E =

∨
{g : g ∈ D(X), g ≤ f for all f ∈ E}.

Note that for all f ∈ D(X), const ≤ f ≤ id. We use f < g to indicate that
f ≤ g and f 6= g.

The sets D(X) (and M(X), which will be defined below) were introduced
and studied in [St], [Lev-St1], [Lev-St2] and [Lev-St3]. Note, however, that
in these papers f ≤ g if f refines g and not as in this article.

Recall that a map f : X → Y is monotone if f−1(y) is connected for all
y ∈ Y . Let

M(X) = {f ∈ D(X) : f is monotone}.
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Thus, f ∈ M(X) if and only if (x)f is a continuum for all x ∈ X. In
general M(X) is not a sublattice of D(X) since the intersection of continua
need not be connected. But if X is an atom then M(X) is a complete
sublattice of D(X). Indeed, if E ⊂M(X) then

(3.5) (x)
∨
E =

⋂
{(x)f : f ∈ E}

is an intersection in X of continua all of which contain the point x and hence
are nested. This implies that the intersection is a nonempty continuum.

Moreover, for f, g ∈M(X), we have

(3.6) (x)(f ∧ g) = (x)f ∪ (x)g.

The reader may verify (or else check in [St]) that ifX is an atom, then {(x)f∪
(x)g : x ∈ X} is indeed an upper semicontinuous monotone decomposition of
X which agrees with the earlier definition of f ∧g in (3.4). Note though that
(3.6) is valid only for a finite subset E ⊂ M(X). Also,

⋃{(x)(f) : f ∈ E}
is always a decomposition of X but is not necessarily upper semicontinuous
when E ⊂M(X) is an infinite set.

It should also be noted that atoms with monotone maps form a category;
the quotient f(X) of a monotone upper semicontinuous decomposition f of
an atom X is also an atom and one may think of the elements of M(X)
as of atomic quotients of X, where f ≤ g means that f factors through g.
Thus, M(X) is a natural object to study when X is an atom.

For the remainder of the article we assume that X is a nontrivial atom.
Let A be a nontrivial subcontinuum of X, i.e., A contains more than one
point. Let fA ∈M(X) be defined by

(3.7) (x)fA =
{
A if x ∈ A,
{x} if x 6∈ A,

i.e., fA is the decomposition of X whose only nontrivial element is A. Clearly
fA is upper semicontinuous and monotone.

Set

(3.8) T (X) = {fA : A is a nontrivial subcontinuum of X}.
Clearly fA ≤ fB in M(X) if and only if B ⊂ A. Hence the map A→ fA is
an order reversing isomorphism of the nontrivial subcontinua of X (ordered
by inclusion) into T (X) ⊂M(X).

Remark 3.9. The singletons of X are not represented explicitly in T (X)
but they can be easily identified there. Let x ∈ X. Set L(x) = {A ∈ C(X) :
x ∈ A}. Then L(x) is a maximal chain (= linearly ordered set) in C(X)

with respect to inclusion and is order isomorphic to [0, 1]; indeed, every
Whitney map is strictly monotone on L(x) with W ({x}) = 0 and W (X) = 1.
Conversely, every maximal chain L ⊂ C(X) is of the form L(x) for some x ∈
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X, since if
⋂
L contains more than one point then A =

⋂
L is a nontrivial

continuum and for x ∈ A, L can be extended by {B ∈ C(X) : x ∈ B ⊂ A},
and if X 6∈ L then L can also be extended.

Hence, l(x) = {fA ∈ T (X) : x ∈ A} is a maximal chain in T (X).
Note that l(x) has a minimal end point at const but no largest element and
every maximal chain in T (X) is of the form l(x) for some x ∈ X. Thus the
singletons of X can be identified with the maximal chains of T (X).

T (X) also has a tree structure: its branches are the abovementioned
chains l(x) for x ∈ X, all of which emerge from the bottom element const.

Theorem 2.4 of §2 implies the following.

Theorem 3.10. Let X and Y be nontrivial atoms. Then T (X) and T (Y )
are order isomorphic; moreover , given Whitney maps W and V on X and
Y respectively , there exists an order isomorphism µ : T (X) → T (Y ) such
that V (µf) = W (f) for all f ∈ T (X). (Here, by W (fA) we mean, of course,
W (A).)

P r o o f. Let h : (X, %)→ (Y, τ) be an isometry of the ultrametric atoms.
Let A ⊂ X be a subcontinuum. Then A = CX(x, r) for some x ∈ X and 1 ≥
r ≥ 0. Since h is an isometry, h(A) = CY (h(x), r) = B is a subcontinuum
of Y and we let µfA = fB .

Remark. The model (J, %) for the ultrametric atom (2.13) can be ad-
justed to obtain a model T for T (X): Let T be the set of all pairs (r, f)
where 0 < r ≤ 1 and f : [r, 1]→ R is continuous and satisfies f(1) = 0. Let
(r, f) ≤ (s, g) if [s, 1] ⊃ [r, 1] (i.e., s ≤ r) and g|[r,1] = f . We leave it to the
reader to verify that (T,≤) is order isomorphic to T (X) for every nontrivial
atom X.

The main result of §3 is that, unlike T (X), the lattice structure of M(X)
determines X.

Theorem 3.11. Let X and Y be nontrivial atoms. Then M(X) and
M(Y ) are lattice isomorphic if and only if X and Y are homeomorphic.

To prove Theorem 3.11 we shall need the following proposition.

Proposition 3.12. Let X and Y be atoms and let µ : M(X) → M(Y )
be a lattice isomorphism. Then µ(T (X)) = T (Y ).

Recall that T (X) has been defined (3.7, 3.8) in terms of subcontinua of
X. To prove Proposition 3.12 we shall need to show that T (X) is determined
by the lattice structure of M(X).

Definition 3.13. An element f of a lattice M is meet irreducible if
whenever f = g ∧ h, then either f = g or f = h.
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Observe that id ∈ M(X) is meet irreducible but id 6∈ T (X). The next
result characterizes those meet irreducible elements in M(X) different from
id.

Proposition 3.14. An element f ∈ M(X), f 6= id, is in T (X) if and
only if it is meet irreducible, i.e., T (X) is the set of meet irreducible elements
of M(X) different from id.

P r o o f. Let fA = g ∧ h ∈ T (X) for some g, h ∈ M(X). For x ∈ X \ A,
(x)fA = {x} ⊃ (x)g ∪ (x)h and it follows that every nontrivial fiber of g or
h is contained in A. For a ∈ A,

A = (a)fA = (a)(g ∧ h) = (a)g ∪ (a)h.

But (a)g ∪ (a)h is either (a)g or (a)h and hence fA is either g or h.
Let f ∈M(X) \T (X) and f 6= id. We must find g, h in M(X) such that

f < g, f < h and f = g ∧ h. Since f 6∈ T (X), f has at least two nontrivial
fibers A and B. Let W be a Whitney map on X such that W (A) 6= W (B).
(Such a Whitney map always exists: if A ∩ B = ∅ and W1(A) = W1(B) for
some Whitney map W1, let f : X → [0, 1] with f(A) = 0 and f(B) = [0, 1],
and let W (E) = 1

2W1(E) + 1
2 diam f(E).)

Let W (A) < r < W (B). Define decompositions g and h of X as follows:

(3.15) (x)g =
{

(x)f if W ((x)f) ≤ r,
E if W ((x)f) > r,

where E is the unique subcontinuum of X which contains x and satisfies
W (E) = r, i.e., E = C(x, r) (= the closed ultrametric ball for the ultra-
metric % obtained from the Whitney map W .) Now g is a decomposition
of X (recall that closed ultrametric balls are disjoint) and clearly, since
W (B) > r and B is a fiber of f , g refines f and g 6= f . We need to show
that g ∈ M(X), i.e., that g is upper semicontinuous. So, let (xn)g → E in
C(X). Since (xn)g ⊂ (xn)f and f is upper semicontinuous, E ⊂ (x)f for
some x ∈ E. Also, since W ((xn)g) ≤ r for all n and W is continuous on
C(X), W (E) ≤ r. Hence by (3.15) if W ((x)f) ≤ r then (x)g = (x)f ⊃ E,
while if W ((x)f) > r then W ((x)g) = r and since W (E) ≤ r and both (x)g
and E contain x, (x)g ⊃ E. Next, set

(3.16) (x)h =
{

(x)f if W ((x)f) ≥ r,
{x} if W ((x)f) < r.

Evidently h is a decomposition of X, h refines f and h 6= f (since for x ∈ A,
(x)f = A while (x)h = {x} and A is a nontrivial continuum).

We claim that h is upper semicontinuous. To see this let (xn)h → E in
C(X). We need to show that E ⊂ (x)h for some x ∈ X. If for infinitely many
values of n, (xn)h = {xn}, then E is a singleton and we are done. Hence
we may assume without loss of generality that for all n, (xn)h is nontrivial,
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which by (3.16) implies that W ((xn)h) ≥ r and hence (xn)h = (xn)f . Since
f is upper semicontinuous, E ⊂ (x)f for some x ∈ E. From the continuity
of W it follows that r ≤W (E) ≤W ((x)f). Then (3.16) implies that (x)h =
(x)f ⊃ E and we are done.

Thus g, h ∈ M(X), f < g, f < h and we claim that f = g ∧ h. Indeed,
let x ∈ X. If W ((x)f) ≤ r then (x)g = (x)f by (3.15) while if W ((x)f) ≥ r
then (x)h = (x)f by (3.15). It follows that (x)(g ∧ h) = (x)g ∪ (x)h ⊃ (x)f ,
i.e., g ∧ h ≤ f , so we have f = g ∧ h and Proposition 3.14 is proved.

Proof of Proposition 3.12. Clearly a lattice isomorphism preserves meet
irreducibility and by Proposition 3.14 it carries T (X) onto T (Y ).

Lemma 3.17. Let X be an atom. Let (xn)n≥1 be a sequence in X such that
limxn = y. For each n, let xn ∈ An ∈ C(X), and let g =

∧{gAn : n ≥ 1}.
Then for every x ∈ X such that (x)g 6= {x}, either (x)g = An for some n
or y ∈ (x)g.

P r o o f. Set E = {An : n ≥ 1} ⊂ C(X) and let E denote the closure of
E in C(X). Let A ∈ E \ E. Then A = limAnk for some subsequence (Ank)
of (An). Since xnk ∈ Ank and xnk → y, y ∈ A. Now, by 1.1, the members
of the family {A ∈ E : y ∈ A} are nested. A straightforward compactness
argument shows that the set

B =
⋃
{A ∈ E : y ∈ A}

is also in E. So either E = E or every A ∈ E \ E is contained in B.
Set H =

⋃{A : A ∈ E}. Then clearly H is a closed subset of X. Let
h ∈ M(X) be the decomposition which consists of the components of H
and the singletons of X \H. (By [Ku, p. 182], h is upper semicontinuous.)
For each n ≥ 1, h ≤ gAn since An ⊂ H is contained in some component
of H. Hence also h ≤ g =

∧{gAn : n ≥ 1}. It follows that for x ∈ X \ H,
{x} = (x)h ⊃ (x)g, i.e., (x)g = {x} for x 6∈ H.

Now let x ∈ X be such that (x)g 6= {x} and y 6∈ (x)g. Then x ∈ H. We
claim that x 6∈ B. Indeed, since B ∈ E, one of these two cases occurs.

Case (i): B = An for some n. If x ∈ B, then (x)g ⊃ An = B, so y ∈ (x)g,
a contradiction.

Case (ii): B = limAnk for some subsequence (Ank) of (An). Since
(xnk)g ⊃ (xnk)gAnk = Ank and since g is upper semicontinuous, B must
be contained in a fiber of g. If x ∈ B, then (x)g ⊃ B and since y ∈ B, this
is impossible.

So it follows in both cases that x ∈ ⋃{An : n ≥ 1}. But x can be a
member only of finitely many An’s, since if x ∈ Ank for k = 1, 2, . . . , then
(x)g ⊃ ⋃Ank and y ∈ ⋃Ank . Hence (x)g = An for some n.
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Remark. It follows from Lemma 3.17 and its proof that

(x)g =




{x} if x 6∈ H =

⋃
E,

B if x ∈ B,
Ak if x ∈ H \B,

where, if x ∈ H \ B, x ∈ An for only finitely many values of n, x ∈ An1 ⊂
. . . ⊂ Anm , and Ak = Anm is the union of all the An’s which contain x.

Proposition 3.18. Let X be an atom. Let (xn)n≥1 be a sequence in X
and let x0 ∈ X. Then the following are equivalent :

(1) limxn = x0 in X.
(2) For every continuum A0 ⊂ X with x0 ∈ A0 and every subsequence

(x′n) of (xn), there exist continua An ⊂ X with x′n ∈ An for all n such that
(x0)g = A0, where g =

∧{gAn : n ≥ 1}.
P r o o f. (1)⇒(2). First, suppose that xn → x0, let x0 ∈ A0 and let (x′n)

be a subsequence of (xn). Set An = C(x′n,W (A0)), where W is a Whitney
map on X, and let g =

∧{gAn : n ≥ 1}.
Let f denote the (continuous) decomposition of X into r-balls C(x, r),

where r = W (A0). Then for all n ≥ 1, f ≤ gAn . Hence f ≤ g. In particular,
A0 = C(x0, r) = (x0)f ⊃ (x0)g.

To obtain the converse inclusion let (Ank) ⊂ (An) converge (in C(X))
to some A ∈ C(X). Then (x′nk)g ⊃ Ank → A, as x′nk ∈ Ank , so (x0)g ⊃ A.
But W (Ank) = r and from the continuity of W it follows that W (A) = r.
Hence, since A and A0 both contain x0, we must have A = A0 = C(x0, r)
and (x0)g ⊃ A0.

(2)⇒(1). Assume that xn 9 x0. Then by compactness there is a sub-
sequence (x′n) such that x′n → y 6= x0 and such that x′n 6= x0 for all n.
Then

dist(x0, {x′n : n ≥ 1} ∪ {y}) = 2δ

is positive. Let A0 be a continuum of diameter δ in X which contains x0.
We claim that (2) fails for these A0 and (x′n). Indeed, let x′n ∈ An ∈ C(X).
Then by Lemma 3.17, (x0)g is either {x0} 6= A0, or (x0)g = An for some
n. Now An 6= A0 since this would imply x′n ∈ A0, and thus diam(A0) ≥ 2δ,
while diam(A0) = δ. Or, y ∈ (x0)g, which again implies diam((x0)g) ≥ 2δ,
and we are done.

Definition 3.19. Let f ∈M(X). Then

Tf = {g ∈ T (X) : g ≥ f and for all h ∈ T (X), g ≥ h ≥ f implies g = h}.
Proposition 3.20. Let f ∈M(X). Then g = gA ∈ Tf if and only if for

every x ∈ A, (x)f = A. Hence Tf = {g(x)f : x ∈ X and (x)f is nontrivial}.
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P r o o f. Let g = g(x)f for some f ∈ M(X) and x ∈ X such that (x)f is
nontrivial. Then g ≥ f . If h = hB ∈ T (X) is such that g(x)f ≥ hB ≥ f then
(x)g(x)f = (x)f ⊂ (x)hB = B ⊂ (x)f , i.e., B = (x)f and g = hB . Hence
g ∈ Tf . Let gA = g ∈ Tf . Then g ≥ f . Thus for x ∈ A, (x)g = A ⊂ (x)f .
If A  (x)f , let A  B  (x)f . Then hB ∈ T (X) and g > h > f . Hence
A = (x)f .

We continue with the proof of Theorem 3.11. Let X and Y be atoms and
let µ : M(X)→M(Y ) be a lattice isomorphism. Then by Proposition 3.12,
µ(T (X)) = T (Y ). Define a function µ̂ : X → Y as follows. Let x ∈ X. Then
(see 3.9) l(x) = {fA ∈ T (X) : x ∈ A} is a maximal chain in T (X). Hence
µl(x) = {µfA : fA ∈ l(x)} is a maximal chain in T (Y ), and, by 3.9 again,
µl(x) = l(y) for some y ∈ Y . Define µ̂(x) = y. Clearly µ̂ is one-to-one and
onto and we shall prove that it is continuous.

Remark. We have seen that for any two atoms X and Y , T (X) and
T (Y ) are order isomorphic and every order isomorphism µ : T (X)→ T (Y )
gives rise to a surjective injection µ̂ : X → Y as above. But in general µ̂ is
not continuous. Our proof will show that if µ̂ originates from an isomorphism
of M(X) onto M(Y ) then it is continuous.

Claim 3.21. Let A ⊂ X be a nontrivial continuum. Then µ̂(A) = {µ̂(x) :
x ∈ A} ⊂ Y is a continuum. Moreover , if µfA = fB for some B ∈ C(Y ),
then µ̂(A) = B.

P r o o f. We know that x ∈ A if and only if A ∈ L(x) = {B ∈ C(X) :
x ∈ B}. Hence

A ∈
⋂
{L(x) : x ∈ A} = LA = {E ∈ C(X) : A ⊂ E}

and A =
⋂{E : E ∈ LA}. Thus

fA =
∨{

fE : E ∈
⋂
{L(x) : x ∈ A}

}
.

By definition µl(x) = l(µ̂(x)). Hence

µfA =
∨{

fH : H ∈
⋂
{L(µ̂x) : x ∈ A}

}

=
∨⋂

{l(y) : y ∈ µ̂A} = fB

where B = µ̂A.

Claim 3.22. For f ∈M(X) and x ∈ X, µ̂((x)f) = (µ̂(x))µf .

P r o o f. Note that (by 3.19 and 3.20) if A = (x)f is nontrivial then
fA = Tf ∩ l(x). As µTf = Tµf we obtain

µfA = µ(Tf ∩ l(x)) = Tµf ∩ l(µ̂(x)) = fB
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where B = (µ̂(x))µf, and by 3.21, B = µ̂A. If (x)f = {x} then (µ̂(x))µf =
µ̂(x) since if (µ̂(x))µf is nontrivial we can apply the above for µf and µ−1

and obtain a contradiction.

We complete the proof of Theorem 3.11. Let xn → x0 in X. We apply
Proposition 3.18 to show that yn = µ̂(xn) → µ̂(x0) = y0 in Y . So, let
y0 ∈ A0 ⊂ Y and let (y′n) = (µ̂(x′n)) ⊂ (yn) be a subsequence. By 3.21
x0 ∈ µ̂−1A0 = B0 and is a continuum in X. Applying 3.18(2) to B0 and
(x′n) ⊂ (xn) we obtain continua x′n ∈ Bn ⊂ X such that g =

∧{gBn : n ≥ 1}
satisfies (x0)g = B0. Set An = µ̂Bn. Then y′n ∈ An, An are continua in Y ,
and for h =

∧{gAn : n ≥ 1} we have (by 3.21)

µg = µ(
∧
{gBn : n ≥ 1}) =

∧
{µgBn : n ≥ 1}

=
∧
{gAn : n ≥ 1} = h.

And 3.22 implies

(y0)h = (µ̂(x0))µg = µ̂((x0)g) = µ̂(B0) = A0,

which shows that 3.18(2) holds, and by 3.18, yn → y0, i.e., µ̂ is conti-
nuous.
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