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Strongly meager sets and subsets of the plane

by

Janusz P a w l i k o w s k i (Wrocław)

Abstract. Let X ⊆ 2ω . Consider the class of all Borel F ⊆ X × 2ω with null vertical
sections Fx, x ∈ X. We show that if for all such F and all null Z ⊆ X,

⋃
x∈Z Fx is null,

then for all such F ,
⋃
x∈X Fx 6= 2ω . The theorem generalizes the fact that every Sierpiński

set is strongly meager and was announced in [P].

A Sierpiński set is an uncountable subset of 2ω which meets every null
(i.e., measure zero) set in a countable set. Such sets may not exist, but they
do, e.g., under the Continuum Hypothesis.

A strongly meager set is a subset of 2ω whose complex algebraic sum
with null sets cannot give 2ω.

Answering a question of Galvin I proved in [P] that every Sierpiński
set is strongly meager (see [M] and [P] for more about Galvin’s question).
Since Sierpiński sets may not exist, this result is somewhat defective. Here
we prove its “absolute” version, which seems to be of independent inter-
est. The paper is an elaboration of the Note given at the end of [P]. A
different elaboration, using “small sets” of [B] and closely following my
lecture at Cantor’s Set Theory meeting, Berlin 1993, is given in [BJ] in
Section 5 (repeated in [BJ1]). There is, however, a major gap in the expo-
sition in [BJ], namely, in the proof of Lemma 5.5, where one really needs
a sort of Kunugui–Novikov theorem (see the proof of Lemma 4 below).
Also it seems reasonable to avoid “small sets” because they do not form an
ideal.

Let X ⊆ 2ω. Consider the class of all Borel F ⊆ X×2ω with null vertical
sections Fx, x ∈ X. If for all such F ,

⋃
x∈X Fx is null, resp. 6= 2ω, we say

that X ∈ Add, resp. X ∈ Cov. (See [PR] for an explanation of this notation.)
Here Borel means relatively Borel. It is useful to remember that for a

Borel F ⊆ X×2ω, the function x 7→ µ(Fx) is Borel. In particular, any Borel
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subset of Y × 2ω, Y ⊆ X, with all vertical sections null, extends to a Borel
subset of X × 2ω with all vertical sections null.

Theorem. Suppose that every null subset of X ⊆ 2ω is in Add. Then
X ∈ Cov.

The theorem implies that every Sierpiński set is strongly meager as fol-
lows. Suppose X ⊆ 2ω is a Sierpiński set. Let D ⊆ 2ω be null. We want to
see that D +X 6= 2ω. Consider

F =
⋃

x∈X
{x} × (D + x).

Clearly F is a Borel subset of X × 2ω and all its vertical sections are null.
Also, every null subset of X, being countable, is in Add. So, by the theorem,⋃
x∈X Fx 6= 2ω. But D +X =

⋃
x∈X Fx.

Notation. Given a set K and A ⊆ 2K , let µ(A) be the measure of A
in the product measure arising from assigning to each point in {0, 1} weight
1/2. Note that if K is finite, then µ(A) = |A| · 2−|K|.

For K ⊆ L ⊆ ω and A ⊆ 2L let [A] = {t ∈ 2ω : t|L ∈ A} and let
A|K = {t|K : t ∈ A}. Likewise, for A ⊆ (2L)k let [A] = {〈t1, . . . , tk〉 ∈
(2ω)k : 〈t1|L, . . . , tk|L〉 ∈ A}.

Clearly µ(A) = µ([A]). Note that any clopen subset of 2ω can be written
as [A] for some A ⊆ 2n. Also for A ⊆ 2n and m > n, [A] = [B], where
B = {τ ∈ 2m : τ |n ∈ A}.

For σ ∈ ω<ω of length n+ 1 , let σ∗ be σ|n.
We use the following abbreviations:

∃∞ — there exist infinitely many,
∀∞ — for all but finitely many,∨
n —

⋂
m

⋃
n>m,∧

n —
⋃
m

⋂
n>m.

For F ⊆ X × T and x ∈ X let Fx = {t ∈ T : 〈x, t〉 ∈ F}. Likewise, for
F ⊆ X × S × T , x ∈ X, s ∈ S, let Fxs = {t ∈ T : 〈x, s, t〉 ∈ F}, etc. In
particular, if F ⊆ X × (2ω)ω, t0, . . . , tn ∈ 2ω, then

Fxt0...tn = {〈tn+1, . . .〉 ∈ (2ω)ω : 〈x, t0, . . . , tn, tn+1, . . .〉 ∈ F}.
Let F [X] =

⋃
x∈X Fx. If F has all sections Fx, x ∈ X, null, we say that

F is X-null .
The following simple lemma is crucial.

Lemma 1. Let every null subset of X be in Add. Suppose F ⊆ X × (2ω)ω

is Borel and X-null. Then, given null Y ⊆ X, there exist t ∈ 2ω and Borel
null Z ⊆ X \ Y such that Fxt, x 6∈ Z, are null.
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P r o o f. Let

G = {〈x, t〉 ∈ X × 2ω : µ(Fxt) > 0}.
Then G is Borel and X-null. By Fubini’s theorem find t ∈ 2ω \ G[Y ] such
that

Z = {x : 〈x, t〉 ∈ G}
is null. (This is possible because G[Y ] is null.)

We shall need the following property B, which is a Borel version of prop-
erty H of Hurewicz (for more see [FM], [PR]):

X ⊆ 2ω has property B if, given for each n ∈ ω a Borel cover {Unk }k∈ω
of X, there exist kn’s such that X ⊆ ∧n

⋃
k≤kn U

n
k .

It is not hard to see that we can use increasing covers in this definition
and write X ⊆ ∧

n U
n
kn

. Also, easily, X has property B iff for any Borel
function f : X → ωω, f [X] is dominated . (Y ⊆ ωω is dominated if there
exist z ∈ ωω such that ∀∞n y(n) < z(n), for all y ∈ Y .) Moreover, it is
enough to consider only f for which all f(x) are increasing.

The following lemmas are well known.

Lemma 2. If all null subsets of X ⊆ 2ω have property B, then X has
property B.

P r o o f. Let {Unk }k∈ω, n ∈ ω, be increasing Borel covers of X. Find
kn’s with µ∗(X \ Unkn) < 2−n. Let Z = X \ ∧n Unkn . Then Z is null, so
it has property B. Thus Z ⊆ ∧

n U
n
ln

for some ln’s. It follows that X ⊆∧
n U

n
max(kn,ln).

Lemma 3. (1) If A ⊆ 2ω is null then for any sequence {εn} of positive
reals there exists an increasing sequence {an} ∈ ωω together with sets Bn ⊆
2an of measure ≤ εn, n ∈ ω, such that A ⊆ ∨n[Bn].

(2) If an ∈ ω and Bn ⊆ 2an , n ∈ ω, are such that
∑
n µ(Bn) <∞, then

A =
∨
n[Bn] is null. If moreover K ⊆ ω is such that

∑
n µ(Bn)·2|an∩K| <∞,

then also A|(ω \K) is null (in 2ω\K).

P r o o f. We prove the first part, the second is straightforward. Given null
A ⊆ 2ω and ε > 0, we can cover A by an open set of measure < ε/2n, which
next can be split into disjoint clopen sets. In this way we can find clopens
Ci, i ∈ ω, such that A ⊆ ∨i Ci and

∑
i µ(Ci) < ε.

Suppose now that {εn} is a sequence of positive reals. Use the above
to find clopens Ci, i ∈ ω, such that A ⊆ ∨i Ci and

∑
i µ(Ci) < ε0. Next

find an increasing sequence {in} such that
∑
i≥in µ(Ci) < εn+1. Finally, let

A0 =
⋃
i<i0

Ci and for n > 0 let An =
⋃
in−1≤i<in Ci. Then µ(An) < εn and

A ⊆ ∨nAn. Each An, being clopen, is of the form [Bn] for some Bn ⊆ 2an .
We can easily arrange that an+1 > an.
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It follows from Lemma 3 that, given {bn} ∈ ωω and null A ⊆ 2ω, there
is an increasing {an} ∈ ωω such that

∀∞n |an ∩K| ≤ bn ⇒ A|(ω \K) is null.

Lemma 4. Suppose that F ⊆ X × 2ω is Borel X-null. Let {εn} be a
sequence of positive reals. Then there exist for each n a countable Borel
partition Un of X together with integers anU and sets AnU ⊆ 2a

n
U of measure

≤ εn, U ∈ Un, such that

F ⊆
∨
n

⋃

U∈Un
U × [AnU ].

If additionally X has property B, we can require that for some increasing
{an} ∈ ωω all anU , U ∈ Un, equal an.

P r o o f. This is a parametrized version of the first part of Lemma 3. We
indicate the main steps.

For any ε > 0 there are Borel sets Wi and clopens Ci, i ∈ ω, such that
F ⊆ ∨iWi × Ci and for all x ∈ X,

∑
i∈K(x) µ(Ci) < ε, where K(x) = {i :

x ∈Wi}.
This follows from the following facts:

• any Borel subset of X × 2ω with open vertical sections can be written
as a union of countably many disjoint sets of the form W × C, W Borel, C
clopen (a theorem of Kunugui and Novikov, see [K]);
• for any Borel B ⊆ X × 2ω and ε > 0, there exists a Borel A ⊆ X × 2ω,

B ⊆ A, such that vertical sections of A are open and µ(Ax \ Bx) < ε (the
sets with such a covering property form a monotone family that includes all
finite unions of Borel rectangles).

Note that the function x 7→ ∑
i∈K(x)\j µ(Ci) is Borel. (Because the

function µ(Ci)1Wi that takes µ(Ci) on Wi and 0 outside is Borel and∑
i∈K(x)\j µ(Ci) =

∑
i≥j µ(Ci)1Wi(x).) It follows that for any δ > 0 we

can find a countable Borel partition U of X and numbers jU ∈ ω, U ∈
U , such that on each U the mapping x 7→ K(x) ∩ jU is constant and∑
i∈K(x)\jU µ(Ci) < δ.
Using this find Borel sets Uσ and integers jσ, σ ∈ ω<ω, such that

• U∅ = X, j∅ = 0,
• Uσ is partitioned into Uσ_k’s, k ∈ ω,
• if |σ| > 0, then jσ∗ < jσ and x 7→ K(x) ∩ [jσ∗ , jσ) is constant on Uσ,
• if |σ| > 0, then on Uσ,

∑

i∈K(x)∩[jσ∗ ,jσ)

µ(Ci) < ε|σ|−1.
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If |σ| > 0, let

Bσ =
⋃

i∈K(x)∩[jσ∗ ,jσ)

Ci, x ∈ Uσ.

This is a clopen set of measure < ε|σ|−1, so we can find aσ ∈ ω and Aσ ⊆ 2aσ

of measure < ε|σ|−1 such that Bσ = [Aσ].
Now just note that

∨

i

Wi × Ci ⊆
∨
n>0

⋃
{Uσ × [Aσ] : σ ∈ ωn}.

Up to some enumeration, we are done.

The following lemma is a version of Miller’s [M1] result that additivity
of measure is below number b. (See also [PR].)

Lemma 5. Add ⊆ B.

P r o o f. Let Y ∈ Add. Let Y 3 y 7→ y ∈ ωω be Borel with all y’s
increasing. Define F ⊆ Y × 2ω by

t ∈ Fy ⇔ ∃∞n ∀i < n t(y(n) + i) = 0.

Then F is Borel and Y -null, so A = F [Y ] is null. Use Lemma 3 to find an
increasing sequence {an} such that

∀n |K ∩ an| ≤ n(n− 1)/2⇒ A|(ω \K) is null.

We claim that {an} dominates all y’s. Indeed, suppose that ∃∞n y(n) ≥ an.
Consider

K =
⋃
{[y(n), y(n) + n) : y(n) ≥ an}.

Then ∀n |K ∩ an| ≤ n(n − 1)/2 (we take to K below an at most n − 1
intervals).

It follows that A|(ω \K) is null. This is a contradiction because Fy ⊆ A
and Fy|(ω\K) is 2ω\K . (Any element of 2ω\K can be extended to an element
of 2ω which on infinitely many intervals [y(n), y(n)+n) is constantly zero.)

Proof of theorem. By Lemmas 2 and 5, X ∈ B. Let F ⊆ X × 2ω be Borel
X-null. We seek a point outside F [X]. Let Q = {t ∈ 2ω : ∀∞n t(n) = 0}.
Enlarging F if necessary we can assume that for all x, Fx = Fx + Q. Use
Lemma 4 to find an increasing {an} ∈ ωω together with a sequence {Un} of
countable Borel partitions of X such that for some AnU ⊆ 2an , U ∈ Un, of
measure ≤ 2−n,

F ⊆
∨
n

⋃

U∈Un
U × [AnU ].

Let Bnx be AnU for the unique U ∈ Un that covers x.
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Say that σ0, . . . , σk ∈ 2an have a diagonal in A ⊆ 2an if for some n0 ≤
. . . ≤ nk−1 ≤ n,

σ0|an0 ∪ σ1|[an0 , an1) ∪ . . . ∪ σk|[ank−1 , an) ∈ A.
Say that t0, . . . , tk ∈ 2ω have a diagonal in A ⊆ 2an if t0|an, . . . , tk|an do.

Define E ⊆ X × (2ω)ω by

〈t0, t1, . . .〉 ∈ Ex ⇔ ∃k ∃∞n t0, . . . , tk have a diagonal in Bnx .

Claim 1. E is Borel and X-null.

P r o o f. Let

Bnx (k) = {〈σ0, . . . , σk〉 ∈ (2an)k+1 : σ0, . . . , σk have a diagonal in Bnx}.
Then |Bnx (k)| ≤ 2an−n2ank · (1 + n)k. Indeed, there are ≤ (1 + n)k possi-
ble sequences n0, . . . , nk−1, and for each sequence we have |Bnx | times 2ank

possible choices for 〈σ0, . . . , σk〉.
So

µ([Bnx (k)]) = |Bnx (k)|/2an(k+1) ≤ 2−n(1 + n)k.

It follows that

µ(Ex) ≤
∑

k

∏
m

∑

n≥m
2−n(1 + n)k = 0.

Claim 2. There exist {ti} ⊆ 2ω and a Borel partition {Xi} of X such
that each

Exti...tk , x ∈ Xi, k ≥ i,
is null.

P r o o f. Apply Lemma 1 with Y = ∅ and F = E to find t0 ∈ 2ω and
Borel null X1 ⊆ X such that the following sets are null:

Ex, x ∈ X1,

Ext0 , x 6∈ X1.

Next apply Lemma 1 to Y = X1 and

F =
⋃

x∈X1

{x} × Ex ∪
⋃

x6∈X1

{x} × Ext0

to get t1 ∈ 2ω and Borel null X2 ⊆ X \X1 such that the following sets are
null:

Ex, x ∈ X2,

Ext1 , x ∈ X1,

Ext0t1 , x 6∈ X1 ∪X2.
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Similarly find t2 ∈ 2ω and Borel null X3 ⊆ X \ (X1 ∪ X2) such that the
following sets are null:

Ex, x ∈ X3,

Ext2 , x ∈ X2,

Ext1t2 , x ∈ X1,

Ext0t1t2 , x 6∈ X1 ∪X2 ∪X3,

etc. Finally, set X0 = X \⋃i>0Xi.

It follows from Claim 2 that for x ∈ Xi,

〈ti, ti+1, . . .〉 6∈ Ex.
Otherwise we would have Exti...tk = (2ω)ω for some k.

Thus for x ∈ Xi and k ≥ i,
∀∞n ti, . . . , tk have no diagonal in Bnx .

For all k and n let

V kn =
⋃

i>k

Xi ∪
⋃

i≤k
{x ∈ Xi : ∀m ≥ n ti, . . . , tk have no diagonal in Bmx }.

Then for all k, V kn ’s form an increasing Borel cover of X. By X ∈ B, there
is an increasing sequence {nk} such that

X ⊆
∧

k

V knk .

Let

t = t0|an0 ∪ t1|[an0 , an1) ∪ t2|[an1 , an2) ∪ . . . .
Claim 3. t 6∈ F [X].

P r o o f. Fix x ∈ Xi. Since ∀∞k x ∈ V knk , for all sufficiently large k ≥ i
and n ≥ nk, ti, . . . , tk have no diagonal in Bnx . Hence,

ti|ani ∪ ti+1|[ani , ani+1) ∪ . . . ∪ tk|[ank−1 , an) 6∈ Bnx ,
and thus

ti|ani ∪
⋃

k>i

tk|[ank−1 , ank) 6∈
∨
n

[Bnx ].

It follows that t 6∈ Fx.

Note. We have really proved that if X ∈ B has all its null subsets in Cov,
then X ∈ Cov. The crucial Lemma 1 goes through because if Y ∈ Cov, then
for all Borel Y -null F ⊆ Y × 2ω, µ∗(2ω \ F [Y ]) = 1. (Otherwise we could
find in F [Y ] a perfect set P of positive measure. Then D = F ∩ (Y × P )
would be a Borel Y -null subset of Y × P such that D[Y ] = P . This would
yield a similar subset of Y × 2ω.)
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Note also that if X ∈ B ∩ Cov, then 2ω \ F [X] contains a perfect set for
all X-null F ⊆ X × 2ω. (It is enough to require in Lemma 4 that AnU ’s have
measure ≤ 2−2n and consider BnU = {σ ∈ 2an : ∃τ ∈ AnU σ|K = τ |K}, where
K is a fixed co-infinite subset of ω such that ∀n |an \K| ≤ n. Then BnU is
a subset of 2an of measure ≤ 2−n. If X × {t} avoids

∨
n

⋃
U U × [BnU ], then

{s ∈ 2ω : s|K = t|K} is a perfect set disjoint from F [X].)
We cannot drop B in the above remark. If we add ω2 random reals to a

model of CH then the ground model reals constitute a counterexample. (Use
the fact that a random real does not add a perfect set of random reals.)

We cannot require in the theorem that X ∈ Add. It is enough to take for
X a Sierpiński set and for F the diagonal in X×X. There is however no ZFC
example for this. Indeed, suppose the Dual Borel Conjecture holds, i.e. all
strongly meager sets, hence also all Cov sets, are countable. Suppose also that
every uncountable set has an uncountable null subset. (Both assumptions
are true when ω2 Cohen reals are added to a model of CH, see [C].) If all null
subsets of X are in Cov, then they are all countable by the first assumption.
So X has no uncountable null subsets, and thus X itself is countable by the
second assumption. It follows that X ∈ Add.

Suppose that all null subsets of X are in Cov. Does it follow that X is
strongly meager? We have the following partial result:

Proposition. Let X have property B. Let D =
∨
k[Bk], Bk ⊆ 2Lk ,

where Lk ⊆ ω, k ∈ ω, are pairwise disjoint. Suppose for every finite F ⊆ 2ω,
D + (X ∩ (D + F )) 6= 2ω. Then D +X 6= 2ω.

P r o o f. Choose t0 ∈ 2ω and inductively tn ∈ 2ω so that

tn 6∈ D + (X ∩ (D + {t0, t1, . . . , tn−1})).
Then for all x ∈ X,

∀∞n x 6∈ D + tn.

Indeed, if x ∈ D + tn and m > n, then tm 6∈ D + x, so x 6∈ D + tm.
Let

Unk = {x : x 6∈ D + tn ⇒ ∀m ≥ k x|Lm 6∈ Bm + tn|Lm}.
Then for all n, Unk ’s form an increasing Borel cover of X. So X ⊆ ∧n Unkn
for some increasing sequence {kn}. Then for all x,

∀∞n ∀k ≥ kn x|Lk 6∈ Bk + tn|Lk
(remember that ∀∞n x 6∈ D + tn).

So for all x,

∀∞n ∀k ≥ kn tn|Lk 6∈ Bk + x|Lk.
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Let t ∈ 2ω be such that for all n,⋃

kn≤k<kn+1

tn|Lk ⊆ t.

Then for all x,

∀∞n ∀k ∈ [kn, kn+1) t|Lk 6∈ Bk + x|Lk.
It follows that ∀x ∈ X t 6∈ D + x.

Note. Let small mean small in the sense of Bartoszyński [B]. Suppose
that every small subset of X has property B. Suppose also that for every
small Y ⊆ X and small D ⊆ 2ω, Y +D 6= 2ω. Then for every small D ⊆ 2ω,
X + D 6= 2ω. (Every null set is a union of two small sets. So, if all small
subsets of X have property B, then all null subsets of X have property B,
thus X itself has property B. Also, a union of finitely many translates of a
small set is small.)
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