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Hausdorff measures and two point set extensions

by

Jan J. D i j k s t r a (Tuscaloosa, Ala.),
Kenneth Kunen (Madison, Wisc.) and Jan van Mi l l (Amsterdam)

Abstract. We investigate the following question: under which conditions is a σ-
compact partial two point set contained in a two point set? We show that no reasonable
measure or capacity (when applied to the set itself) can provide a sufficient condition for
a compact partial two point set to be extendable to a two point set. On the other hand,
we prove that under Martin’s Axiom any σ-compact partial two point set such that its
square has Hausdorff 1-measure zero is extendable.

1. Introduction. A planar set is called a two point set if every line
intersects the set in exactly two points, and a partial two point set if every
line intersects the set in at most two points. We call a partial two point
set extendable if it is a subset of some two point set. The existence of two
point sets is due to Mazurkiewicz [7]. His proof shows that every partial two
point set with cardinality less than c is extendable. A circle is the standard
example of a nonextendable partial two point set.
In [6, 9, Problem 1070] R. D. Mauldin asked whether every compact

zero-dimensional partial two point set can be extended to a two point set.
It was shown by two of the authors in [2] and independently by Mauldin
in [7] that there exist partial two point Cantor sets that are not extendable
to two point sets. In both papers the proof rests on the fact that the ex-
amples have positive linear Lebesgue measure. It is therefore natural to ask
whether there exist nonextendable partial two point compacta with vanish-
ing linear measure (or Hausdorff 1-measure zero). In addition, what about
Hausdorff dimension zero or logarithmic capacity zero? In this paper the
authors answer these questions by showing that no reasonable measure or
capacity (when applied to the set itself) can provide a sufficient condition
for a compact partial two point set to be extendable to a two point set.
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These results can be found in Section 2. In Section 3 we present sufficient
conditions for a partial two point set to be extendable. For example, under
Martin’s Axiom any σ-compact partial two point set such that its square
has Hausdorff 1-measure zero is extendable.

2. Nonextendable sets. We denote the space of nonempty compacta
in a metric space X equipped with the usual Hausdorff metric by K(X). The
space of projection directions in the plane is the circle Θ = R/πZ. If θ ∈ Θ
then pθ is the projection of the plane onto the line through the origin that
is perpendicular to θ. Obviously, the function p : Θ × R2 → R2 defined by
p(θ, u) = pθ(u) is a continuous mapping and hence it generates a continuous
map from Θ × K(R2) to K(R2). If u is a nonzero vector in the plane then
ϕ(u) ∈ Θ stands for the direction parallel to u. If u and v are two distinct
points in the plane then L(u, v) stands for the line through u and v. If A is
a planar set then

L(A) =
⋃
{L(u, v) : u, v ∈ A and u �= v}

and
B(A) = {p(ϕ(u− v), u) : u, v ∈ A and u �= v}.

Observe that p(ϕ(u − v), u) is the point of intersection of L(u, v) with the
line through 0 that is perpendicular to L(u, v) and that in terms of the dot
product in R2 we have

p(ϕ(u− v), u) = ((v − u) · v)u+ ((u− v) · u)v|u− v|2 .

If v ∈ R2 \ {0} then Cv stands for the circle that has the line segment
from 0 to v as diameter.

Lemma 2.1. If A ⊂ R2 then

{v ∈ R2 \ {0} : Cv ∩B(A) \ {0} �= ∅} ⊂ L(A).

P r o o f. Let u ∈ Cv∩B(A) with u �= 0. Then there exists a line � through
u that is perpendicular to the line through 0 and u and that intersects A in
two distinct points a and b (see Figure 1).
Since the angle at u is 90◦ we see by elementary planar geometry that

� = L(a, b) intersects Cv at v.

Let S1 be the unit circle centered at the origin. If A ⊂ S1 then we simply
have B(A) =

{
1
2 (u+ v) : u, v ∈ A and u �= v

}
.

We will show in the next section (see Proposition 3.7) that the nonex-
tendable elements of K(S1) form a category I subset of K(S1). So finding
nonextendable elements in K(S1) is relatively hard because the set to choose
from is small and standard Baire category arguments will not work. How-
ever, our next result gives us a rich supply of nonextendable compact subsets
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of S1. Since the concept of (partial) two point set is invariant under affine
transformations the results we obtain for S1 apply to any ellipse.

Theorem 2.2. Every dense Gδ-subset of K(S1) contains two elements
with a nonextendable union.

P r o o f. Let G0 ⊃ G1 ⊃ . . . be a sequence of dense open subsets of K(S1)
and define G =

⋂∞
n=0Gn. Let D

1 = {u ∈ R2 : |u| ≤ 1} and D10 = D1 \ {0}.
Define the continuous maps α, β : D10 → S1 as in Figure 2.
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To be precise α and β are given by

α(u) = (x+ ty, y − tx) and β(u) = (x− ty, y + tx),
where u = (x, y) ∈ D10 and t =

√
1− |u|2/|u|. Then for each u ∈ D10 we



46 J. J. Dijkstra et al.

have

p(ϕ(α(u) − β(u)), α(u)) = 12 (α(u) + β(u)) = u.
The semicircles with diameter 1 in Figure 2 correspond to preimages of the
form α−1(w) and β−1(w′) where w,w′ ∈ S1. The building blocks of our
construction will be segments of such semicircles.
We shall construct an element A of K(S1) such that every circle through

the origin with diameter at least 2 intersects B(A) in a point that is not the
origin. Then by Lemma 2.1 we have {v ∈ R2 : |v| ≥ 2} ⊂ L(A). So if we add
any point v with |v| ≥ 2 to A then the resulting set is no longer a partial
two point set and hence A is not extendable to a two point set.
Let d be the arc length metric on S1. Note that u 
→ (α(u), β(u)) is an

imbedding of D10 in the product S
1×S1. This observation allows us to define

a metric 	 on D10 by pulling back the max metric of S
1 × S1: for u, v ∈ D10 ,

	(u, v) = max{d(α(u), α(v)), d(β(u), β(v))}.
Let d̃ and 	̃ be the corresponding Hausdorff metrics on K(S1) and K(D10)
respectively. If X is a subset of S1 and ε > 0, let Uε(X) = {w ∈ S1 :
d(w,X) ≤ ε}. If w ∈ S1 then Uε(w) = Uε({w}). If u, v ∈ S1 then [u, v]
stands for the closed segment of S1 from u to v (with counterclockwise
orientation). If X ∈ K(S1) then Ũε(X) ⊂ K(S1) denotes the closed ε-ball
around X with respect to the Hausdorff metric d̃.
Let C be the collection of all semicircles C with diameter at least 2 such

that one of the endpoints is the origin. We shall construct inductively a
sequence B0, B1, . . . in K(D10) and a sequence ε0, ε1, . . . of positive numbers
such that

(1) εn ≤ εn−1/2,
(2) 	̃(Bn, Bn−1) ≤ εn−1/2,
(3) Bn intersects every element of C,
(4) Ũεn(α(Bn)) ⊂ Gn if n is even,
(5) Ũεn(β(Bn)) ⊂ Gn if n is odd,
(6) if n is even then Bn is a finite union of sets of the form α−1(p) ∩

β−1([u, v]), where p, u, v ∈ S1,
(7) if n is odd then Bn is a finite union of sets of the form β−1(p) ∩

α−1([u, v]), where p, u, v ∈ S1.
Let F be a δ-net in S1, i.e. a finite subset of S1 with d̃(F, S1) ≤ δ.

Consider the set

PF = α−1(F ) ∩
{
u ∈ D1 : 14 ≤ |u| ≤ 34

}
(see Figure 3).
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We choose δ so small that for any δ-net F and any semicircle C ∈ C, PF
and C intersect. This is possible since there exists a δ such that for every
C ∈ C, the projection C ′ = α({u ∈ C : 14 ≤ |u| ≤ 3

4

})
is an interval of

length at least 2δ. Since the finite sets are dense in K(S1) we may select a
δ-net F ∈ G0. We put B0 = PF and we select an ε0 > 0 such that Ũε0(F )
is contained in G0 and such that for any X ∈ K(D10), 	̃(X,B0) ≤ ε0 implies
that X is contained in D′ =

{
w ∈ D1 : 18 ≤ |w| ≤ 78

}
. Consequently, every

Bn will be a subset of D′. The applicable induction hypotheses are obviously
satisfied.
Let us assume that Bn and εn have been found. We now describe the

procedure for constructing Bn+1, assuming that n is even. The procedure
for n odd is simply the mirror image (interchange α and β). The set Bn
is the union of the finite collection {E1, . . . , Ek}, where Ej = α−1(pj) ∩
β−1([uj , vj ]) for some pj , uj , vj ∈ S1. Consider Ej and pick a δ ≤ εn/4. We
select a γj ≤ δ such that every finite F ⊂ S1 with d̃(F,Uδ([uj , vj ])) ≤ γj
has the property that

Qj(F ) = α−1(Uδ(pj)) ∩ β−1(F )
intersects every C ∈ C that intersects Ej (see Figure 4).
Let γ = min{γ1, . . . , γk}. Select a finite set F ∈ Gn+1 such that

d̃
(
F,

k⋃
j=1

Uδ([uj , vj ])
)
< γ.

We define the compactum

Bn+1 =
k⋃
j=1

Qj(Fj),

where Fj = F ∩ Uδ+γ([uj , vj ]). Let εn+1 > 0 be such that εn+1 < εn/2 and
Ũεn+1(F ) ⊂ Gn+1.
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Since every Qj(Fj) is obviously a finite union of sets of the form β−1(w)∩
α−1(Uδ(p)) the set Bn+1 satisfies condition (7). Condition (1) is trivially
true. Note that β(Qj(Fj)) = Fj and that F =

⋃k
j=1 Fj . Consequently,

β(Bn+1) = F and condition (5) is satisfied. In addition, d̃(Fj , Uδ([uj , vj ])) ≤
γ ≤ γj so if C ∈ C intersects Ej then C intersects Qj(Fj) and Bn+1. By
hypothesis, every C ∈ C intersects some Ej and hence (3) is valid for n+1.
We have

d̃({pj}, Uδ(pj)) = δ and d̃([uj , vj ], Fj) ≤ δ + γ ≤ 2δ.
Since Ej and Qj(Fj) are essentially Cartesian products of these sets and
	̃ corresponds to the product max metric it follows that 	̃(Ej , Qj(Fj)) ≤
2δ ≤ εn/2 (see Figure 4). Consequently, we have 	̃(Bn, Bn+1) ≤ εn/2 and
the induction is complete.
Induction hypotheses (1) and (2) show that B0, B1, . . . is a Cauchy se-

quence with respect to 	̃. In addition they show that 	̃(B0, Bn) ≤ ε0 for
each n and hence we have a Cauchy sequence in the compact space K(D′).
Put

B = lim
n→∞Bn ∈ K(D

′) and A = α(B) ∪ β(B) ∈ K(S1).
Obviously, we have B ⊂ B(A). Since every C ∈ C intersects every Bn we
deduce by compactness that B intersects every C ∈ C. So B(A) intersects
every element of C in a point other than the origin. As argued above, this
result implies that A is not extendable.
Let n be even and k ∈ N. Observe that

d̃(α(Bn), α(Bn+k)) ≤ 	̃(Bn, Bn+k) ≤
k∑
i=1

εn2−i ≤ εn.

So α(Bn+k) ∈ Ũεn(α(Bn)) and α(B) = limk→∞ α(Bn+k) ∈ Ũεn(Bn). By
condition (4) we have α(B) ∈ Gn and hence α(B) ∈

⋂∞
n=0G2n = G. The

same argument for n odd yields β(B) ∈ G.
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Theorem 2.2 is sharp in the sense that there exist dense Gδ-subsets of
K(S1) consisting entirely of extendable elements (see Proposition 3.7).
A real-valued function is called upper semicontinuous if the preimage of

every interval of the form (−∞, t) is open. We call a function γ : K(X) →
[0,∞] null-subadditive if γ(A) = γ(B) = 0 implies γ(A ∪ B) = 0. Measures
and capacities satisfy these conditions.

Theorem 2.3. If γ : K(S1) → [0,∞] is a null-subadditive and up-
per semicontinuous function that vanishes on finite sets then there exists
a nonextendable C ∈ K(S1) with γ(C) = 0.
P r o o f. The set γ−1(0) is a dense Gδ in K(S1) that is closed under

unions.

Note that instead of upper semicontinuity it suffices to know that sets
of the form γ−1([0, ε)) are neighbourhoods of sets with γ equal to zero.

Corollary 2.4. There exists a nonextendable element of K(S1) with
linear Lebesgue measure zero.

It is well known that capacities satisfy the premise of Theorem 3.2. The
most interesting capacity in the plane is the logarithmic or Newtonian ca-
pacity (see e.g. [4, 12]).

Corollary 2.5. There exists a nonextendable element of K(S1) with
logarithmic capacity zero.

Let us have a look at Hausdorff type measures. For every h : [0, t0] →
[0,∞) we define the h-measure mh of a subset X of Rn by

mh(X) = lim
ε↘0
inf
{ ∞∑
i=1

h(diam(Ai)) : {Ai : i ∈ N} is a covering

in Rn of X with sets of diameter at most ε
}
.

Rn is assumed to be equipped with the metric that is generated by the
standard norm

√∑n
i=1 x

2
i . If s > 0 then the Hausdorff s-measure Hs equals

mh, where h(t) = ts. Recall that the Hausdorff dimension of X is defined
by

dimH(X) = inf{s : Hs(X) = 0}.
Since a set with vanishing logarithmic capacity has Hausdorff dimension
zero (see [4, Theorem 3.13]), we have

Corollary 2.6. There exists a nonextendable element of K(S1) with
Hausdorff dimension zero.

Note that if A ∈ K(S1) has dimH(A) = 0 then dimH(A × S1) = 1 and
hence dimH(A×A) ≤ 1. So we have the following result whose significance
will become apparent in the next section.
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Corollary 2.7. There exists a nonextendable A ∈ K(S1) such that
dimH(A×A) ≤ 1.
Corollary 2.6 also follows if we substitute h(t) = 1/log(1/t) into the

following general statement about h-measures.

Corollary 2.8. There exists a nonextendable C∈K(S1) with mh(C)=0
if and only if lim inft↘0 h(t) = 0.

P r o o f. If lim inft↘0 h(t) > 0 and mh(C) = 0 then C is countable. Every
partial two point set with cardinality < c is extendable.
Assume that lim inft↘0 h(t) = 0. Let for each n ∈ N the set On be the

interior in K(S1) of the collection{
C ∈ K(S1) : there is a covering {Ai : i ∈ N} in R2 of C

with sets of diameter at most t0/n

such that
∞∑
i=1
h(diam(Ai)) ≤ 1/n

}
.

Obviously, every element of G =
⋂∞
n=1On has mh equal to 0. Let

F ∈ K(S1) be a finite set with m points and let n ∈ N. Select an ε > 0 such
that ε ≤ t0/n and h(ε) ≤ (mn)−1. Let C ∈ K(S1) be a set whose distance
from F in the Hausdorff metric is less than ε/2. Then C can be covered by
intervals A1, . . . , Am each with diameter equal to ε. Consequently,

m∑
i=1

h(diam(Ai)) = mh(ε) ≤ 1
n

and we may conclude that F ∈ On. So G is a Gδ in K(S1) which contains
all finite sets and Theorem 2.2 applies. It is easily seen that if A,B ∈ O2n
then A ∪B ∈ On. This implies that G is closed under unions.
Corollary 2.8 allows us to improve upon Corollary 2.7 which follows if

we substitute h(t) = t/log(1/t) in

Proposition 2.9. If every A ∈ K(S1) with mh(A×A) = 0 is extendable
then the following two equivalent statements are valid :

(1) mh(X) = 0 implies H1(X) = 0 for every X,
(2) lim inft↘0 h(t)/t > 0.

P r o o f. First we verify the equivalence of (1) and (2). Assume first
that (2) is valid. Then there are ε, δ > 0 such that h(t) ≥ δt for 0 <
t < ε. Consequently, mh(X) ≥ δH1(X) for any X, which implies state-
ment (1). Consider now the case lim inft↘0 h(t)/t = 0. Select a sequence
t1, t2, . . . of positive numbers less than 1 and t0 such that limi→∞ ti = 0 and
limi→∞ h(ti)/ti = 0. If I is the unit interval [0, 1] then H1(I) = 1. For every
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i ∈ N put ni = 
1/ti� and write I as the union of a collection Bi consisting
of ni intervals, each with length equal to ti. We have

mh(I) ≤ lim
i→∞

∑
B∈Bi
h(diam(B)) = lim

i→∞
nih(ti)

≤ lim
i→∞
(1 + ti)

h(ti)
ti
= 0.

Assume now that lim inft↘0 h(t)/t = 0. We define h′(t) = h(t)/t for
0 < t ≤ t0 and h′(0) = 0 and we apply Corollary 2.8 to mh′ yielding a
nonextendable A ∈ K(S1) withmh′(A) = 0. We will prove thatmh(A×A) =
0, which violates the premise of the proposition. Let 0 < ε < min{t0, 1} and
select a collection {A1, A2, . . .} of subsets of S1 such that A ⊂

⋃∞
i=1Ai,

diam(Ai) < ε, and
∑∞
i=1 h

′(diam(Ai)) ≤ ε. Put ai = diam(Ai) for each
i ∈ N. Since lim inft↘0 h′(t) = 0 we may assume that every ai is positive.
Define for every i the natural number ni = 
2π

√
2/ai�. Partition S1 into

ni sets D1i , . . . ,D
ni
i each with diameter no greater than ai/

√
2. Write every

Ai as the union of two sets Bi and Ci with diameter at most ai/
√
2. Note

that in R4, diam(Bi×Dji ) ≤ ai, and find a B̃ji such that Bi×Dji ⊂ B̃ji and
diam(B̃ji ) = ai. Analogously, let Ci ×Dji ⊂ C̃ji and diam(C̃ji ) = ai.
Note that

D = {B̃ji : i ∈ N, 1 ≤ j ≤ ni} ∪ {C̃ji : i ∈ N, 1 ≤ j ≤ ni}
is a countable covering of A×A with sets of diameter less than ε. Consider
the sum
∑
D∈D
h(diam(D)) =

∞∑
i=1

ni∑
j=1

(h(diam(B̃ji )) + h(diam(C̃
j
i )))

=
∞∑
i=1

ni∑
j=1

2aih′(ai) =
∞∑
i=1

2niaih′(ai)

≤
∞∑
i=1

2(2π
√
2 + ai)h′(ai) ≤ 2(2π

√
2 + 1)

∞∑
i=1

h′(ai)

≤ 2(2π
√
2 + 1)ε.

Since ε can be chosen arbitrarily small, mh(A×A) = 0 and the proposition
is proved.

The following proposition improves upon [2]. Let σ stand for the arc
length measure on S1.

Proposition 2.10. If A is a measurable and extendable subset of S1

then σ(A) = 0.
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P r o o f. Let A be a subset of S1 ∩ B where σ(A) > 0 and B is a two
point set. According to [7, 7.12] almost every u ∈ A has the property

lim
ε↘0
σ(A ∩ Uε(u))
σ(Uε(u))

= 1.

Let u be such a Lebesgue point and let � be the tangent line to S1 at u.
Since B is a two point set we can find a v ∈ B ∩ � such that v �= u. The
two tangent lines to S1 through v divide the circle into two open segments
E and F as in Figure 5.

�
u

v

�

F

p

f�p�

E

Figure �

Let p be an element of E and let f : E → F be the radial projection
centered at v. Note that f is a contraction so σ(f(C)) ≤ σ(C) for any
measurable C ⊂ E. (Since a line has the same angle of intersection with
a circle at both points the contraction factor of f at p is simply the ratio
|f(p)−v|
|p−v| .) Consequently, we have

lim
p→u

σ([u, p])
σ([f(p), u])

= lim
p→u

σ([u, p])
�p
u
|f(q)−v|
|q−v| dσ(q)

= lim
p→u

|p− v|
|f(p)− v| = 1,

lim
p→u
σ([f(p), u] \ f(A ∩ E))

σ([u, p])
≤ lim
p→u
σ([u, p] \ A)
σ([u, p])

= 0.

Note that

lim
p→u
σ([f(p), u] \ (A ∩ f(A ∩ E)))

σ([f(p), u])

≤ lim
p→u
σ([f(p), u] \ A)
σ([f(p), u])

+ lim
p→u
σ([f(p), u] \ f(A ∩E))

σ([u, p])
· lim
p→u

σ([u, p])
σ([f(p), u])

= 0.
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This result obviously implies that σ(A ∩ f(A ∩ E)) > 0 and we can choose
a p ∈ A ∩ E such that f(p) ∈ A. Then p, f(p), and v are three collinear
elements of the two point set B and we have arrived at the contradiction
that proves the proposition.

The following observation is based on a suggestion by W. Rudin.

Proposition 2.11. If C is a partial two point set with dim(C) > 0 then
every dense Gδ-subset of C is nonextendable.

P r o o f. Let C be a partial two point set with dim(C) > 0. According
to Kulesza [3, Theorem 1], C contains an arc, so let α : I → C be an
imbedding. Kulesza also shows in the proof of [3, Lemma 3] that there is a
line � that meets C in a single point u ∈ α((0, 1)) such that the arc α(I) is
contained in one of the half-planes determined by �. Let r ∈ (0, 1) be such
that u = α(r). Assume that A is a dense Gδ-subset of C which is contained
in some two point set B.
There exists a point v ∈ B∩� which is distinct from u. By connectedness

we infer that the line through v and α(0) intersects α((r, 1]) or that the line
through v and α(1) intersects α((r, 0]). If necessary we shorten the arc on one
end so that we obtain the collinearity of α(0), α(1), and v. By connectedness
and the fact that α(I) is a partial two point set we find that for every
p ∈ α([0, r]) the line through p and v intersects the arc α([r, 1]) in precisely
one point, which we denote by f(p). By compactness f : α([0, r]) → α([r, 1])
is a homeomorphism. Since C is a partial two point set every line through
v and an arbitrary point p ∈ α((0, r)) intersects C only in the points p and
f(p). Consequently, E = α((0, r)) and F = α((r, 1)) are open subsets of C
and hence E ∩ A and F ∩ A are dense Gδ-subsets of E and F respectively.
So we see that E ∩ A ∩ f−1(F ∩ A) is a dense Gδ in E and we may select
a p ∈ E ∩ A such that f(p) ∈ A. Then p, f(p), and v are three collinear
elements of the two point set B, a contradiction.

The following generalization of Proposition 2.10 seems reasonable:

Conjecture. Every σ-compact subset of a two point set has Hausdorff
1-measure zero.

We will find in the next section that the existence of extendable elements
of K(S1) with positive Hausdorff dimension and capacity is consistent with
ZFC.

3. Extendable sets. Several of the results in this section use Martin’s
Axiom. MA is weaker than the continuum hypothesis and it implies that
no compact metric space can be written as the union of less than c = 2ω

nowhere dense subsets. For more information on MA see e.g. [10].
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We call a partial two point set A a pre-2-point set if every line � in the
plane such that � \ L(A) is nowhere dense in � intersects A in two points.
According to Kulesza [3] every two point set is zero-dimensional. Kulesza
shows in effect that if A is a partial two point set with dim(A) > 0 then
there is a line � ⊂ L(A) that intersects A in only one point (see the proof
of Lemma 3 in [3]). Note that this result also proves that every pre-2-point
set is zero-dimensional.

Theorem 3.1. (MA) Every σ-compact pre-2-point set is extendable.

P r o o f. Let A be a σ-compact pre-2-point set. Consider the σ-com-
pactum E = {(u, v) ∈ A × A : u �= v} × R and the map g : E → R2

defined by g(u, v, t) = u + t(v − u). Observe that L(A) = g(E) and hence
the set is σ-compact.
Let {�α : α < c} enumerate the lines in the plane. We shall construct by

transfinite induction a nondecreasing sequence (Cα)α≤c of subsets of R2 \A
with induction hypotheses:

(1) |Cα| ≤ |α| + ω,
(2) A ∪ Cα is a partial two point set.

Put C0 = ∅ and if λ ≤ c is a limit ordinal then Cλ =
⋃
α<λ Cα. Let α

be a fixed ordinal < c and consider Cα and �α. Assume for the moment
that (A ∪ Cα) ∩ �α contains at most one point. Let I be a nondegenerate
compact interval in �α such that I ⊂ cl(�α \L(A)). Note that since I ∩L(A)
is σ-compact it is a category I set in I.
Let u be a point in Cα. If u ∈ �α then we put Bu = {u} ∩ I; otherwise

we define

Bu = {v ∈ I : L(u, v) ∩A �= ∅}.
Let u �∈ �α and note that D =

⋃{L(u, v) : v ∈ I} is closed. Since A is a
zero-dimensional σ-compactum, D ∩A can be written as a countable union⋃∞
i=1Di of zero-dimensional compacta. Let f : D\{u} → I be the projection
defined by {f(z)} = L(u, z) ∩ I. Since Di ∪ {u} is a subset of A ∪ Cα it is
also a partial two point set and f |Di is one-to-one and hence an imbedding.
Consequently, Bu =

⋃∞
i=1 f(Di) is a countable union of zero-dimensional

compacta. So Bu is of category I in I for each u ∈ Cα.
Consider now two distinct points u and v in Cα. Since u and v do not

both lie on �α the set Buv = L(u, v) ∩ I contains at most one point. Note
that

D = {I ∩ L(A)} ∪ {Bu : u ∈ Cα} ∪ {Buv : u, v ∈ Cα and u �= v}
is a collection of category I subsets of I with |D| ≤ |α| + ω < c and that⋃D = I ∩L(A∪Cα). Martin’s Axiom implies that I \

⋃D is dense in I and
we can select two distinct points a and b in that dense set.
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Since A ∪ Cα is a partial two point set we may define

Cα+1 =



Cα ∪ {a, b} if |(A ∪ Cα) ∩ �α| = 0,
Cα ∪ {a} if |(A ∪ Cα) ∩ �α| = 1,
Cα if |(A ∪ Cα) ∩ �α| = 2.

By the construction it is obvious that |Cα+1| ≤ |α+1|+ω and that A∪Cα+1
is a partial two point set which intersects �α in two points. Then A ∪ Cc is
a two point set.

Theorem 3.2. (MA) Any σ-compact partial two point set A with
H1(B(A)) = 0 is extendable.
P r o o f. First we show that A is zero-dimensional. Assume that dim(A)

≥ 1. Select a u ∈ A such that u �= 0. Then A \ {u} is a σ-compactum
with dim ≥ 1 and hence it contains a compactum B with dim(B) ≥ 1.
Select a nontrivial continuum C ⊂ B. Define the continuous map h : C →
R2 by h(v) = p(ϕ(v − u), v). So h(C) is a continuum in B(A) and hence
diam(h(C)) ≤ H1(h(C)) ≤ H1(B(A)) = 0. Let v and w be distinct elements
of C and note that h(v) = h(w) ∈ L(u, v)∩L(u,w). Since A is a partial two
point set, u, v, and w are not collinear, which implies that L(u, v)∩L(u,w) =
{u}. So u = h(v) = h(w), which means since u �= 0 that v and w lie on the
line through u that is perpendicular to the line through 0 and u. So u, v,
and w are collinear, a contradiction.
In order to show that A is a pre-2-point set let � be a line that intersects

A in less than two points. We shall prove that L(A)∩� is of category I in �. By
rotating the xy-axes we can arrange that � is the line x = a. Define a function
f fromD = {(x, y) ∈ R2 : y �= 0} to � by f(x, y) = (a, (x2+y2−ax)/y). Note
that if u is a vector from D then u and f(u)− u are perpendicular. Since A
is σ-compact, so are B(A) and B(A) ∩D. Write P = B(A) ∩D = ⋃∞i=1 Pi
where the Pi’s are compact. Since f is analytic the maps f |Pi are Lipschitz
and we haveH1(f(Pi)) = 0 becauseH1(Pi) ≤ H1(B(A)) = 0. Consequently,
f(P ) is a countable union of zero-dimensional compacta and hence it is a
category I set in �.
Consider the case a = 0, i.e. � is the y-axis. Let u �= 0 be an element of

L(A) ∩ �. There are v and w in A such that u ∈ L(v,w). Since � intersects
A in at most one point we know that L(u, v) is not vertical. Note that
z = p(ϕ(v−w), v) is an element of P such that f(z) = u. We may conclude
that L(A) ∩ � is a subset of {0} ∪ f(P ) and hence it is a category I set in �.
Assume now that a �= 0. Consider the zero-dimensional σ-compactum

A′ = A ∩ (D ∪ {0}). Define the set
R = {(u, v) ∈ A′ ×A′ : u, v, 0 collinear and u �= v}.

Since R is the intersection of an open and a closed subset of A′ × A′ it is
also zero-dimensional and σ-compact. Since R is disjoint from the diagonal
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of A′ × A′ we can write R as a countable union of compacta R1, R2, . . . ,
where (u, v) ∈ Ri implies (v, u) �∈ Ri. Define the continuous map g : R→ �
by {g(u, v)} = L(u, v) ∩ �. Let (u, v) and (w, z) be elements of Ri such
that g(u, v) = g(w, z). Then L(u, v) and L(w, z) have the origin and g(u, v)
in common, so they coincide. Since A is a partial two point set we have
{u, v} = {w, z} and hence (u, v) = (w, z). Consequently, g|Ri is one-to-one
and an imbedding. This implies that g(R) is a countable union of zero-
dimensional compacta and hence a category I set in �. Let v and w be
elements of A such that L(v,w) contains some u ∈ �. If L(v,w) does not
go through the origin then by the same argument as given above we have
u ∈ f(P ). If L(v,w) does contain the origin then (v,w) ∈ R and g(v,w) = u.
So we may conclude that L(A)∩ � ⊂ f(P )∪ g(R) and hence it is a category
I set in �.

According to Section 2 there exist nonextendable compact partial two
point sets with Hausdorff 1-measure zero (or even with Hausdorff dimension
zero). On the other hand, we have:

Theorem 3.3. (MA) Any σ-compact partial two point set A with
H1(A×A) = 0 is extendable.
P r o o f. We assume that A × A is equipped with the standard metric

it inherits from R4. Let ∆ = {(u, v) ∈ R2 × R2 : u = v} and define the
map f : R4 \ ∆ → R2 by f(u, v) = p(ϕ(u − v), u) for u, v ∈ R2, u �= v.
Obviously, B = A×A \∆ can be written as a countable union of compacta
B1, B2, . . . Since f is analytic f |Bi is Lipschitz and we may conclude that
H1(f(Bi)) = 0 because H1(Bi) ≤ H1(A × A) = 0 for each i ∈ N. By
σ-additivity of Hausdorff measures we have H1(B(A)) = H1(⋃∞i=1 f(Bi))
= 0 and Theorem 3.2 applies.

According to Corollary 2.7 there exist nonextendable elements A of
K(S1) such that dimH(A×A) ≤ 1. So Theorem 3.3 is sharp in the sense that
we cannot replace the condition H1(A × A) = 0 by Hs(A × A) = 0 for all
s > 1. In fact, the following result, which combines Theorem 3.3 and Propo-
sition 2.9, shows that H1 is the optimum choice among the h-measures.
Theorem 3.4. (MA) If h is an arbitrary function from [0, t0] into [0,∞)

then the following statements are equivalent :

(1) every σ-compact partial two point set A with mh(A × A) = 0 is
extendable,
(2) mh(X) = 0 implies H1(X) = 0 for every X,
(3) every A ∈ K(S1) with mh(A×A) = 0 is extendable,
(4) lim inft↘0 h(t)/t > 0.
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Note that H1(A × A) is an upper semicontinuous function of A that
vanishes on finite sets. Consequently, the null-subadditivity condition in
Theorem 2.3 is essential and we have

Corollary 3.5. (MA) If X is any partial two point set then there
exists a dense Gδ-subset of K(X) consisting entirely of extendable sets.
So the nonextendable sets in K(X) form merely a category I set.
We now describe a standard procedure for constructing a Cantor set C.

Let C0 be a continuum. As step 1 we replace C0 by n1 disjoint subcontinua
C11 , . . . , C

n1
1 . In general, for i ∈ N we replace every Cji−1, for 1 ≤ j ≤

n1 . . . ni−1, by ni disjoint subcontinua. This produces a set Ci = C1i ∪. . .∪Cki ,
where k = n1 . . . ni. Define

di = max{diam(Cji ) : 1 ≤ j ≤ n1 . . . ni}
and ri = di/di−1. Then C is the intersection

⋂∞
i=0Ci.

Corollary 3.6. (MA) Let C be a planar Cantor set as constructed
above. If C is a partial two point set such that

∏∞
i=1 n

2
i ri = 0 then C is

extendable.

P r o o f. Consider the covering

Bi = {Cji × Cki : 1 ≤ j, k ≤ n1 . . . ni}
of C × C. Let d0 = diam(C0) and let mesh(Bi) = max{diam(Bi) : B ∈ Bi}.
We have

lim
i→∞
mesh(Bi) ≤ lim

i→∞
√
2 d0r1 . . . ri ≤

√
2 d0

∞∏
i=1

n2i ri = 0.

In addition,

lim
i→∞

∑
B∈Bi
diam(B) ≤ lim

i→∞
|Bi|mesh(Bi)

≤ lim
i→∞
(n1 . . . ni)2

√
2 d0ri . . . ri =

√
2 d0

∞∏
i=1

n2i ri = 0.

Consequently, H1(C × C) = 0 and we may apply Theorem 3.3.
For instance, if we start with an interval in S1 and we obtain Ci+1 from

Ci by deleting the middle three fifths of every interval of Ci then ni = 2 and
ri = 1/5. Consequently,

∏∞
i=1 n

2
i ri = (4/5)

∞ = 0 and the resulting Cantor
set is extendable to a two point set. In addition, one may verify that the set
has positive Hausdorff dimension and hence positive logarithmic capacity.
Corollary 3.6 gives us many Cantor sets that are extendable to two point

sets provided that Martin’s Axiom is valid, suggesting the following question:
is the existence of a two point set that contains a Cantor set provable in
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ZFC? Noting that every dense Gδ in K(S1) contains Cantor sets we have an
affirmative answer in the following result.

Proposition 3.7. There exists a dense Gδ-subset of K(S1) consisting
entirely of extendable sets.

We need some definitions (cf. [5, §VIII.1]) and two technical lemmas. If
A is a subset of a field then the subfield generated by A is denoted by Q(A).
A subset A of a field is called algebraically independent if every x ∈ A is
transcendental over the field Q(A \ {x}). A transcendence base A for a field
F is an algebraically independent subset such that F is algebraic in Q(A).
The transcendence degree of a field F over a subset A equals min{|B| : B ⊂
F and F is algebraic in Q(A ∪B)}.
Lemma 3.8. If X and Y are spaces, F is a closed subset of X, O is an

open subset of Y , and f : F → Y is continuous then the set O = {K ∈
K(X) : f(K ∩ F ) ⊂ O} is open in K(X).
P r o o f. The set f−1(O) is open in F and hence f−1(O)∪(X \F ) is open

in X. Note that O = {K ∈ K(X) : K ⊂ f−1(O) ∪ (X \ F )} and hence O is
obviously open.

Lemma 3.9. If D is an algebraically independent compact subset of R

such that R has infinite transcendence degree over D then

GD = {C ∈ K(R \D) : D ∪ C is algebraically independent}
is a dense Gδ-subset of K(R).
P r o o f. Let D be such a subset of R and let p1n, p2n, . . . be an enumera-

tion of all nonzero polynomials in n variables with integral coefficients. Let
∆n be the closed subset of Rn that consists of all points with at least two
identical coordinates. Define for m,n ∈ N the following set of compacta:

Gmn = {C ∈ K(R \D) : 0 �∈ pmn((D ∪ C)n \∆n)}.
Note that GD =

⋂{Gmn : m,n ∈ N}. Write Rn \∆n as a countable union
of compacta K1 ⊂ K2 ⊂ . . . Fix m,n ∈ N. Consider for each i ∈ N the set

Ui = {C ∈ K(R \D) : 0 �∈ pmn((D ∪ C)n ∩Ki)}.
According to Lemma 3.8 every Ui is open in K(R). Since Gmn =

⋂∞
i=1 Ui it

is a Gδ-set and hence GD is a Gδ-set as well.
Let F = {x1, . . . , xn} be a finite set in R and let ε > 0. We define by

induction sets C0, . . . , Cn with |Ci| = i. Put C0 = ∅ and let 0 ≤ i < n.
Since R has infinite transcendence degree over D there exists an a ∈ R

that is transcendental over Q(D∪Ci). Consequently, every nonzero element
of the dense set Qa is transcendental over Q(D ∪ Ci) and we can select a
yi+1 ∈ Qa \ {0} that is ε-close to xi+1. Put Ci+1 = Ci ∪ {yi+1}. Note that
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Cn is ε-close to F in the Hausdorff metric and that Cn ∈ GD. So the closure
of GD contains all finite sets and hence it is K(R).
Proof of Proposition 3.7. Let A be an algebraically independent Cantor

set in R. The existence of such sets is known and follows if we substitute
D = ∅ in Lemma 3.9. Let D be a Cantor set that is a proper subset of A.
Then the transcendence degree of R over Q(D) is c = |A\D|; see [5, Theorem
VIII.1.1]. By Lemma 3.9, GD is a dense Gδ in K(R). Define π1, π2 : R2 → R

by π1(x, y) = x and π2(x, y) = y. It is easily seen that G = {C ∈ K(S)1 :
π1(C) ∈ GD} is a dense Gδ in K(S1).
We show that every C ∈ G is extendable to a two point set. π1(C)∪D is

algebraically independent, so we can extend this set to a transcendence base
B for R. Let {�α : α < c} enumerate the lines in the plane. We shall construct
by transfinite induction a nondecreasing sequence (Eα)α≤c of subsets of
R2 \ C with the following induction hypotheses:
(1) |Eα| ≤ |α| + ω,
(2) C ∪Eα is a partial two point set.

Put E0 = ∅ and if λ ≤ c is a limit ordinal then Eλ =
⋃
α<λEα. Let α be a

fixed ordinal < c and consider Eα and �α. If (C∪Eα)∩�α contains two points
then Eα+1 = Eα. Assume now that |(C ∪ Eα) ∩ �α| ≤ 1 and that �α is the
graph of ax+by = c. Consider the set Z = L(C∪Eα)∩�α. If (x, y) ∈ Z then
there exist two distinct points (x1, y1), (x2, y2) ∈ C ∪ Eα such that (x, y) is
the point of intersection of �α and the line through (x1, y1) and (x2, y2).
Consequently, x and y are elements of the field Q({x1, x2, y1, y2, a, b, c}).
Since |Eα| ≤ |α| + ω we can find a B′ ⊂ B such that |B′| ≤ |α| + ω and
π1(Eα) ∪ π2(Eα) ∪ {a, b, c} is algebraic in Q(B′). Since S1 is an algebraic
curve, π2(C) is algebraic in Q(π1(C)). As the set of points that are algebraic
in a given field is itself a field we may conclude that π1(Z)∪π2(Z) is algebraic
in Q(π1(C) ∪ B′). Since |B′| < c we can select two distinct points u and v
in �α such that at least one of their coordinates is in D \ B′ and hence
transcendental over Q(π1(C)∪B′). Consequently, u and v are not in L(C ∪
Eα). Putting Eα+1 equal to Eα∪{u} or Eα∪{u, v} completes the induction.
It is obvious that C ∪ Ec is a two point set.

Note that in this proof we may replace S1 by any algebraic curve that
is a partial two point set. In fact, it is shown in [1] that Corollary 3.5 is
provable in ZFC.
In connection with Proposition 3.7, A. W. Miller asked the following

Question. What is the Borel type of the set of extendable elements of
K(S1)?
If we combine Proposition 3.7 with Theorem 2.2 we find



60 J. J. Dijkstra et al.

Proposition 3.10. There exist two extendable elements of K(S1) whose
union is not extendable to a two point set.
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