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A factorization theorem for the
transfinite kernel dimension of metrizable spaces

by

M. G. C h a r a l a m b o u s (Karlovassi)

Abstract. We prove a factorization theorem for transfinite kernel dimension in the
class of metrizable spaces. Our result in conjunction with Pasynkov’s technique implies
the existence of a universal element in the class of metrizable spaces of given weight and
transfinite kernel dimension, a result known from the work of Luxemburg and Olszewski.

1. Introduction and definitions. In this paper, all spaces are metriz-
able, I denotes the unit interval [0, 1], N the set of natural numbers, wX the
weight of a space X, and |A| the cardinality of a set A. For an ordinal α,
λ(α) denotes the unique limit ordinal and n(α) the unique finite ordinal
such that α = λ(α) + n(α). It is convenient to adjoin −1 and ∞ to the
class of all ordinals and treat them as the least and greatest elements of the
augmented class, respectively. For the standard results and terminology in
dimension theory, we refer to Engelking’s book [2].

For any space X, we set D−1(X) = ∅ and D∞(X) = X. For an ordinal α,
we define Eα(X) and Dα(X) inductively by Eα(X) = X − ⋃{Dβ(X) :
β < α} and

Dα(X) =
⋃
{U : U an open subset of Eλ(α)(X) with dimU ≤ n(α)}.

The transfinite kernel dimension of X, trkerX, is defined to be the first
extended ordinal α for which X =

⋃{Dβ(X) : β ≤ α}. Note that each
Eα(X) is a closed subset of X and, if λ = trkerX is an ordinal, then
|λ| ≤ wX [2, Theorem 7.3.5].

The main result of this paper, Theorem 2 of Section 3, is a factorization
theorem for trker in the class of metrizable spaces. From this we deduce using
Pasynkov’s method [6] that the class of metrizable spaces with trker ≤ λ and
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weight ≤ τ has a universal element. Note that Henderson’s [3] D-dimension
on metrizable spaces coincides with trker [2, Theorem 7.3.18] and Olszewski
[5] proved the existence of a universal space for the class of all metrizable
spaces with D-dimension ≤ λ and weight ≤ τ , Luxemburg [4] having proved
the corresponding result in the class of compact metrizable spaces as well
as in the class of separable metrizable spaces.

2. Preliminary results. We start with the key construction that is
employed in the sequel. Let {Hα : α ∈ A} be a collection of open subsets
of a space Y , and H =

⋃{Hα : α ∈ A}. For each α in A, let hα : Zα → Y
be a continuous function, and τ = sup{|A|, wY,w(h−1

α (Hα)) : α ∈ A}. Let
Z be the set (Y −H) ∪⋃{h−1

α (Hα)× {α} : α ∈ A}, and define h : Z → Y
to be the identity on Y − H and, outside Y − H, by h(x, α) = hα(x). We
let Z have the smallest topology that makes h continuous and G × {α}
open for each open set G of h−1

α (Hα). It is easy to see that Z is T1 and
regular. Let {Uλ,n : λ < τ, n ∈ N} be a σ-locally finite open base of Y .
Let {Uα,λ,n : λ < τ, n ∈ N} be a σ-locally finite open base of h−1

α (Hα).
Let H =

⋃{Hn : n ∈ N}, where Hn is open and its closure is contained in
Hn+1. Then it is easily verified that

{h−1(Uλ,n) : λ < τ, n ∈ N}
∪{(Uα,λ,n × {α}) ∩ h−1(Hm) : α ∈ A, λ < τ, m, n ∈ N}

is a σ-locally finite base of Z of cardinality ≤ τ . Hence Z is metrizable and
wZ ≤ τ . We will refer to Z as the space, and h as the projection, determined
by the pairs of maps and open sets (hα,Hα), α ∈ A.

Proposition 1. Let f : X → Y be a continuous function, {Hα : α ∈ A}
a disjoint collection of open subsets of Y , H =

⋃{Hα : α ∈ A} and , for
each α in A, let gα : X → Zα and hα : Zα → Y be continuous functions
such that f = gα ◦ hα. Then there is a space Z and continuous functions
g : X → Z and h : Z → Y such that f = h ◦ g, the restriction of h
to h−1(Y − H) is a homeomorphism, wZ ≤ τ = sup{wY,w(h−1

α (Hα)) :
α ∈ A}, and dim g(E ∩ f−1(H)) ≤ n for each subset E of X that satisfies
dim gα(E ∩ f−1(Hα)) ≤ n for each α in A.

P r o o f. We can assume that each Hα is non-empty, so that |A| ≤
wY ≤ τ . Let Z be the space, and h the projection, determined by the
pairs (hα,Hα), α ∈ A. Clearly, the restriction of h to h−1(Y − H) is a
homeomorphism and wZ ≤ τ . Define g by g(x) = (gα(x), α) if f(x) is
a point of Hα for some α ∈ A, and g(x) = f(x) otherwise. Evidently,
f = h◦g and g is continuous. Finally, suppose that a subset E of X satisfies
dim gα(E ∩ f−1(Hα)) ≤ n for each α in A. As g(E ∩ f−1(H)) is the direct
sum of gα(E ∩ f−1(Hα)), α ∈ A, we have dim g(E ∩ f−1(H)) ≤ n.
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Proposition 2. Let f : X → Y be a continuous function, H an open
subset of Y and A a subset of f−1(H). Then there are continuous functions
g : X → Z and h : Z → Y such that f = h ◦ g, dim g(A) ≤ dimA,
wZ ≤ wY and the restriction of h to h−1(Y − H) is a homeomorphism
(cf. [1, Theorem 4 and Remark 2]).

P r o o f. By a factorization theorem due to Pasynkov [7, Theorem 1],
there are continuous functions g1 : X → Z1 and h1 : Z1 → Y such that
f = h1 ◦ g1, dim g1(A) ≤ dimA and wZ1 ≤ wY . The result is now a
straightforward application of Proposition 1.

A tower of a space X will mean a collection {Gα : α < λ} of open
subsets of X, where λ is an ordinal or −1, with G−1 = ∅ and Gα ⊂ Gβ for
α ≤ β < λ.

Proposition 3. Let τ be an infinite cardinal and {Gα : α < λ} a tower
of a space X, where |λ| ≤ τ . Then there exist an open collection {Hα :
α < λ} of a space Y with wY ≤ τ and a continuous function f : X → Y
such that Gα = f−1(Hα) for all α < λ.

Remark. Evidently, we can additionally stipulate that {Hα : α < λ} is
a tower of Y .

P r o o f (of Proposition 3). The proof is by induction on λ. The result
holds for λ = −1. Assume that λ > −1 and the result holds for all ordinals
< λ.

Consider first the case when λ has an immediate predecessor µ. By the
induction hypothesis, there is an open collection {Uα : α < µ} of a space
Z with wZ ≤ τ and a continuous function g : X → Z such that Gα =
g−1(Uα), α < µ. Let h : X → I be continuous with h−1(0, 1] = Gµ. Finally,
let Y = Z×I, f = gMh, Hα = σ−1(Uα), α < µ, and Hµ = π−1(0, 1], where
σ and π denote the canonical projections of Y onto Z and I, respectively.

Consider next the case of λ being a non-zero limit ordinal. Let {Vi,µ :
i ∈ N, µ ∈M} be a σ-discrete base of X. For each i in N and α < λ, let

Ui,α =
⋃
{Vi,µ : α is the first extended ordinal with Vi,µ ⊂ Gα}.

Let Ui =
⋃{Ui,α : α < λ}. Note that, for i in N and β ≤ α < λ, we have

Ui,β ⊂ Gβ ⊂ Gα so that Gα ∩ Ui,β = Ui,β . By the induction hypothesis,
we therefore have, for each β < λ, an open collection {Hi,α,β : α < λ} in
some space Zi,β with weight ≤ τ and a continuous function gi,β : X → Zi,β
such that Gα ∩ Ui,β = g−1

i,β (Hi,α,β). Let hi,β : Zi,β → I be a continuous
function such that h−1

i,β(0, 1] =
⋃{Hi,α,β : α < λ}. Let Zi be the space

and hi : Zi → I the projection determined by pairs (hi,β , (0, 1]), β < λ.
Then wZi ≤ τ and, because {Ui,β : β < λ} is discrete in X, the function
fi : X → Zi that sends X−Ui to 0 and x of Ui,β to (gi,β(x), β) is continuous.
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Letting Y =
∏{Zi : i ∈ N}, f = ∆{fi : i ∈ N}, πi : Y → Zi the canonical

projection and Hα =
⋃{π−1

i (Hi,α,β × {β}) : i ∈ N, β < λ}, one can check
that the required properties are satisfied.

Proposition 4. Let f : X → Y be a continuous function, {Gα : α < λ}
a tower of X and τ a cardinal ≥ max{|λ|, wY }. Then there is a space Z with
wZ ≤ τ , a tower {Hα : α < λ} of Z and continuous functions g : X → Z
and h : Z → Y such that f = h ◦ g and g−1(Hα) = Gα for each α < λ.

P r o o f. By Proposition 3, there exist a tower {Uα : α < λ} of a space S
with wS ≤ τ and a continuous function r : X → S such that Gα = r−1(Uα).
It suffices to let Z = S × Y, g = rM f, and q and h be the projections of Z
onto S and Y , respectively, and Hα = q−1(Uα).

3. The main results

Theorem 1. Let f : X → Y be a continuous function, {Gα : α < λ}
a tower of X and τ a cardinal ≥ max{|λ|, wY }. For α < λ, let Eα =
Gα −

⋃{Gβ : β < α} and suppose that nα = dimEα is finite. Then there is
a space Z and continuous functions g : X → Z and h : Z → Y such that
f = h ◦ g, wZ ≤ τ, g(Gα) is open in g(X) and dim g(Eα) ≤ nα for each
α < λ.

P r o o f. By Proposition 4, we may assume that there is a tower {Hα :
α < λ} of Y such that f−1(Hα) = Gα, α < λ. This assures that g(Gα) will
be open in g(X). Let H =

⋃{Hα : α < λ}. Note that, by Proposition 1,
whenever the result holds, it holds with the additional requirement that
the restriction of h to h−1(Y − H) is a homeomorphism. The proof is by
induction on λ. The result holds for λ = −1. Assume that λ > −1 and the
result holds for all ordinals < λ.

Consider first the case when λ has an immediate predecessor µ. Let
U =

⋃{Hα : α < µ}. By Proposition 2, there is a metrizable space Z1 with
wZ1 ≤ τ and continuous functions g1 : X → Z1 and h1 : Z1 → Y such that
f = h1 ◦ g1, dim g1(Eµ) ≤ nµ and the restriction of h1 to h−1

1 (Y − H) is
a homeomorphism. Next, by the induction hypothesis, there is a metrizable
space Z with wZ ≤ τ and continuous functions g : X → Z and h2 : Z → Z1

such that g1 = h2 ◦ g, dim g(Eα) ≤ nα for α < µ, and the restriction of h2

to (h1 ◦h2)−1(Y −U) is a homeomorphism. It now suffices to set h = h1 ◦h2.
Consider now the case of λ being a non-zero limit ordinal. Let {Hi,β :

i ∈ N, β ≤ τ} be a σ-discrete in Y open cover ofH that refines {Hα : α < λ}.
Let Hi =

⋃{Hi,β : β ≤ τ}. Note that, given i and β, there is µ < λ such
that Eα ∩ f−1(Hi,β) = ∅ for µ ≤ α. By the induction hypothesis, we can
apply the result to the tower {Gα ∩ f−1(H1,β) : α < λ} to get, for each
β ≤ τ , a space Zβ and continuous functions gβ : X → Zβ and hβ : Zβ → Y
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such that f = hβ ◦ gβ , wZβ ≤ τ , and dim gβ(Eα ∩ f−1(H1,β)) ≤ nα for
each α < λ. Then, by Proposition 1, there is a space Z1 and continuous
functions g1 : X → Z1 and h1 : Z1 → Y such that f = h1 ◦ g1, wZ1 ≤ τ ,
and dim g1(Eα ∩ f−1(H1)) ≤ nα for each α < λ.

Let N1, N2, N3, . . . , be a partition of N into infinite disjoint sets with N1

containing 1. By the argument of the previous paragraph, for each n in N we
can construct, by induction on n, a space Zn with wZn ≤ τ and continuous
functions gn : X → Zn and hn : Zn → Zn−1 such that gn−1 = hn ◦ gn,
where Z0 = Y and g0 = f , and, if n ∈ Ni, then dim gn(Eα ∩ f−1(Hi)) ≤ nα
for each α < λ. Write hm,n for the composite of hm+1, hm+2, . . . , hn. Let Z
be the limit of the inverse sequence (Zn, hm,n;N ∪ {0}), let πn : Z → Zn
be the canonical projection and h = π0. Evidently, wZ ≤ τ and we have a
continuous function g : X → Z such that gn = πn◦g. In particular, f = h◦g.

Let α < λ and i ∈ N. For each n in Ni, we have dim gn(Eα ∩ f−1(Hi))
≤ nα, and g(Eα ∩ f−1(Hi)) is contained in the limit of the inverse se-
quence (gn(Eα ∩ f−1(Hi)), hm,n;Ni). By the inverse limit and the subset
theorems, we therefore have dim g(Eα ∩ f−1(Hi)) ≤ nα. Now, the sets
g(Eα ∩ f−1(Hi)) = g(Eα) ∩ h−1(Hi), i ∈ N, form an open cover of g(Eα).
Hence, by the countable sum theorem, dim g(Eα) ≤ nα. This concludes the
proof of the theorem.

Lemma 1. Let {Gα : α < λ} be a tower of a space X and suppose that
dimEα ≤ n(α) for α < λ, where Eα = Gα −

⋃{Gβ : β < α}. Then, for
each α < λ,

Gα ⊂
⋃
{Dβ(X) : β ≤ α}.

P r o o f. The proof is by induction on α. The result is true for α = −1.
Assume that α > 0 and the result holds for all β < α. Then Eλ(α)(X)∩Gα
is contained in the union of the Fσ-subsets Eλ(α)+i of X, 0 ≤ i ≤ n(α).
The subset and the countable sum theorems assure that the open subset
Eλ(α)(X)∩Gα of Eλ(α)(X) has dim ≤ n(α). Hence Eλ(α)(X)∩Gα ⊂ Dα(X)
and Gα ⊂

⋃{Dβ(X) : β ≤ α}.
Theorem 2. Let f : X → Y be a continuous function, µ = trkerX and

suppose that τ is a cardinal ≥ max{|µ|, wY }. Then there is a space Z and
continuous functions g : X → Z and h : Z → Y such that f = h◦g, wZ ≤ τ
and trkerZ ≤ µ.

P r o o f. In Theorem 1, put λ = µ + 1 and Gα =
⋃{Dβ(X) : β ≤ α},

α < λ. Then there is a space Z and continuous functions g : X → Z and
h : Z → Y such that f = h ◦ g, wZ ≤ τ, g(Gα) is open in g(X) and
dim g(Gα −

⋃{Gβ : β < α}) ≤ n(α), α < λ. We take g to be surjective so
that {g(Gα) : α < λ} is a tower of Z and, since X = Gµ, we have Z = g(Gµ).
Noting that the subset g(Gα)−⋃{g(Gβ) : β < α} of g(Gα−

⋃{Gβ : β < α})



84 M. G. Charalambous

has dim ≤ n(α), we deduce from Lemma 1 that Z = g(Gµ) ⊂ ⋃{Dα(Z) :
α ≤ µ}. This shows that trkerZ ≤ µ and completes the proof.

Corollary 1. The class C of all metrizable spaces with trker ≤ α and
weight ≤ τ contains a universal element (cf. [4, 5]).

P r o o f. We can of course assume that |α| ≤ τ . Let Y be a universal
space for the class of all metrizable spaces of weight ≤ τ . Let X be the
direct sum of all subspaces Xλ of Y with trkerXλ ≤ α. Then trkerX ≤ α.
Let f : X → Y be the map whose restriction to Xλ is its embedding into Y .
Then the space Z supplied by Theorem 2 is a universal element of C.
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