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Abstract. We prove a geometric characterization of Banach space stability. We show
that a Banach space X is stable if and only if the following condition holds. Whenever
X̂ is an ultrapower of X and B is a ball in X̂, the intersection B ∩X can be uniformly
approximated by finite unions and intersections of balls in X; furthermore, the radius of
these balls can be taken arbitrarily close to the radius of B, and the norm of their centers
arbitrarily close to the norm of the center of B.

The preceding condition can be rephrased without any reference to ultrapowers, in
the language of types, as follows. Whenever τ is a type of X, the set τ−1[0, r] can be
uniformly approximated by finite unions and intersections of balls in X; furthermore, the
radius of these balls can be taken arbitrarily close to r, and the norm of their centers
arbitrarily close to τ(0).

We also provide a geometric characterization of the real-valued functions which satisfy
the above condition.

1. Introduction. A separable Banach space X is stable if whenever
(am) and (bn) are bounded sequences in X and U,V are ultrafilters on N,

lim
U,m

lim
V,n
‖am + bn‖ = lim

V,n
lim
U,m
‖am + bn‖.

This concept was introduced by J.-L. Krivine and B. Maurey in [5], where
the authors proved that every stable Banach space contains almost isometric
copies of `p, for some 1 ≤ p <∞. This generalized a result of D. Aldous [1]
about subspaces of L1.

The concept of type on a Banach space was introduced in [5] as well.
If X is a Banach space and a ∈ X, the type realized by a is the function
τa : X → R defined by τa(x) = ‖x + a‖. The space of types of X , denoted
by T(X), is the closure of {τa | a ∈ X} in RX with respect to the product
topology. The norm of a type τ is τ(0).
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The role played by types in [5] generalizes that played by random mea-
sures in [1].

Since [5], stable Banach spaces and types have been studied intensely.
For a self-contained exposition, we refer the reader to [2].

Types can be viewed quite naturally in terms of Banach space ultrapow-
ers as follows. A type on X is a function τ : X → R such that there exists
an ultrapower X̂ of X and an element a ∈ X̂ with

τ(x) = ‖x+ a‖ for every x ∈ X.
In this case, we will say that a realizes τ in X̂.

Let X be a normed space. If the type τ is realized in X, say, if τ = τa,
then for any r > 0, the set

(1) τ−1[0, r]

is the ball {x ∈ X | ‖x+a‖ ≤ r}. Now, if τ is realized by an element a ∈ X̂,
where X̂ is an ultrapower of X, the set (1) is the intersection of X with
the ball {x ∈ X̂ | ‖x + a‖ ≤ r}. It is then natural to ask whether (1) can
be approximated by balls in X; if so, it is also natural to ask whether the
radius of these balls can be taken to be r, and even whether the norm of
their centers can be taken to be τ(0). In this paper we show that all of these
approximation properties in fact characterize Banach space stability.

Let X be a normed space. If τ ∈ T(X), let us say that τ is approximable
if for every r > 0 and every ε > 0, the set τ−1[0, r] is within ε of a set
formed by finite unions and intersections of balls in X. (See Definition 2.2.)
Let us say that τ is strongly approximable if τ is approximable and the radii
of the balls approximating τ−1[0, r] can be taken arbitrarily close to r, and
the norm of their centers arbitrarily close to the norm of τ . In Theorem 4.1,
we prove that the following conditions are equivalent for a separable Banach
space X.

1. X is stable;
2. Every type on X is approximable;
3. Every type on X is strongly approximable.

By definition, every type on X is a pointwise limit of types realized
in X. Thus, if X is separable, T(X) is separable with respect to the topol-
ogy of pointwise convergence. It is a well-known fact that if X stable, then
T(X) is strongly separable, i.e., separable with respect to the topology of
uniform convergence on bounded subsets of X. The converse was proved to
be false by E. Odell (see [6, 8]). The preceding theorem explains to what
extent stability of X is equivalent to approximability of types on X by types
realized in X.
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In Proposition 3.1, we characterize approximable functions in terms of fi-
nite representability: Let f be a real-valued function on X which is uniformly
continuous on every bounded subset of X. Then the following conditions are
equivalent.

1. f is approximable;
2. Whenever Y is finitely represented in X, there is a unique real-valued

function g on Y such that (Y, g) is finitely represented in (X, f).

The proofs are based on ideas from model theory. Proposition 2.6 is
inspired by the “Definability of Types” lemma in [7].

We will make heavy use of Banach space ultrapowers. For an introduc-
tion, we refer the reader to [3].

Throughout the paper, X denotes a normed space. If M > 0, we denote
by B(M) the set of elements of X of norm at most M .

2. Constructible sets and approximable types. Let us first recall
that a positive boolean combination of the sets S1, . . . , Sn is a set obtained
from S1, . . . , Sn by taking finite unions and intersections.

2.1. Definition. Let X be a normed space. A construction C in X is a
positive boolean combination of sets of the form

{x ∈ X | ‖x+ ai‖ ∈ Ii}, a1, . . . , an ∈ X.
We write C = C(a1, . . . , an; I1, . . . , In). If I1, . . . , In = I, we write C =
C(a1, . . . , an; I).

If C(a1, . . . , an; I1, . . . , In) is a construction in X, we denote by

(2) [C(a1, . . . , an; I1, . . . , In)]

the subset of X determined by C. We will call a subset X constructible if
it is of the form (2). If a1, . . . , an are in a given subset A of X, we say that
the set (2) is constructible over A.

Thus, the class of constructible subsets of X is the ring generated by the
balls in X.

2.2. Definition. Let X be a normed space and let f be a real-valued
function on X. We say that f is approximable if the following condition
holds. For every choice of M, ε > 0 and every interval I there exist a con-
struction C(a1, . . . , an; J) and δ > 0 such that

1. B(M) ∩ f−1[I] ⊆ [C(a1, . . . , an; J)];
2. B(M) ∩ [C(a1, . . . , an; J + [−δ, δ])] ⊆ f−1[I + [−ε, ε]].
If, regardless of the choice of M and ε, the set C can always be chosen

constructible over a given subset A of X, we say that f is approximable
over A.
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We will express the fact that the inclusions in 1 and 2 hold by saying
that [C(a1, . . . , an; J)] is (ε, δ)-equivalent to f−1[I] in the ball B(M).

Notice that if f :X → R is approximable, then it is approximable over
any given dense subset of X.

2.3. Proposition. Let X be a normed space and let f be a real-valued
function on X. The following conditions are equivalent.

1. f is constructible over A;
2. For every M, ε > 0 and every interval I of the form [α,∞) there exist

a construction C(a1, . . . , an; J) with a1, . . . , an ∈ A and δ > 0 such that
[C(a1, . . . , an; J)] is (ε, δ)-equivalent to f−1[I] in B(M);

3. For every M, ε > 0 and every interval I of the form (α,∞) there exist
a construction C(a1, . . . , an; J) with a1, . . . , an ∈ A and δ > 0 such that
[C(a1, . . . , an; J)] is (ε, δ)-equivalent to f−1[I] in B(M);

4. For every M, ε > 0 and every interval I of the form (−∞, α] there
exist a construction C(a1, . . . , an; J) with a1, . . . , an ∈ A and δ > 0 such
that [C(a1, . . . , an;J)] is (ε, δ)-equivalent to f−1[I] in B(M).

P r o o f. The equivalence 2⇔3 is immediate, the equivalence 3⇔4 follows
by taking complements, and the implication 3&4⇒1 is proved by taking
intersections.

Now we focus on a particular kind of real-valued functions, namely, types.

2.4. Definition. Let X be a normed space and let τ : X → R be a type
on X. We will say that τ is strongly approximable if

• τ is approximable;
• The interval J of Definition 2.2 can always be taken arbitrarily close

to I, and the norm of a1, . . . , an can be chosen arbitrarily close to the norm
of τ .

2.5. Proposition. Let X be a normed space and let τ be a type on X.
The following conditions are equivalent.

1. τ is strongly approximable;
2. For every M, ε > 0 and every interval of the form [0, α] there exist a

construction C(a1, . . . , an; [0, β]) and δ > 0 such that
(i) [C(a1, . . . , an; [0, β]) ] is (ε, δ)-equivalent to τ−1[0, α] in B(M);

(ii) |β − α| < ε and | ‖ai‖ − τ(0)‖ < ε for i = 1, . . . , n.

P r o o f. Immediate from Definition 2.4 and 1⇔4 of Proposition 2.3.

2.6. Proposition. Suppose that X is a stable Banach space. Then every
type on X is strongly approximable.

P r o o f. Let τ ∈ X. Take M, ε > 0 and an interval [0, α]. We will define
a construction C(d1, . . . , dr; [0, β]) and δ > 0 such that
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(I) B(M) ∩ τ−1[0, α] ⊆ [C(d1, . . . , dr; [0, β])];
(II) B(M) ∩ [C(d1, . . . , dr; [0, β + δ])] ⊆ τ−1[0, α+ ε].

Take β and δ such that

α < β < β + δ < α+ ε.

Without loss of generality, we can take δ such that

(3) δ < min{β − α, (α+ ε)− (β + δ)}.
Take also positive numbers η, η0, η1, . . . such that

δ < η0 < η1 < . . . < η

and η is less than the minimum in (3).
We will now construct, inductively,

• A sequence a0, a1, . . . in B(τ(0) + ε);
• For i = −1, 0, 1, 2, . . ., sets S(i), T (i) of subsets of {0, . . . , i};
• Elements usi+1 ∈ B(M) for s ∈ S(i) and vti+1 ∈ B(M) for t ∈ T (i).

Suppose that we have defined a0, a1, . . . , an, S(−1), . . . , S(n − 1),
T (−1), . . . , T (n − 1), and usi , v

t
i for i = 0, . . . , n and s ∈ S(i), t ∈ T (i).

We now define the sets S(n), T (n) and the elements usi+1, v
t
i+1.

Let

S(n) =
{
s ⊆ { 0, . . . , n }

∣∣∣B(M) ∩ τ−1[0, α+ ηn] ∩
⋂

i∈s
τ−1
ai [β,∞) 6= ∅

}
.

For each s ∈ S(n), let usn+1 be an element of X such that

usn+1 ∈ B(M) ∩ τ−1[0, α+ ηn] ∩
⋂

i∈s
τ−1
ai [β,∞).

Similarly, let

T (n) =
{
t ⊆ {0, . . . , n }

∣∣∣B(M)∩ τ−1[α+ ε−ηn,∞)∩
⋂

i∈t
τ−1
ai [0, β+ δ] 6= ∅

}
,

and for each t ∈ T (n) let vtn+1 be an element of X such that

vtn+1 ∈ B(M) ∩ τ−1[β + ε− ηn,∞) ∩
⋂

i∈t
τ−1
ai [0, β + δ].

We now define an+1. Let

F = {usi+1 | −1 ≤ i ≤ n, s ∈ S(i)} ∪ {vti+1 | −1 ≤ i ≤ n, t ∈ T (i)}.
Since F is finite, there exists a ∈ F ∩B(τ(0) + ε) such that

x ∈ F ∩ τ−1[0, α+ ηn] implies ‖a+ x‖ ∈ [0, α+ ηn+1],

x ∈ F ∩ τ−1[α+ ε− ηn,∞)] implies ‖a+ x‖ ∈ [α+ ε− ηn+1,∞).

Let an+1 be such an element a.
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2.7. Claim. Suppose that 0 ≤ i ≤ n and s ∈ S(i− 1), t ∈ T (i− 1). Then

‖an + usi‖ ∈ [0, α+ ηn] and ‖an + vti‖ ∈ [α+ ε− ηn,∞).

Claim 2.7 follows immediately from the preceding definitions.

2.8. Claim. Suppose that 0 ≤ i(0) < i(1) < . . . < i(n) and

B(M) ∩ τ−1[0, α] ∩
n⋂

j=0

τ−1
ai(j)

[β,∞)] 6= ∅.

Then there exist b0, . . . , bn ∈ B(M) such that

‖ai(j) + bk‖ ∈ [β,∞) for 0 ≤ j < k ≤ n,
‖ai(j) + bk‖ ∈ [0, α+ η] for 0 ≤ k ≤ j ≤ n.

P r o o f. Inductively, we construct b0, . . . , bn such that

‖ai(j) + bk‖ ∈ [β,∞) for 0 ≤ j < k ≤ n,
‖ai(j) + bk‖ ∈ [0, α+ ηi(j)] for 0 ≤ k ≤ j ≤ n.

First we note that S(i(0)− 1) 6= ∅; in fact, ∅ ∈ S(i(0)− 1) since

B(M) ∩ τ−1[0, α+ ηi(0)] ⊇ B(M) ∩ τ−1[0, α] 6= ∅.
Take s ∈ S(i(0)) and let b0 be usi(0). Then, by Claim 2.7 above, we have

‖ai(j) + b0‖ ∈ [0, α+ ηi(j)] for 0 ≤ j ≤ n.
Assume that we have b1, . . . , bk as desired. Let s = {i(0), . . . , i(k)}. From

the definition of S(i(k)), we must have s ∈ S(i(k)). Let bk+1 be usk+1. Then

‖ai(j) + bk+1‖ ∈ [β,∞)] for 0 ≤ j ≤ k,
and by Claim 2.7,

‖ai(j+1) + bk+1‖ ∈ [0, α+ ηi(j+1)] for 0 ≤ k ≤ j ≤ n− 1.

We have proved Claim 2.8.

2.9. Claim. Suppose that 0 ≤ i(0) < i(1) < . . . < i(n) and

B(M) ∩ τ−1[α+ ε,∞)] ∩
n⋂

j=0

τ−1
ai(j)

[0, β + δ] 6= ∅.

Then there exist c1, . . . , cn ∈ B(M) such that

‖ai(j) + ck‖ ∈ [0, β + δ] for 0 ≤ j < k ≤ n,
‖ai(j) + ck‖ ∈ [α+ ε− η,∞) for 0 ≤ k ≤ j ≤ n.
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P r o o f. The proof is analogous to that of Claim 2.8. We construct
c1, . . . , cn inductively such that

‖ai(j) + ck‖ ∈ [0, β + δ] for 0 ≤ j < k ≤ n,
‖ai(j) + ck‖ ∈ [α+ ε− ηi(j),∞) for 0 ≤ k ≤ j ≤ n.

2.10. Claim. There exists a number N ∈ N with the following property.
Whenever 0 ≤ i(0) < . . . < i(N) ≤ 2N ,

(i) There does not exist a sequence (bk)0≤k≤N in B(M + τ(0) + ε) sat-
isfying

(4)
‖ai(j) + bk‖ ∈ [β,∞) for 0 ≤ j < k ≤ N,
‖ai(j) + bk‖ ∈ [0, α+ η] for 0 ≤ k ≤ j ≤ N ;

(ii) There does not exist a sequence (ck)0≤k≤N in B(M + τ(0) + ε) sat-
isfying

(5)
‖ai(j) + ck‖ ∈ [0, β + δ] for 0 ≤ j ≤ k ≤ N,
‖ai(j) + ck‖ ∈ [α+ ε− η,∞) for 0 ≤ k < j ≤ N.

P r o o f. Suppose that the claim is false. Then, for arbitrarily large N ∈ N
there will be 0 ≤ i(0) < . . . < i(N) ≤ 2N and either a sequence (bk)0≤k≤N
in B(M + τ(0) + ε) such that (4) holds, or (ck)0≤k≤N in B(M + τ(0) + ε)
such that (5) holds. Now, for any given N there are finitely many choices for
0 ≤ i(0) < . . . < i(N) ≤ 2N . Hence, König’s lemma provides a subsequence
(an(l))l∈N of (an) and either a sequence (bk)k∈N in B(M + τ(0) + ε) such
that

‖ai(l) + bk‖ ∈ [β,∞) for 0 ≤ l < k,

‖ai(l) + bk‖ ∈ [0, α+ η] for 0 ≤ k ≤ l,
or a sequence (ck)k∈N in B(M + τ(0) + ε) such that

‖ai(l) + ck‖ ∈ [0, β + δ] for 0 ≤ l ≤ k,
‖ai(l) + ck‖ ∈ [α+ ε− η,∞) for 0 ≤ k < l.

Either case contradicts the stability of X. Claim 2.10 is proved.

Fix N as in Claim 2.10. Define

{d1, . . . , dr} = {ai(j) | 0 ≤ i(0) < . . . < i(N) ≤ 2N, 0 ≤ j ≤ N}
and

(6) C(d1, . . . , dr; [0, β]) =
⋃

0≤i(0)<...<i(N)≤2N

⋂

0≤j≤N
τai(j) [0, β].

Condition (II) follows directly from Claim 2.9 and the choice of N . To
prove (I), suppose that x ∈ B(M) and x 6∈ [C]. Fix one of the intersections
in (6). The element x is not in this intersection, so there exists an index i(j0)
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such that x 6∈ τai(j0) [0, β]. Now take an N -element subset of {1, . . . , 2N}
not containing ai(j0) and consider the intersection corresponding to this
set in (6). Repeat the argument to find i(j1) distinct from i(j0) such that
x 6∈ τai(j1) [0, β]. The argument can be iterated N times. But then Claim 2.8
and the choice of N imply x 6∈ τ−1[0, α].

Remark. It is well known that the space of types of a stable Banach
space is strongly separable, i.e., separable with respect to the topology of
uniform convergence on bounded sets. (The converse is not true; see [6, 8].)
This is immediate from Proposition 2.6. In fact, it is easy to see that if
every type on X is approximable, then the density of T(X) with respect to
the strong topology must equal the density of X (with respect to the norm
topology).

3. Approximable functions. Let X be a normed space and let f be a
real-valued function on X which is uniformly continuous on every bounded
subset of X. An ultrapower of (X, f) is defined as follows. If U is an ultra-
filter, then (X̂, f̂ ) is the ultrapower of (X, f) with respect to U if

• X̂ is the ultrapower of X with respect to U;
• Whenever x ∈ X̂ and (xi)i∈I is a representative of x in X̂, we have

f̂(x) = limU(xi)i∈I .

The fact that f is uniformly continuous on bounded subsets of X ensures
that f̂ is well defined.

An ultrapower (X̂, f̂ ) of (X, f) has the property that it is finitely repre-
sented in (X, f). This means that whenever E is a finite-dimensional sub-
space of X̂ and M, ε > 0, there exists a finite-dimensional subspace F of X
such that (E, f̂¹E) and (F, f¹E) are (1 + ε)-isomorphic in the sense that
there exists a (1+ε)-isomorphism ϕ : E → F satisfying |f(ϕ(x))− f̂(x)| ≤ ε
for every x ∈ E of norm at most M .

Let X and Y be normed spaces containing a common subset A. If ε > 0,
we say that X and Y are (1 + ε)-isomorphic over A if there exists a (1 + ε)-
isomorphism ϕ : X → Y such that ϕ¹A is the identity. We will say that Y
is A-finitely represented in X if the following condition holds. Given ε > 0
and a finite-dimensional subspace F of Y , there exists a subspace E of X
such that the spaces span[E ∪ A] and span[F ∪ A] are (1 + ε)-isomorphic
over A.

We will now characterize approximability of real-valued functions in
terms of finite representability. Let us first notice the following.

Remarks. 1. If X and Y contain a common subset A and Y is A-
finitely represented in X, then there is an ultrapower (X̂, f̂ ) of (X, f) and
an embedding ϕ : Y → X̂ which fixes A pointwise.
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2. If (X̂, f̂ ) is an ultrapower of (X, f) and f is approximable over A, then
so is f̂ ; in fact, if 0 < M < M ′, 0 < ε < ε′ < ε′′, and 0 < δ < δ′ < δ′′ are
such that [C(a1, . . . , an;J)]X is (ε′ − ε, δ′′)-equivalent to f−1[I + [−ε, ε]] in
the ball BX(M ′), then [C(a1, . . . , an; J + [−δ, δ]]

X̂
is (ε′′, δ′ − δ)-equivalent

to f̂−1[I] in the ball B
X̂

(M).

3.1. Proposition. Let X be a normed space and let f be a real-valued
function on X which is uniformly continuous on every bounded subset of X.
Then, if A is a subset of X , the following conditions are equivalent.

1. f is approximable over A;
2. Whenever Y ⊇ A and Y is A-finitely represented in X , there is a

unique real-valued function g on Y such that (Y, g) is A-finitely represented
in (X, f).

P r o o f. 1⇒2 follows easily from the preceding remarks. We prove 2⇒1.
Suppose that f is not approximable overA. TakeM, ε > 0 and an interval

I such that there do not exist [C(a1, . . . , an; J)] with a1, . . . , an ∈ A and
δ > 0 with [C(a1, . . . , an; J)] (ε, δ)-equivalent to f−1[I] in the ball B(M).
Without loss of generality, we can assume that I is bounded.

Let

C = {C(a1, . . . , an;J) | a1, . . . , an ∈ A and

B(M) ∩ f−1[I] ⊆ [C(a1, . . . , an; J)]}.
By our assumption, whenever C(a1, . . . , an;J) ∈ C and δ > 0,

B(M) ∩ ([C(a1, . . . , an;J + [−δ, δ])] ∩ {f−1[I + [−ε, ε]]) 6= ∅.
Also, C is closed under finite intersections. Hence, there exists an ultra-

power (X̂, f̂ ) of (X, f) and b ∈ X̂ such that

b ∈ B(M) ∩
⋂

C(a1,...,an;J)∈C

[C(a1, . . . , an;J)] ∩ {f̂−1[I + [−ε/2, ε/2]].

Now, notice that if a1, . . . , an ∈ A and b ∈ [C(a1, . . . , an; (−∞, α])], then
for every β > α we must have

B(M) ∩ f−1(I) ∩ [C(a1, . . . , an; (−∞, β])] 6= ∅
(otherwise, [C(a1, . . . , an; [β,∞))] ∈ C and b ∈ [C(a1, . . . , an; [β,∞))], which
is impossible). Hence, there exists an ultrapower (X̂ ′, f̂ ′) of (X, f) and b′ ∈
X̂ ′ such that

(i) f̂ ′(b′) ∈ I;
(ii) b′ ∈ [C(a1, . . . , an; (−∞, α])] whenever a1, . . . , an ∈ A and b ∈

[C(a1, . . . , an; (−∞, α])].
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By (ii), there is an isometry between span[{b} ∪ A] and span[{b′} ∪ A]
mapping b to b′ and fixing A pointwise. But span[{b}∪A] and span[{b′}∪A]
are A-finitely represented in X and f̂(b) 6∈ I, so we are in contradiction with
condition 2.

4. Approximable types and stability. We now prove the main result.

4.1. Theorem. Let X be a separable Banach space. Then the following
conditions are equivalent.

1. X is stable;
2. Every type on X is approximable;
3. Every type on X is strongly approximable.

P r o o f. 1⇒3 is Proposition 2.6. We prove 2⇒1.
Suppose that X is not stable. Then there exist bounded sequences (am)

and (bn) in X and real numbers α, β such that

(7) sup
m<n
‖am + bn‖ ≤ α < β ≤ inf

n<m
‖am + bn‖.

Without loss of generality, we can assume that (am) is type determining,
i.e., there exists a type τ ∈ T(X) such that τ(x) = limm→∞ ‖am + x‖ for
every x ∈ X.

By (7) there exists an ultrapower X̂ of X, an element a ∈ X̂, and types
%1, %2 on X̂ such that

• (X̂, %1) and (X̂, %2) are finitely represented in (X, τ);
• %1(a) ≤ α and %2(a) ≤ β.

But then τ cannot be approximable, by Proposition 3.1.

Remark. The concepts considered here are particularizations of con-
cepts from the logical analysis of stability in [4]. Indeed, the notions of type,
constructible subset, and approximable function correspond (respectively)
to the “quantifier-free” versions of the notions of type, definable subset, and
definable real-valued relation considered in [4].
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