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Abstract. Transformations T : [0, 1] → [0, 1] with two monotonic pieces are con-
sidered. Under the assumption that T is topologically transitive and htop(T ) > 0, it is
proved that the invariant measures concentrated on periodic orbits are dense in the set of
all invariant probability measures.

Introduction. In order to investigate generic properties of invariant
measures for a topological dynamical system R. Bowen [2] introduced the
specification property. This is a topological property which implies that
the measures concentrated on periodic orbits are dense in the set of all
invariant measures. The specification property implies generic properties
for different types of invariant measures, e.g. ergodic measures, nonatomic
measures, measures with zero entropy and strongly mixing measures
(see [3]). It is known that the specification property holds for basic sets of
axiom A-diffeomorphisms ([2], [3]), for monotonic mod one transformations
([5]) and for continuous maps on the interval ([1]).

We investigate in this paper dynamical systems generated by piecewise
monotonic maps. If these maps have discontinuities, it becomes complicated
to prove the density of periodic orbit measures.

Besides generic properties of invariant measures there are two more rea-
sons to consider this problem for piecewise monotonic maps T : [0, 1]→ [0, 1].
We describe these reasons below.
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The first reason occurs in the calculation of the Hausdorff dimension of
certain invariant subsets A. Assume that T is piecewise differentiable, the
derivative satisfies certain regularity conditions, and there exist no attracting
periodic points. Let A be a completely invariant closed subset of [0, 1], where
“completely invariant” means x ∈ A is equivalent to Tx ∈ A. Define π(t) :=
p(T |A,−t log|T ′|), where p(·, ·) denotes the pressure. It is shown in [6] that
HD(A) equals the smallest t0 ≥ 0 with π(t0) = 0, provided that there exists
a t ≥ 0 with π(t) = 0. Therefore one is interested in showing the existence
of a zero of π. The proof of Theorem 1 in [6] shows that there exists a
t ≥ 0 with π(t) = 0 if the periodic orbit measures are dense in the set of all
T -invariant probability measures on [0, 1].

Investigating piecewise monotonic maps one sometimes has to exclude
the dynamics of the critical orbits. This leads to a modified definition of the
pressure (see [7] and [8]). One defines q(T, f) := sup p(T |B , f |B), where the
supremum is taken over all T -invariant closed B ⊆ [0, 1] for which a Markov
partition exists. Naturally the question arises whether q(T, f) = p(T, f).
For continuous functions f the proof of Proposition 1 in [7] shows that
q(T, f) = p(T, f) if the periodic orbit measures are dense in the set of all
T -invariant probability measures on [0, 1].

These reasons indicate that the density of periodic orbit measures plays
a fundamental role in the investigation of piecewise monotonic maps. For
piecewise monotonic maps in general it seems to be rather difficult to find
a proof or a counterexample. Therefore we consider only transformations
T : [0, 1]→ [0, 1] with two monotonic pieces. If T is topologically transitive
and htop(T ) > 0, then we prove in Theorem 2 that the periodic orbit mea-
sures are dense in the set of all T -invariant probability measures on [0, 1].
This result has been proved in [5] if T is strictly increasing on both intervals
of monotonicity. The case of three or more monotonic pieces remains open.

1. Piecewise monotonic maps and their Markov diagram. A map
T : [0, 1] → [0, 1] is called piecewise monotone if there exists a set Z of
finitely many pairwise disjoint open intervals with

⋃
Z∈Z Z = [0, 1] such that

T |Z is strictly monotone and continuous for all Z ∈ Z. We call a piecewise
monotonic map T : [0, 1] → [0, 1] a transformation with two monotonic
pieces if there exists a Z with cardZ = 2 such that T is piecewise monotone
with respect to Z. Excluding the trivial case we always assume that for a
transformation T with two monotonic pieces there exists no partition Y with
cardY = 1 such that T is piecewise monotone with respect to Y.

Set E := {inf Z, supZ : Z ∈ Z} \ {0, 1}. Then T need not be continuous
at x if x ∈ E. We can use a standard doubling points construction as de-
scribed e.g. in [9] to obtain a dynamical system. For our purpose it is enough
to replace each x ∈ E by x− and x+, and define Tnx− := limy→x− Tny and
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Tnx+ := limy→x+ Tny for n ∈ N0, where N0 = N∪{0}. For simplicity of no-
tation we write [0, 1], although from now on we mean ([0, 1] \E)∪{x−, x+ :
x ∈ E}. An a ∈ [0, 1] is called a critical point if a = x− or a = x+ for an
x ∈ E. We call a critical point a an essential critical point if T k+na 6= T ka
for every k ∈ N0 and every n ∈ N. If a is a critical point but not an es-
sential critical point, then let k(a) ∈ N0 and n(a) ∈ N be minimal with
T k(a)+n(a)a = T k(a)a.

For the definitions of the topological entropy htop(T ) and of T -invariant
measures see e.g. [10]. The set of all T -invariant Borel probability measures
is denoted by M([0, 1], T ). We call R ⊆ [0, 1] topologically transitive if there
exists an x ∈ R whose ω-limit set equals R. If [0, 1] is topologically transitive,
then the map T is called topologically transitive. A point p ∈ [0, 1] is called
a periodic point if there exists an n ∈ N with Tnp = p. Let p be a periodic
point with Tnp = p, and define µp(A) := 1

n

∑n−1
j=0 1A(T jp) for every Borel

set A ⊆ [0, 1]. Then µp ∈ M([0, 1], T ). A measure µ is called a periodic
orbit measure if there exists a periodic point p ∈ [0, 1] with µ = µp. We say
the periodic orbit measures are dense in M([0, 1], T ) if for every nonempty
U ⊆ M([0, 1], T ) which is open in the weak star topology there exists a
periodic point p ∈ [0, 1] with µp ∈ U .

Let C ⊆ [0, 1] be nonempty. Then D is called a successor of C if there
exists a Z ∈ Z with D = TC ∩ Z, and we write C → D. Now let D be the
smallest set with Z ⊆ D and such that C ∈ D and C → D imply D ∈ D.
We call (D,→) the Markov diagram of T (with respect to Z).

Define D0 := Z, and for n∈N define Dn := Dn−1∪{D∈D : ∃C∈Dn−1

with C → D}. Then D0 ⊆ D1 ⊆ D2 ⊆ . . . and D∞ := D =
⋃∞
n=0Dn.

Furthermore, for n ∈ N let Zn be the set of all Z with Z =
⋂n−1
j=0 T

−jZj
and Z 6= ∅, where Z0, Z1, . . . , Zn−1 ∈ Z.

We call D0 → D1 → . . .→ Dn−1 a path of length n in D if Dj−1 → Dj

for j = 1, . . . , n − 1 (a path of length 1 is an element of D). Moreover,
D0 → D1 → D2 → . . . is called an infinite path in D if Dj−1 → Dj for all
j ∈ N. We say an infinite path D0 → D1 → D2 → . . . represents x ∈ [0, 1]
if T jx ∈ Dj for all j ∈ N0. A subset C ⊆ D is called irreducible if for ev-
ery C,D ∈ C there exists an n ∈ N and a path D0 → D1 → . . . → Dn

of length n + 1 in C with D0 = C and Dn = D. If C ⊆ D is irreducible
and every C′ with C $ C′ ⊆ D is not irreducible, then C is called maximal
irreducible.

If α = D0 → D1 → . . . → Dn−1 is a path of length n in D, β = C0 →
C1 → . . .→ Cm−1 is a path of length m in D, and Dn−1 → C0, then denote
by α→ β the path D0 → D1 → . . .→ Dn−1 → C0 → C1 → . . .→ Cm−1 of
length n+m in D. A path α = D0 → D1 → . . .→ Dn−1 of length n in D is
called a periodic path if Dn−1 → D0. Assume that α = D0 → D1 → . . . →
Dn−1 is a periodic path. Then set α1 := α, and for k ∈ N, k > 1, define
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αk := αk−1 → α. We say x is represented by α if C0 → C1 → C2 → . . . with
Cqn+r := Dr for q ∈ N0 and r ∈ {0, 1, . . . , n− 1} represents x.

For x ∈ [0, 1] there exists a unique infinite path Cx0 → Cx1 → Cx2 → . . . in
D with Cx0 ∈ D0 which represents x. Define Rx0 := 0. If j ∈ N and Rxj−1 6=∞,
then set

(1.1) Rxj := min{n > Rxj−1 : Cxn−1 has at least 2 different successors},
where we set Rxj := ∞ if Cxn has only one successor for every n ≥ Rxj−1.
Finally, define rxj := Rxj −Rxj−1 if Rxj 6=∞.

The Markov diagram can be described in the following way (see [4]). We
have

(1.2) D = {Can : n ∈ N0, a is a critical point or a ∈ {0, 1}}.
Suppose that x ∈ [0, 1] and j ∈ N with Rxj 6=∞. Then there exists a critical
point a such that CxRxj−1+k ⊆ Cak for k ∈ {0, 1, . . . , rxj−1} (choose a 6= TR

x
j−1x

if this is possible). Hence CxRxj−1 has the two different successors Carxj and
C(x, j), where C(x, j) ∩ {inf TCxRxj−1, supTCxRxj−1} 6= ∅. If CxRxj−1 has more
than two successors, then all other successors (besides Carxj and C(x, j)) are
contained in D0. Furthermore, there exists a q ∈ N with rxj = Raq . Obviously,
rxj < Rxj if j > 1. We have C(x, j) = CxRxj if j > 1 and x is a critical point
or x ∈ {0, 1}.

2. Initial segments of critical orbits. In this section we prove that
to show the density of periodic orbit measures in M([0, 1], T ) it suffices to
prove that certain initial segments of critical orbits can be approximated by
periodic points.

Let T : [0, 1] → [0, 1] be a piecewise monotonic map. If p ∈ [0, 1] is a
periodic point, then let µp be the invariant measure concentrated on the
orbit of p. For x ∈ [0, 1], U ⊆ [0, 1] and r, s ∈ N0 with 0 ≤ r < s define

(2.1) Fx,r,s(U) :=
1

s− r
s−1∑

j=r

1U (T jx).

Recall that we denote the Markov diagram of T by (D,→). If T is topolog-
ically transitive and htop(T ) > 0, then Theorem 11 of [4] implies that there
exists a maximal irreducible D′ ⊆ D such that every x ∈ [0, 1] is represented
by an infinite path in D′. Furthermore, there exists no arrow C → D with
C ∈ D′ and D ∈ D \D′, and there exists an N1 ∈ N such that CaN1

∈ D′ for
every essential critical point a.

Consider x, y ∈ [0, 1] and n ∈ N. If Cxk and Cyk are contained in the same
element of Z for all k ∈ {0, 1, . . . , n−1}, then |nFx,0,n(Z)−nFy,0,n(Z)| ≤ m
for all m ∈ N and all Z ∈ Zm.
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In order to prove the density of periodic orbit measures in M([0, 1], T )
we need the following result.

Lemma 1. Let T : [0, 1] → [0, 1] be a topologically transitive piecewise
monotonic map with htop(T ) > 0. Fix k ∈ N, and for j ∈ {1, . . . , k} let
xj ∈ [0, 1] and lj ∈ N. Furthermore, let q1, . . . , qk ∈ Q with qj ≥ 0 for
j ∈ {1, . . . , k} and

∑k
j=1 qj = 1. Assume that for every V ∈ ⋃∞m=1Zm there

exist aV > 0 and bV > 0 with the following property : for every j ∈ {1, . . . , k}
there exists a periodic point pj ∈ [0, 1] such that

(2.2)
|Fxj ,0,lj (V )− µpj (V )| < aV for 2 ≤ j ≤ k, and

|Fx1,0,l1(V )− µp1(V )| < bV

for every V ∈ ⋃∞m=1Zm. Then for every η > 0 there exists a periodic point
p ∈ [0, 1] such that

(2.3)
∣∣∣
k∑

j=1

qjFxj ,0,lj (V )− µp(V )
∣∣∣ < (1− q1)aV + q1bV + ηm

for every m ∈ N and every V ∈ Zm.

P r o o f. For j ∈ {1, . . . , k} let αj be a periodic path in D′ representing
pj . Set αk+1 := α1. Then for every j ∈ {1, . . . , k} there exists a path υj of
length uj in D′ with αj → υj → αj+1. Define u := max{u1, . . . , uk}. Choose
an n ∈ N such that

(2.4)
k

n
≤ 2ku

n
<
η

2
,

and nqj/lj ∈ N0 and nqj/aj ∈ N0 for every j ∈ {1, . . . , k}, where aj is the
length of αj .

We define the periodic path α in (D,→) by

(2.5) α := α
nq1/a1
1 → υ1 → α

nq2/a2
2 → υ2 → . . .→ α

nqk/ak
k → υk.

Then α represents a periodic point p ∈ [0, 1]. Set N := n+
∑k
j=1 uj .

Choose an m ∈ N, and let V ∈ Zm. By (2.1) we obtain

Nµp(V ) = NFp,0,N (V ) and nqjµpj (V ) = nqjFpj ,0,nqj (V )

for j ∈ {1, . . . , k}. If we use
∑k
j=1 nqj = n and (2.5) this implies

(2.6)
∣∣∣
k∑

j=1

nqjµpj (V )−Nµp(V )
∣∣∣ ≤

k∑

j=1

(uj +m) ≤ k(u+m).

Since n ≤ N ≤ n + ku we get |Nµp(V ) − nµp(V )| ≤ ku. Therefore (2.2)
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and (2.6) give

∣∣∣
k∑

j=1

nqjFxj ,0,lj (V )− nµp(V )
∣∣∣ ≤ n((1− q1)aV + q1bV ) + 2ku+ km.

Dividing by n and using (2.4) we obtain (2.3).

We will need the following special case of Lemma 1.

Lemma 2. Let T : [0, 1] → [0, 1] be a topologically transitive piecewise
monotonic map with htop(T ) > 0. Suppose that x ∈ [0, 1], k ∈ N and
L1, . . . , Lk ∈ N with L0 := 0 < L1 < . . . < L := Lk. Assume that for every
m ∈ N and every V ∈ Zm there exist aV > 0 and BV > 0 with the following
property : for every j ∈ {1, . . . , k} there exists a periodic point pj ∈ [0, 1]
such that

(2.7)
|Fx,Lj−1,Lj (V )− µpj (V )| < aV for 2 ≤ j ≤ k, and

|Fx,0,L1(V )− µp1(V )| < BV +m

L1

for every m ∈ N and every V ∈ Zm. Then there exists a periodic point
p ∈ [0, 1] such that

(2.8) |Fx,0,L(V )− µp(V )| < aV +
BV + 2m

L

for every m ∈ N and every V ∈ Zm.

P r o o f. If j ∈ {1, . . . , k}, then define xj := TLj−1x, lj := Lj −Lj−1 and
qj := lj/L. By (2.1) we have

Fx,0,L(U) =
k∑

j=0

qjFxj ,0,lj (U)

for every U ⊆ [0, 1]. Now apply Lemma 1 with bV := (BV + m)/L1 and
η := 1/L, and use 1− q1 ≤ 1.

Consider a topologically transitive piecewise monotonic map T : [0, 1]
→ [0, 1] with htop(T ) > 0, and let D′ be the maximal irreducible subset of
(D,→) such that every x ∈ [0, 1] is represented by an infinite path in D′.
By Theorem 10 in [4] there exists an n1 ∈ N such that for every x ∈ [0, 1]
there exists an infinite path D0 → D1 → D2 → . . . in D′ with D0 ∈ Dn1

which represents x. There exist n2, n3 ∈ N with n2 ≥ n1 such that for every
C ∈ Dn2 and every D ∈ D′ ∩Dn1 there exists a path D0 → D1 → . . .→ Dn

of length n+ 1 < n3 in D with D0 = C and Dn = D. If s ∈ R, then let R(s)
be the set of all C ∈ D such that for every D ∈ D′ ∩Dn1 there exists a path
D0 → D1 → . . .→ Dn of length n+ 1 < s in D with D0 = C and Dn = D.
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For n ∈ N with n ≥ n2
3 define

(2.9) γ(n) := max{r ∈ N : Dr ⊆ R(
√
n)},

where we set γ(n) := ∞ if D ⊆ R(
√
n). Obviously γ(n) ≥ n2 if n ≥ n2

3,
n ≤ n′ implies γ(n) ≤ γ(n′), and limn→∞ γ(n) =∞.

Lemma 3. Let T : [0, 1] → [0, 1] be a topologically transitive piecewise
monotonic map with htop(T ) > 0. Suppose that l, n, r ∈ N with n ≥ n2

3.
Assume that x ∈ [0, 1] is represented by an infinite path D0 → D1 → D2 →
. . . in (D,→) with Dr ∈ D′ ∩ Dn1 , and suppose that Dl−1 has a successor
in Dγ(n). Then there exists a periodic point p ∈ [0, 1] such that

(2.10) |Fx,0,l(V )− µp(V )| < 2
√
n+ 2r +m

l

for every m ∈ N and every V ∈ Zm.

P r o o f. If l ≤ r, then let α be a periodic path of length u <
√
n. For

r < l set α0 := Dr → Dr+1 → . . . → Dl−1. As Dl−1 ∈ Dγ(n) the definition
of γ(n) gives the existence of a path υ of length u <

√
n in (D,→) with

α0 → υ → α0. Define α := α0 → υ. Then α represents a periodic point
p ∈ [0, 1] (this is also true in the case l ≤ r). We get

l|Fx,0,l(V )− µp(V )| ≤ |lFx,0,l(V )− (l − r + u)µp(V )|+ |u− r|.
Since |lFx,0,l(V )− (l − r + u)µp(V )| ≤ u+ r +m and u <

√
n we obtain

(2.11) l|Fx,0,l(V )− µp(V )| < 2
√
n+ 2r +m.

An analogous calculation proves (2.11) also in the case l ≤ r. Dividing (2.11)
by l gives (2.10).

Now we are able to prove the main result of this section.

Theorem 1. Let T : [0, 1]→ [0, 1] be a topologically transitive piecewise
monotonic map with htop(T ) > 0. Fix n0 ∈ N and d(m) > 0 for m ∈ N.
Suppose that for every essential critical orbit (Tna)n∈N and every j ∈ N with
raj > n0 there exists an l ∈ {0, 1, . . . , j − 1} and a periodic point pa,j ∈ [0, 1]
with

(2.12) |Fa,Ral ,Raj (Z)− µpa,j (Z)| < d(m)
Raj −Ral

for every m ∈ N and for every Z ∈ Zm. Then the periodic orbit measures
are dense in M([0, 1], T ).

P r o o f. Let U ⊆M([0, 1], T ) be nonempty and open with respect to the
weak star topology. Then there exists a µ ∈M([0, 1], T ), an ε > 0, a K ∈ N,
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and continuous functions f1, . . . , fK : [0, 1]→ R with

(2.13)
{
µ̃ :
∣∣∣
\

[0,1]

ft dµ̃−
\

[0,1]

ft dµ
∣∣∣ < ε for t = 1, . . . ,K

}
⊆ U.

Set

(2.14) c := max
t=1,...,K

‖ft‖∞.

There exists an r ∈ N, and for j ∈ {1, . . . , r} there exists an ergodic µj ∈
M([0, 1], T ) and a qj ∈ Q with qj ≥ 0 such that

∑r
j=1 qj = 1 and

(2.15) max
t=1,...,K

∣∣∣
r∑

j=1

qj
\

[0,1]

ft dµj −
\

[0,1]

ft dµ
∣∣∣ < ε

5
.

As T is topologically transitive, Z is a generator, and therefore there exists
an m ∈ N with

(2.16) max
t=1,...,K

sup
Z∈Zm

sup
x,y∈Z

|ft(x)− ft(y)| < ε

5
.

Fix this m for the rest of this proof. Now choose a δ > 0 such that

(2.17) 2cδ cardZm <
ε

5
.

Since µj is ergodic, there exists an N ∈ N and there exist x1, . . . , xr ∈
[0, 1] such that

(2.18)
∣∣∣∣
1
n

n−1∑
s=0

ft(T sxj)−
\

[0,1]

ft dµj

∣∣∣∣ <
ε

5

for every j ∈ {1, . . . , r}, for every t ∈ {1, . . . ,K}, and for every n ≥ N .
Fix a j ∈ {1, . . . , r}. Then xj is represented by an infinite path D0 →

D1 → D2 → . . . in D′ with D0 ∈ D′ ∩ Dn1 . We claim that there exists an
lj ∈ N with lj ≥ N and a periodic point pj ∈ [0, 1] with

(2.19) max
Z∈Zm

|Fxj ,0,lj (Z)− µpj (Z)| < δ.

If there exists an n ∈ N with γ(n) = ∞, then choose an lj ≥ N with
(2
√
n+m)/lj < δ. In this case Lemma 3 implies (2.19).
It remains to prove (2.19) in the case γ(n) <∞ for every n ∈ N. As

lim
n→∞

γ(n) =∞,

we can choose an R ∈ N with R ≥ N , R ≥ n2
3, γ(R) ≥ n2

3 and γ(γ(R)) > n0

such that

(2.20)
1

γ(γ(R))
d(m) +

2√
γ(R)

+
2N1 + 3m
γ(R)

+
2√
R

+
2m
R

< δ.
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This R may be chosen in such a way that for every C ∈ D′ ∩ Dn1 there
exists a path C0 → C1 → . . . → Cn of length n + 1 < γ(R) in D such that
C0 = C, Cn has at least two different successors, and every successor of Cn
is an element of Dγ(R). Furthermore we may assume

2k(a) + 2n(a)
γ(R)

<
1√
γ(R)

for every critical point a with T k(a)+n(a)a = T k(a)a.
Now let a be an essential critical point, and let u ∈ N with Rau > γ(R).

Using (2.12) we find by induction that there exist L0 = 0 < L1 < . . .
. . . < Lk = Rau with Lv − Lv−1 > γ(γ(R)) for v = 2, . . . , k, and there exist
periodic points Pa,2, . . . , Pa,k such that

(2.21) |Fa,Lv−1,Lv (Z)− µPa,v (Z)| < d(m)
Lv − Lv−1

≤ d(m)
γ(γ(R))

for every Z ∈ Zm and every v ∈ {2, . . . , k}. Furthermore, either CaL1−1 has
a successor in Dγ(γ(R)), or Lv − Lv−1 > γ(γ(R)) and (2.21) hold also for
v = 1. In the first case Lemma 3 gives the existence of a periodic point Pa,1
with

|Fa,0,L1(Z)− µPa,1(Z)| < 2
√
γ(R) + 2N1 +m

L1

for every Z ∈ Zm. Applying Lemma 2 with aZ := d(m)/γ(γ(R)) and BZ :=
2
√
γ(R) + 2N1 we get the existence of a periodic point pa,u with

(2.22) |Fa,0,Rau(Z)− µpa,u(Z)| < d(m)
γ(γ(R))

+
2√
γ(R)

+
2N1 + 2m
γ(R)

for every Z ∈ Zm. If we set

aZ := bZ :=
d(m)
γ(γ(R))

, η :=
2

m
√
γ(R)

+
2N1 + 2m
mγ(R)

,

qv :=
Lv − Lv−1

Rau
for v = 1, . . . , k,

Lemma 1 implies that (2.22) remains also true in the second case. Finally,
(2.22) is trivial by the choice of R if a is a critical point with T k(a)+n(a)a =
T k(a)a. Therefore (2.22) holds for every critical point a.

Choose an lj > R such that Dlj−1 has at least two different successors.
By the choice of R we see by induction that there exist L0 = 0 < L1 < . . .
. . . < Lk = lj such that Lv − Lv−1 > γ(R) for v = 2, . . . , k, DL1−1

has a successor in Dγ(R), DLv−1 has at least two different successors for
v = 1, . . . , k, and DLv−1+i has only one successor in D for v = 2, . . . , k and
i = 0, 1, . . . , Lv − Lv−1 − 2. Hence for every v ∈ {2, . . . , k} there exists a
critical point av and a uv ∈ N with Ravuv = Lv − Lv−1 and DLv−1+i ⊆ Cavi
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for i = 0, 1, . . . , Lv − Lv−1 − 1. By (2.1) this gives

(2.23) |Fxj ,Lv−1,Lv (Z)− Fav,0,Ravuv (Z)| < m

γ(R)

for every Z ∈ Zm and every v ∈ {2, . . . , k}. Moreover, Lemma 3 implies the
existence of a periodic point Pj with

(2.24) |Fxj ,0,L1(Z)− µPj (Z)| < 2
√
R+m

L1

for every Z ∈ Zm. For Z ∈ Zm set

aZ :=
d(m)
γ(γ(R))

+
2√
γ(R)

+
2N1 + 3m
γ(R)

and BZ := 2
√
R.

Then by (2.22)–(2.24) and Lemma 2 we find out that there exists a periodic
point pj with

|Fxj ,0,lj (Z)− µpj (Z)| < d(m)
γ(γ(R))

+
2√
γ(R)

+
2N1 + 3m
γ(R)

+
2√
R

+
2m
R

for every Z ∈ Zm. Therefore (2.20) implies (2.19), completing the proof of
the claim.

Using (2.19) and applying Lemma 1 with aZ := bZ := δ and η := δ/m
we obtain the existence of a periodic point p ∈ [0, 1] with

(2.25) max
Z∈Zm

∣∣∣
r∑

j=1

qjFxj ,0,lj (Z)− µp(Z)
∣∣∣ < 2δ.

For every Z ∈ Zm choose an xZ ∈ Z, and for t ∈ {1, . . . ,K} define ft(Z) :=
ft(xZ). Fix a t ∈ {1, . . . ,K}. Then

∣∣∣
r∑

j=1

qj
\

[0,1]

ft dµj −
\

[0,1]

ft dµp

∣∣∣

≤
r∑

j=1

qj

∣∣∣∣
\

[0,1]

ft dµj − 1
lj

lj−1∑
s=0

ft(T sxj)
∣∣∣∣

+
r∑

j=1

qj
1
lj

lj−1∑
s=0

∑

Z∈Zm
|ft1Z(T sxj)− ft(Z)1Z(T sxj)|

+
∑

Z∈Zm
|ft(Z)|

∣∣∣
r∑

j=1

qjFxj ,0,lj (Z)− µp(Z)
∣∣∣+

∑

Z∈Zm

\
Z

|ft(Z)− ft| dµp.

By (2.18) the first sum on the right hand side is smaller than ε/5 and by
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(2.16) the fourth sum is smaller than ε/5 as well. Again using (2.16) we get
∑

Z∈Zm
|ft1Z(T sxj)− ft(Z)1Z(T sxj)| < ε

5
,

and therefore also the second sum is smaller than ε/5. We deduce by (2.14)
and (2.25) that

∑

Z∈Zm
|ft(Z)|

∣∣∣
r∑

j=1

qjFxj ,0,lj (Z)− µp(Z)
∣∣∣ ≤ 2cδ cardZm.

Hence (2.15) and (2.17) give | T[0,1] ft dµp −
T
[0,1] ft dµ| < ε, and therefore

(2.13) implies µp ∈ U .

3. Transformations with two monotonic pieces. In this section
we investigate transformations with two monotonic pieces. We show that
the periodic orbit measures are dense in M([0, 1], T ) if T : [0, 1] → [0, 1] is
a topologically transitive transformation with two monotonic pieces which
has positive topological entropy. By Theorem 1 it suffices to prove that T
satisfies the assumptions of that theorem.

Let T : [0, 1] → [0, 1] be a transformation with two monotonic pieces.
Observe that T has exactly two critical points and every D ∈ D has at most
two successors, where (D,→) denotes the Markov diagram of T . Now we
describe some more details of the Markov diagram of T . The proof of these
details is by easy calculations.

Suppose that x is a critical point, that u ∈ N with u > 1 and that Rxu+1
6=∞. Let b be the critical point with CxRxu−1+k ⊆ Cbk for k ∈ {0, 1, . . . , rxu − 1}
and b 6= TR

x
u−1x, and assume rxu > Rb1. Then there exists a w ∈ N with w > 1

and Rbw = rxu. Assume that y is the critical point with Cb
Rbw−1+k ⊆ Cyk for

k ∈ {0, 1, . . . , rbw − 1} and y 6= TR
b
w−1b. Therefore there exists a v ∈ N

with Ryv = rbw, and we have CxRxu ⊆ Cy
Ryv

and Ryv < Rxu. Hence Ryv+1 6= ∞
and there exists a critical point a with a 6∈ {TRxux, TRyvy}, CxRxu+1−1 →
Carxu+1

and Cy
Ryv+1−1 → Ca

ryv+1
. Furthermore, (ryv+n)n≥1 ≤ (rxu+n)n≥1 in the

lexicographical order, where we set rzk :=∞ if Rzl :=∞ for an l ≤ k.

Theorem 2. Let T : [0, 1] → [0, 1] be a transformation with two mono-
tonic pieces which is topologically transitive and satisfies htop(T ) > 0. Then
the periodic orbit measures are dense in M([0, 1], T ).

P r o o f. As T is topologically transitive and htop(T ) > 0 there exists a
maximal irreducible D′ ⊆ D such that every x ∈ [0, 1] is represented by an
infinite path in D′. Now choose an n0 ∈ N with n0 > Rx2 and Cxn0

∈ D′
for every critical point x. Let a be an essential critical point, and let j ∈ N
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with raj > n0. Then j > 2. For n ∈ N0 set An := Can, Bn := Cbn, Rn := Ran,
Sn := Rbn, and for n ∈ N set rn := ran and sn := rbn, where b is the critical
point with b 6= a. By Theorem 1 it suffices to show that there exists an
l ∈ {0, 1, . . . , j − 1} and a periodic point p such that

(3.1) |Fa,Rl,Rj (Z)− µp(Z)| < m

Rj −Rl
for every m ∈ N and every Z ∈ Zm. In order to prove (3.1) we consider
different cases.

Case 1: There exists a u < j with ARj−1 → ARu . Consider the periodic
path

α := ARu → ARu+1 → . . .→ ARj−1,

and let p be the periodic point represented by α. Since T kp ∈ ARu+k for
k ∈ {0, 1, . . . , Rj −Ru − 1} we obtain (3.1) with l := u.

From now on we assume that Case 1 does not hold. Therefore there exists
a u ∈ N with u > 2 and
(3.2) ARj−1 → BSu .

Case 2: There is a v ≤ j with ARj+1−1 → ARv . In this case consider the
periodic path

α := ARj → ARj+1 → . . .→ ARj+1−1 → ARv → ARv+1 → . . .→ ARj−1,

and let p be the periodic point represented by α. Since ARj+k ⊆ Ak for k ∈
{0, 1, . . . , rj+1−1} and rj+1 = Rv we get T kp ∈ Ak for k ∈ {0, 1, . . . , Rj−1}.
Hence (3.1) holds with l := 0.

In the rest of this proof we assume that Case 2 does not hold. Therefore
ARj ⊆ B0 and there exists a v1 ∈ N with

(3.3) ARj+1−1 → BSv1 .

Using (3.2) we obtain BSu ⊆ A0 and hence there exists a v2 ∈ N with

(3.4) BSu+1−1 → ARv2 .

In order to continue the proof we need the following lemma.

Lemma 4. Assume that (3.2)–(3.4) hold. If

(rj , rj , rj , . . .) ≤ (rj+1, rj+2, rj+3, . . .) and

(Rj , Rj , Rj , . . .) ≤ (su+1, su+2, su+3, . . .)

in the lexicographical order , then the set C := {An, Bk : n ≥ Rj , k ≥ Su}
has no successors in D \ C.

P r o o f. Set
%n := (rn+1, rn+2, rn+3, . . .), σk := (sk+1, sk+2, sk+3, . . .),

%′ := (rj , rj , rj , . . .) and σ′ := (Rj , Rj , Rj , . . .).
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To prove the result it suffices to show that ARn ⊆ B0 and %′ ≤ %n in the
lexicographical order for all n ≥ j, and BSk ⊆ A0 and σ′ ≤ σk in the
lexicographical order for all k ≥ u. We prove this by induction. Assume that
q ∈ N, ARn ⊆ B0 and %′ ≤ %n in the lexicographical order for all n ≥ j
with Rn < q, and BSk ⊆ A0 and σ′ ≤ σk in the lexicographical order for
all k ≥ u with Sk < q. For q = Rj + 1 this is an easy consequence of
our assumption. Suppose therefore q > Rj + 1. First assume Rn = q. If
rn = rj , then ARn−1 → BSu and ARn ⊆ B0. As %′ ≤ %n−1 we get %′ ≤ %n
in the lexicographical order. Otherwise rn > rj , and hence there exists a
k > u with Sk < q and ARn−1 → BSk . As Sk < q we get BSk ⊆ A0 and
%w ≤ %n in the lexicographical order for a w ∈ {j, j+1, . . . , n−1}. Therefore
ARn ⊆ B0. Since %′ ≤ %w we get %′ ≤ %n in the lexicographical order. An
analogous proof shows BSk ⊆ A0 and σ′ ≤ σk in the lexicographical order
if Sk = q.

We continue with the proof of Theorem 2. As Rj > n0, the set C in
Lemma 4 does not contain An0 . But since An0 ∈ D′ and D′ is irreducible,
the assumption of Lemma 4 cannot hold. Hence (rj+1, rj+2, rj+3, . . .)
< (rj , rj , rj , . . .) in the lexicographical order or (su+1, su+2, su+3, . . .) <
(Rj , Rj , Rj , . . .) in the lexicographical order.

Case 3: There exists an n ≥ 1 with su+q = Rj for q ∈ {1, . . . , n − 1}
and su+n < Rj . Consider the periodic path

α := BSu+n−1 → BSu+n−1+1 → . . .→ BSu+n−1 → Asu+n

→ Asu+n+1 → . . .→ ARj → BSu → BSu+1 → . . .→ BSu+n−1−1,

and let p be the periodic point represented by α. Then BSu+n−1+k ⊆ Ak
for k ∈ {0, 1, . . . , su+n − 1}. Furthermore, BSu+q−1+k ⊆ Ak and su+q = Rj
for k ∈ {0, 1, . . . , Rj − 1} and q ∈ {1, . . . , n − 1}. Therefore T qRj+kp and
Ak are contained in the same element of Z for q ∈ {0, 1, . . . , n − 1} and
k ∈ {0, 1, . . . , Rj − 1}. Hence (3.1) holds with l := 0.

From now on we suppose that Case 3 does not hold. Therefore Lemma 4
implies that there exists an n ≥ 1 with rj+q = rj for q ∈ {1, . . . , n− 1} and
rj+n < rj .

Case 4: There exists a t ∈ N with BSu−1 → ARt . Obviously, t < j.
By (3.4) we get ARt ⊆ B0 and ARt+1−1 → Brt+1 . As ARj+n−1 ⊆ ARt we
have rt+1 ≤ rj+n < rj . Then

α := ARt → ARt+1 → . . .→ ARt+1−1 → Brt+1 → Brt+1+1 → . . .→ BSu−1

is a periodic path. Let p be the periodic point represented by α. We
have ARt+k ⊆ Bk for k ∈ {0, 1, . . . , rt+1 − 1}, ARj−1+k ⊆ Bk for k ∈
{0, 1, . . . , rj − 1} and rj = Su. Hence T kp and ARj−1+k are contained in
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the same element of Z for k ∈ {0, 1, . . . , rj − 1}. Therefore (3.1) holds with
l := j − 1.

Case 5: Finally, we suppose that Case 4 does not hold either. Then there
exists a t < u with BSu−1 → BSt . Using (3.4) we get BSt+1−1 → Bst+1 and
st+1 ≤ St. In this case consider the periodic path

α := BSt → BSt+1 → . . .→ BSt+1−1 → Bst+1 → Bst+1−1 → . . .→ BSu−1,

and let p be the periodic point represented by α. Since BSt+k ⊆ Bk for
k ∈ {0, 1, . . . , st+1−1}, ARj−1+k ⊆ Bk for k ∈ {0, 1, . . . , rj−1} and rj = Su,
we deduce that T kp and ARj−1+k are contained in the same element of Z
for k ∈ {0, 1, . . . , rj − 1}. Hence (3.1) holds with l := j − 1.
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