Inverse limit of M-cocycles and applications

by
Jan Kwiatkowski (Toruń)

Abstract

For any $m, 2 \leq m<\infty$, we construct an ergodic dynamical system having spectral multiplicity m and infinite rank. Given $r>1,0<b<1$ such that $r b>1$ we construct a dynamical system (X, \mathcal{B}, μ, T) with simple spectrum such that $r(T)=r$, $F^{*}(T)=b$, and $\# C(T) / \operatorname{wcl}\left\{T^{n}: n \in \mathbb{Z}\right\}=\infty$.

1. Introduction. It was conjectured in [M1] that for any pair (m, r) of integers or ∞, with $m \leq r$, there exists an ergodic dynamical system (X, μ, T) with rank $r(T)=r$ and spectral multiplicity $m(T)=m$. Partial solutions of this question were obtained by several authors: [Ch] (the pair $(1,1)),[\mathrm{dJ}](1,2),[\mathrm{M} 1](1, r),[\mathrm{GoLe}](2, r),[\mathrm{R} 1,2](r, r),[\mathrm{M} 2](r, 2 r),[\mathrm{FeKw}]$ ($p-1, p$), p prime, and [Fe1] $(1, \infty)$, [FeKwMa] (given m, the set of r such that $m(T)=m$ and $r(T)=r$ has density 1$)$. The latest result of this series [KwLa1] says that for any pair (m, r) with $2 \leq m \leq r<\infty$ there is an ergodic automorphism T with $r(T)=r$ and $m(T)=m$. Thus, together with [M1], every finite pair (m, r) with $m \leq r$ is obtainable.

The solution of the (multiplicity, rank) problem will be complete if for any finite $m \geq 1$ and $r=\infty$ we can find an ergodic automorphism realizing (m, ∞). The pair $(1, \infty)$ is realized by the Gaussian-Kronecker system [dIR]. In this note we construct an ergodic automorphism realizing the pairs (m, ∞) for every $m \geq 2$.

We denote by $C(T)$ the set of all measure-preserving automorphisms of (X, \mathcal{B}, μ) wich commute with T. We say that a sequence $\left\{S_{n}\right\} \subset C(T)$ tends weakly to $S \in C(T)$ if for every $A \in \mathcal{B}$,

$$
\mu\left(S_{n} A \triangle S A\right) \rightarrow 0 .
$$

With this topology, $C(T)$ is a Polish group. We denote by $\operatorname{wcl}\left\{T^{n}: n \in\right.$ $\mathbb{Z}\}$ the weak closure of the set $\left\{T^{n}: n \in \mathbb{Z}\right\}$. The weak closure theorem

[^0][Kin] says that $C(T)=\operatorname{wcl}\left\{T^{n}: n \in \mathbb{Z}\right\}$ if $r(T)=1$. It turns out that it is the only relation between rank and the cardinality of the quotient group $C(T) / \operatorname{wcl}\left\{T^{n}: n \in \mathbb{Z}\right\}$ in the class of ergodic dynamical systems. In [KwLa2] examples of ergodic automorphisms T are constructed such that $r(T)=r \geq 2$ and $\# C(T) / \operatorname{wcl}\left\{T^{n}: n \in \mathbb{Z}\right\}=m \geq 1$, where r, m are given. We construct an example of an ergodic automorphism T such that T has simple spectrum, $r(T)=r, F^{*}(T)=b$ and $\# C(T) / \operatorname{wcl}\left\{T^{n}: n \in \mathbb{Z}\right\}=\infty$, where r, b are given and $r \geq 2,0<b<1, b r>1$.

In [KwLa1] we used Morse automorphisms over finite abelian groups. Now, we use the class of inverse limits of Morse automorphisms over compact metric abelian groups. There are positive aspects of examining such dynamical systems. Any Morse automorphism is a group extension T_{φ} of an adding machine (X, T) defined by a special cocycle $\varphi: X \rightarrow G$, where G is a compact abelian group (the details follow).

The cocycle φ is determined by a sequence $\left\{b^{t}\right\}, t \geq 0$, of blocks over G. Each group homomorphism $\pi: G \rightarrow H$ defines a natural factor T_{ψ}, where $\psi=\pi \circ \varphi$. The cocycle ψ is determined by the sequence $\left\{\pi\left(b^{t}\right)\right\}, t \geq 0$, of blocks over H. Now, let $G=\lim \left(G_{t}, \pi_{t}\right)$ be the inverse limit of finite groups G_{t} with homomorphisms $\pi_{t}: \bar{G}_{t+1} \rightarrow G_{t}, \pi_{t}\left(G_{t+1}\right)=G_{t}, t \geq 0$.

Assume that $\left\{b^{s}\right\}_{s=0}^{\infty}$ is a sequence of blocks over G_{s} and that there are mappings $\tau_{s}: G_{s} \rightarrow G_{s+1}$ such that $\pi_{s} \circ \tau_{s}=\mathrm{id}, s \geq 0$. This allows us to define an inverse limit T_{φ} of Morse automorphisms over G_{s} (see 3.2 and Sections 4 and 5). The spectral multiplicity $m\left(T_{\varphi}\right)$ and the $\operatorname{rank} r\left(T_{\varphi}\right)$ of T_{φ} are the limits of $m\left(T_{\varphi_{s}}\right)$ and $r\left(T_{\varphi_{s}}\right)$. In Section 4 we construct an example of a Morse automorphism T_{φ} such that $m\left(T_{\varphi_{s}}\right)$ is constant while $r\left(T_{\varphi_{s}}\right) \rightarrow \infty$. To compute $m\left(T_{\varphi_{s}}\right)$ and $r\left(T_{\varphi_{s}}\right)$ we use the same methods as in [GoKwLeLi] and in [KwLa1].

Similarly to [KwLa1] the automorphisms we construct here can be obtained within the class of weakly mixing transformations.
2. Preliminaries. Let (X, \mathcal{B}, μ, T) be an ergodic dynamical system. We can look at the associated spectral operator $U_{T}: L_{0}^{2}(X, \mu) \rightarrow L_{0}^{2}(X, \mu), U_{T} f$ $=f \circ T, f \in L_{0}^{2}(X, \mu)$, where $L_{0}^{2}(X, \mu)$ consists of those functions of $L^{2}(X, \mu)$ such that $\int_{X} f d \mu=0$. By the spectral multiplicity $m(T)$ of T we mean the supremum of all essential spectral multiplicities of T on $L_{0}^{2}(X, \mu)$. We refer the reader to $[\mathrm{Fe} 2]$ for the definition of the rank $r(T)$ and the covering number $F^{*}(T)$ of T and for more information on those notions.

Now let $T:(X, \mathcal{B}, \mu) \rightarrow(X, \mathcal{B}, \mu)$ be the $\left(p_{t}\right)$-adic adding machine, i.e. $p_{t} \mid p_{t+1}, \lambda_{t+1}=p_{t+1} / p_{t} \geq 2$ for $t \geq 0, p_{0}=\lambda_{0} \geq 2$,

$$
X=\left\{x=\sum_{t=0}^{\infty} q_{t} p_{t-1}: 0 \leq q_{t} \leq \lambda_{t}-1, p_{-1}=1\right\}
$$

is the group of $\left(p_{t}\right)$-adic integers and $T x=x+\widehat{1}, \widehat{1}=(1,0,0, \ldots)$. The space X has a standard sequence $\left(\xi_{t}\right)$ of T-towers. Namely

$$
\xi_{t}=\left(D_{0}^{t}, D_{1}^{t}, \ldots, D_{p_{t}-1}^{t}\right),
$$

where $D_{0}^{t}=\left\{x \in X: q_{0}=\ldots=q_{t}=0\right\}, D_{j}^{t}=T^{j}\left(D_{0}^{t}\right), j=0, \ldots, p_{t}-1$, $X=\bigcup_{j=0}^{p_{t}-1} D^{t}$.

The tower ξ_{t+1} refines ξ_{t} and the sequence $\left(\xi_{t}\right)$ of partitions converges to the point partition. Let G be an abelian compact metric group and let m_{G} be normalized Haar measure of G. A cocycle is a measurable function $\varphi: X \rightarrow G$. A cocycle φ defines an automorphism T_{φ} on $\left(X \times G, \widetilde{\mathcal{B}}, \mu \times m_{G}\right)$,

$$
T_{\varphi}(x, y)=(T x, g+\varphi(x)), \quad x \in X, g \in G
$$

where $\widetilde{\mathcal{B}}$ is the product of the σ-algebra \mathcal{B} and the σ-algebra of borelian subsets of G.

Then $T_{\varphi}^{n}(x, y)=\left(T^{n} x, g+\varphi^{(n)}(x)\right), n=0, \pm 1, \ldots$, where

$$
\varphi^{(n)}(x)= \begin{cases}\varphi(x)+\varphi(T x)+\ldots+\varphi\left(T^{n-1} x\right), & n \geq 1 \tag{1}\\ 0, & n=0 \\ -\varphi\left(T^{-1} x\right)-\ldots-\varphi\left(T^{n} x\right), & n \leq-1\end{cases}
$$

The dynamical system ($X \times G, \widetilde{\mathcal{B}}, \mu \times m_{G}, T_{\varphi}$) is called a group extension of (X, \mathcal{B}, μ, T).
T_{φ} is ergodic iff for every non-trivial $\gamma \in \widehat{G}$ (\widehat{G} is the dual group), there is no measurable solution $f: X \rightarrow S^{1}$ (the unit complex circle) to the functional equation

$$
\begin{equation*}
\gamma(\varphi(x))=\frac{f(T x)}{f(x)}, \quad x \in X[\mathrm{~Pa}] . \tag{2}
\end{equation*}
$$

We say that $\varphi: X \rightarrow G$ is an M-cocycle if for every $t \geq 1, \varphi$ is constant on each level $D_{i}^{t}, i=0, \ldots, p_{t}-2$ (except on the top $D_{p_{t}-1}^{t}$). Such a cocycle is defined by a sequence a blocks $b^{(0)}, b^{(1)}, \ldots$ over G. By a block B over G we mean a finite sequence

$$
B=B[0] \ldots B[k-1],
$$

where $k \geq 1$ and $B[i] \in G, i=0, \ldots, k-1$. The number k is called the length of B and denoted by $|B|$. If $C=C[0] \ldots C[m-1]$ is another block then the concatenation of B and C is the block

$$
B C=B[0] \ldots B[k-1] C[0] \ldots C[m-1] .
$$

We can concatenate more than two blocks in the obvious way. If $v: G \rightarrow G$ is a continuous group automorphism then we let $v(B)$ be the block

$$
v(B)=v(B[0]) \ldots v(B[k-1]) .
$$

We denote by $B(g), g \in G$, the block

$$
B(g)=(B[0]+g) \ldots(B[k-1]+g)
$$

and by \check{B} the block $\check{B}=(B[1]-B[0]) \ldots(B[k-1]-B[k-2]), k \geq 2$. Now, we can define the product $B \times C$ of B and C as follows:

$$
B \times C=B([C[0]) \ldots B(C[m-1]) .
$$

Clearly,

$$
|B \times C|=|B||C| \quad \text { and } \quad v(B \times C)=v(B) \times v(C) .
$$

This multiplication operation " \times " is associative so it can be extended to more than two blocks. If $|B|=|C|=k$ then we define

$$
\bar{d}(B, C)=k^{-1} \#\{0 \leq i \leq k-1: B[i] \neq C[i]\} .
$$

Now we describe Morse sequences (M-sequences). Let $b^{(0)}, b^{(1)}, \ldots$ be finite blocks over G with $\left|b^{(t)}\right|=\lambda_{t}, b^{(t)}[0]=0, t \geq 0$. Then we define a one-sided sequence over G by

$$
\omega=b^{(0)} \times b^{(1)} \times \ldots
$$

Such a sequence ω allows one to define an M-cocycle $\varphi=\varphi_{\omega}$ on X as follows: let

$$
B_{t}=b^{(0)} \times \ldots \times b^{(t)}, \quad t \geq 0 .
$$

Then $\left|B_{t}\right|=p_{t}$ and $\left|\check{B}_{t}\right|=p_{t}-1$. We finally put

$$
\varphi(x)=\check{B}_{t}[j] \quad \text { if } x \in D_{j}^{t}, j=0, \ldots, p_{t}-2 .
$$

Clearly, φ is an M-cocycle. It is easy to observe that each M-cocycle can be obtained as described above. As a consequence of the definition of φ and (1) we get

$$
\begin{equation*}
\varphi^{(n)}(x)=B_{t}[j+n]-B_{t}[j] \tag{3}
\end{equation*}
$$

if $x \in D_{j}^{t}$ and $j=0, \ldots, p_{t}-n-1$. If we examine $\varphi^{\left(k p_{t}\right)}(x), 1 \leq k \leq \lambda_{t+1}-1$, on the tower ξ_{t+1} then (3) implies

$$
\begin{equation*}
\varphi^{\left(k p_{t}\right)}(x)=b^{(t+1)}[q+k]-b^{(t+1)}[q] \tag{4}
\end{equation*}
$$

if $x \in D_{q p_{t+j}}^{(t+1)}, 0 \leq q \leq \lambda_{t+1}-k-1, j=0, \ldots, p_{t}-1$.

3. Spectral analysis of M-cocycles and their inverse limit

3.1. Spectral calculations. It is known that

$$
\begin{equation*}
L^{2}\left(X \times G, \mu \times m_{G}\right)=\bigoplus_{\gamma \in \widehat{G}} L_{\gamma}, \tag{5}
\end{equation*}
$$

where

$$
L_{\gamma}=\left\{f \otimes \gamma \in L^{2}\left(X \times G, \mu \times m_{G}\right): f \in L^{2}(X, \mu)\right\} .
$$

Moreover, the subspaces L_{γ} are $U_{T_{\varphi}}$-invariant and using the same arguments as in $[\mathrm{KwSi}]$ we see that $U_{T_{\varphi}}$ on L_{γ} has simple spectrum.

Let μ_{γ} be the spectral measure of $U_{T_{\varphi}}$ on L_{γ}. The subspace $L_{e}(e$ is the trivial character) is generated by the eigenfunctions of T_{φ} (in fact of T) corresponding to all p_{t}-roots of unity. An M-cocycle $\varphi=\varphi_{\omega}$ is called continuous if L_{e} contains all eigenfunctions of T_{φ}, or equivalently if each measure $\mu_{\gamma}, \gamma \neq e$, is continuous. We shall use the following criteria to find whether two measures $\mu_{\gamma}, \mu_{\gamma^{\prime}}, \gamma, \gamma^{\prime} \in \widehat{G}, \gamma \neq \gamma^{\prime}$, are orthogonal or equivalent.

Proposition $1([\mathrm{KwRo}],[\mathrm{FeKw}]$, [GoKwLeLi]). If $v: G \rightarrow G$ is a group automorphism and blocks $b^{(0)}, b^{(1)}, \ldots$ satisfy

$$
\begin{equation*}
\sum_{t=0}^{\infty} \bar{d}\left(b^{(t)}\left[k_{t}, \lambda_{t}-1\right], v\left(b^{(t)}\right)\left[0, \lambda_{t}-k_{t}-1\right]\right)<\infty \tag{a}
\end{equation*}
$$

for a sequence $\left(k_{t}\right)_{t=0}^{\infty}, 0 \leq k_{t}<\lambda_{t}$, for which
(b)

$$
\sum_{t=0}^{\infty} \frac{k_{t}}{\lambda_{t}}<\infty
$$

then $\mu_{\gamma} \simeq \mu_{\hat{v}(\gamma)}$ for all γ in \widehat{G}, where \widehat{v} is the dual automorphism.
Proposition 2 [GoKwLeLi]. If for given $\gamma, \gamma^{\prime} \in \widehat{G}$,
(6) $\lim _{t \in \bar{N}} \int_{X} \gamma\left(\varphi^{\left(a_{t} p_{t}\right)}(x)\right) \mu(d x)$ and $\lim _{t \in \bar{N}} \int_{X} \gamma^{\prime}\left(\varphi^{\left(a_{t} p_{t}\right)}(x)\right) \mu(d x)$ exist along a subsequence \bar{N} and are different
then $\mu_{\gamma} \perp \mu_{\gamma^{\prime}}$ whenever $\sum_{t=1}^{\infty} a_{t} / \lambda_{t+1}<\infty$ (note that $T^{a_{t} p_{t}} \rightarrow \mathrm{Id}$ in the weak topology).

Let H_{0} be a subgroup of G and $H=G / H_{0}$ be the quotient group. Let $\pi: G \rightarrow H$ be the quotient map and let m_{H} be Haar measure on H. We can define a map $P=\operatorname{Id}_{X} \times \pi$ of the dynamical system $\left(X \times G, T_{\varphi}, \mu \times m_{G}\right)$ onto $\left(X \times H, T_{\varphi, H}, \mu \times m_{H}\right)$, where $\varphi_{H}(x)=\pi(\varphi(x))$. The systems ($X \times$ $\left.H, T_{\varphi, H}, \mu \times m_{H}\right)$ are called the natural factors of $\left(X \times G, T_{\varphi}, \mu \times m_{G}\right)$. If B is a block over G then $\pi(B)$ denotes the block over H defined by

$$
\pi(B)=\pi(B[0]) \ldots \pi(B[k-1]), \quad k=|B| .
$$

Using the obvious equality $\pi(B \times C)=\pi(B) \times \pi(C)$, it is not hard to see that if φ is the M-cocycle defined by the sequence of blocks $b^{(0)}, b^{(1)} \ldots$ over G then φ_{H} is the M-cocycle determined by the blocks $\pi\left(b^{(0)}\right), \pi\left(b^{(1)}\right), \ldots$

It is known that \widehat{H} can be identified with a subgroup of \widehat{G}, namely with the subgroup of those $\gamma \in \widehat{G}$ such that $\gamma\left(H_{0}\right)=1$. Let

$$
L_{\gamma, H}=\left\{f \otimes \gamma \in L^{2}\left(X \times H, \mu \times m_{H}\right): f \in L^{2}(X, \mu)\right\}, \quad \gamma \in \widehat{H} .
$$

Then

$$
\begin{equation*}
L^{2}\left(X \times H, \mu \times m_{H}\right)=\bigoplus_{\gamma \in \widehat{H}} L_{\gamma, H} \tag{7}
\end{equation*}
$$

and the unitary operator $U_{T_{\varphi, H}}$ on $L_{\gamma, H}$ is spectrally isomorphic to the unitary operator $U_{T_{\varphi}}$ on L_{γ}. Thus $U_{T_{\varphi, H}}$ has simple spectrum on $L_{\gamma, H}$ and its spectral measure is μ_{γ}.
3.2. Inverse limit of M-cocycles. Let (X, \mathcal{B}, μ, T) and $\left(X_{s}, \mathcal{B}_{s}, \mu_{s}, T_{s}\right)$, $s=0,1, \ldots$, be dynamical systems. We say that (X, \mathcal{B}, μ, T) is an inverse limit of $\left(X_{s}, \mathcal{B}_{s}, \mu_{s}, T_{s}\right)$ if there exist homomorphisms $V_{s}:(X, \mathcal{B}, \mu, T) \rightarrow$ $\left(X_{s}, \mathcal{B}_{s}, \mu_{s}, T_{s}\right)$ such that $V_{s}^{-1}\left(\mathcal{B}_{s}\right) \subset V_{s+1}^{-1}\left(\mathcal{B}_{s+1}\right)$ and the σ-algebras $V_{s}^{-1}\left(\mathcal{B}_{s}\right)$ generate \mathcal{B}. For each $s \geq 0$ we have a homomorphism $W_{s}:\left(X_{s+1}\right.$, $\left.\mathcal{B}_{s+1}, \mu_{s+1}, T_{s+1}\right) \rightarrow\left(X_{s}, \mathcal{B}_{s}, \mu_{s}, T_{s}\right)$ and $W_{s} \circ V_{s+1}=V_{s}$. We write $T=$ $\lim T_{s}$. It follows from the definition of the spectral multiplicity, rank and covering number that $m(T)=\lim m\left(T_{s}\right), r(T)=\lim r\left(T_{s}\right), F^{*}(T)=$ $\lim F^{*}\left(T_{s}\right)$ and moreover $m\left(T_{s}\right) \leq m\left(T_{s+1}\right), r\left(T_{s}\right) \leq r\left(T_{s+1}\right), F^{*}\left(T_{s}\right) \geq$ $F^{*}\left(T_{s+1}\right)$.

It is clear that T is ergodic (weakly mixing, mixing) iff so is T_{s} for every $s \geq 0$. Consider an ergodic dynamical system (X, \mathcal{B}, μ, T) and sequences $\left(G_{s}\right)_{s=0}^{\infty}$ of metric compact abelian groups and group homomorphisms π_{s} : $G_{s+1} \rightarrow G_{s}$ with $\pi\left(G_{s+1}\right)=G_{s}$. The sequence $\left(G_{s}, \pi_{s}\right), s \geq 0$, defines the inverse limit $G=\lim \left(G_{s}, \pi_{s}\right)$ and the homomorphisms $\psi_{s}: G \rightarrow G_{s}$ such that $\pi_{s} \circ \psi_{s+1}=\psi_{s}$. Note that G is a metric compact abelian group. Assume that $\varphi_{s}: X \rightarrow G_{s}$ are cocycles such that $\pi_{s} \circ \varphi_{s+1}=\varphi_{s}$. The cocycles φ_{s} define a unique cocycle $\varphi: X \rightarrow G$ satisfying $\psi_{s} \circ \varphi=\varphi_{s}$. Then $T_{\varphi}=\lim _{\rightleftarrows} T_{\varphi_{s}}$.

Now, let (X, \mathcal{B}, μ, T) be a $\left(p_{t}\right)$-adic adding machine, $p_{t}=\lambda_{0} \ldots \lambda_{t}, t \geq 0$. We describe special inverse limits of group extensions $T_{\varphi_{s}}$ determined by M cocycles. To do this assume additionally that we have one-to-one measurable mappings $\tau_{s}: G_{s} \rightarrow G_{s+1}$ such that $\pi_{s} \circ \tau_{s}=\mathrm{id}, s \geq 0$. Set $H_{s}=\tau_{s}\left(G_{s}\right)$.

Let \bar{H}_{s} be the set of all sequences $\left\{g_{t}\right\}_{t=0}^{\infty} \in G$ such that g_{s} is an arbitrary element of G_{s} and $g_{s+1}=\tau_{s}\left(g_{s}\right), g_{s+2}=\tau_{s+1} \tau_{s}\left(g_{s}\right)$ and so on, $g_{s-1}=\pi_{s-1}\left(g_{s}\right), \ldots, g_{0}=\pi_{0} \circ \ldots \circ \pi_{s-1}\left(g_{s}\right)$. Given blocks $b^{(t)}, t \geq 0$, over G_{t}, we can treat them as blocks over G if we identify the members of $b^{(t)}$ with the corresponding elements of \bar{H}_{t}. The sequence $\left(b^{(t)}\right)_{t=0}^{\infty}$ defines a cocycle $\varphi: X \rightarrow G$. Let m and m_{s} be normalized Haar measures of G and G_{s} respectively. The dynamical system $\left(X \times G, \mathcal{B}, T_{\varphi}, \mu \times m_{G}\right)$ has natural factors

$$
\left(X \times G_{s}, \mathcal{B}_{s}, T_{\varphi_{s}}, \mu \times m_{s}\right), \quad s \geq 0
$$

where $\varphi_{s}=\psi_{s} \circ \varphi$ and the mappings

$$
W_{s}=\operatorname{Id}_{X} \times \psi_{s}: X \times G \rightarrow X \times G_{s}
$$

are homomorphisms of those systems. Each cocycle φ_{s} is an M-cocycle determined by the blocks $\left(b_{s}^{(t)}\right)_{t=0}^{\infty}$, where $b_{s}^{(t)}=\psi_{s}\left(b^{(t)}\right)$ if $t \geq s$ and $b_{s}^{(t)}=\tau_{t} \circ \ldots \circ \tau_{s-1}\left(b^{(t)}\right)$ if $t<s$.
4. Example 1. In this section we describe an example of an M-cocycle φ such that T_{φ} has infinite rank and spectral multiplicity $r \geq 1$.
4.1. Definition of the cocycle. Let $r_{t}=r 2^{t}, t \geq 0$, and $n \geq 2$. Select a sequence $\left(l_{t}\right)_{t=0}^{\infty}$ of positive integers such that $n \mid l_{t}, l_{t} \nearrow \infty$ and

$$
\begin{equation*}
\left(1-n / l_{t}\right)^{r_{t}} \rightarrow 1 \tag{8}
\end{equation*}
$$

Let $\mathbb{Z}_{n}=\{0,1, \ldots, n-1\} \simeq \mathbb{Z} / n \mathbb{Z}$, and

$$
G_{t}=\overbrace{\mathbb{Z}_{n} \oplus \ldots \oplus \mathbb{Z}_{n}}^{r_{t}}
$$

be the direct product of r_{t} copies of Z_{n} 's $, t=0,1, \ldots$ For $g \in G_{t}$ we write $g=\left(g_{0}, g_{1}, \ldots, g_{r_{t}-1}\right), g_{i} \in \mathbb{Z}_{n}$.

We let

$$
e_{i}^{(t)}=e_{i}=(\underbrace{0, \ldots, 0}_{i-1}, 1,0, \ldots, 0), \quad i=1, \ldots, r_{t}-1
$$

Define homomorphisms $\pi_{t}: G_{t+1} \rightarrow G_{t}$ by $\pi_{t}\left(e_{j}^{(t+1)}\right)=e_{i}^{(t)}$, where $j=$ $0,1, \ldots r_{t+1}-1, i=0,1, \ldots, r_{t}-1$ and $i \equiv j\left(\bmod r_{t}\right)$. We have the natural mappings $\tau_{t}: G_{t} \rightarrow G_{t+1}$ defined by

$$
\tau_{t}\left(\sum_{i=0}^{r_{t}-1} g_{i} e_{i}^{(t)}\right)=\sum_{i=0}^{r_{t}-1} g_{i} e_{i}^{(t+1)}, \quad g_{0}, \ldots, g_{r_{t}-1}=0,1, \ldots, n-1
$$

Then $\pi_{t} \circ \tau_{t}=$ id. Set

$$
G=\lim _{\leftrightarrows}\left(G_{t}, \pi_{t}\right) .
$$

As above let $\psi_{t}: G \rightarrow G_{t}$ be continuous homomorphisms such that

$$
\pi_{t} \circ \psi_{t+1}=\psi_{t}
$$

Now, we are in a position to describe M-cocycles φ_{t} as in part 3.2. To do this we define a sequence $\left\{b^{(t)}\right\}_{t=0}^{\infty}$ of blocks, each block $b^{(t)}$ over G_{t}. Put

$$
\begin{align*}
F_{i}=F_{i}^{(t)}=0\left(e_{i}\right)\left(2 e_{i}\right) \ldots(l-1) & \left(e_{i}\right) \tag{9}\\
& i=0,1, \ldots, r_{t}-1, l=l_{t}, e_{i}=e_{i}^{(t)}
\end{align*}
$$

Then define a block $\beta_{u, k}^{(t)}=\beta_{u, k}, u=0,1, \ldots, 2^{t}-1, k=0, \ldots, r-1$, as follows:
$\delta_{u, k}=F_{u r+k} \times F_{u r+(k \oplus 1)} \times \ldots \times F_{u r+(k \oplus r-1)}$ where $a \oplus b$ is $a+b$ taken $\bmod r, a, b=0,1, \ldots, r-1$, and $\beta_{u, k}=\delta_{u, k} \times \delta_{u \oplus 1, k} \times \ldots \times \delta_{u \oplus 2^{t}-1, k}$, and now $u \oplus \widetilde{u}$ is $u+\widetilde{u}$ taken $\bmod 2^{t}$.

Finally, define

$$
\begin{equation*}
\beta_{u}^{(t)}=\beta_{u}=\beta_{u, 0} \beta_{u, 1} \ldots \beta_{u, r-1}, \quad u=0,1, \ldots, 2^{t}-1 \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
b^{(t)}=\overbrace{\beta_{0} \ldots \beta_{0}}^{q_{t, 0}} \overbrace{\beta_{1} \ldots \beta_{1}}^{q_{t, 1}} \ldots \overbrace{\beta_{2^{t}-1} \ldots \beta_{2^{t}-1}}^{q_{t, 2^{t}-1}} \tag{12}
\end{equation*}
$$

where $q_{t, u}$ are positive integers such that

$$
\begin{equation*}
\sum_{t=0}^{\infty} \frac{1}{q_{t}}<\infty, \quad q_{t}=\min \left(q_{t, 0}, q_{t, 1}, \ldots, q_{t, 2^{t}-1}\right) . \tag{13}
\end{equation*}
$$

Some additional conditions on $q_{t, u}$'s will be specified later.
Obviously, $F_{i}^{(t)}, \beta_{u, k}^{(t)}, \beta_{u}^{(t)}, b^{(t)}$ are blocks over G_{t} and we have

$$
\left|F_{i}\right|=l_{t}, \quad\left|\beta_{u, k}\right|=l_{t}^{r_{t}}, \quad\left|\beta_{u}\right|=r l_{t}^{r_{t}}, \quad\left|b^{(t)}\right|=r r_{t}^{r_{t}} Q_{t}
$$

where

$$
Q_{t}=\sum_{u=0}^{2^{t}-1} q_{t, u}
$$

Let $v=v_{t}: G_{t} \rightarrow G_{t}$ be the group automorphisms defined by

$$
\begin{aligned}
& v\left(e_{u r+k}\right)=e_{u r+(k \oplus 1)}, \\
& \quad u=0,1, \ldots, 2^{t}-1, k=0,1, \ldots, r-1, e_{u r+k}=e_{u r+k}^{(t)}
\end{aligned}
$$

Then we have

$$
\begin{equation*}
v\left(F_{u r+k}\right)=F_{u r+(k \oplus 1)}, \quad v\left(\beta_{u, k}\right)=\beta_{u, k \oplus 1} . \tag{14}
\end{equation*}
$$

Now, let (X, \mathcal{B}, μ, T) be the $\left(p_{t}\right)$-adic adding machine, where $p_{t}=\lambda_{0} \ldots$ $\ldots \lambda_{t}, \lambda_{t}=\left|b^{(t)}\right|=r l_{t}^{r_{t}} Q_{t}, t \geq 0$. The sequence $\left\{b^{(t)}\right\}_{t=0}^{\infty}$ determines the sequences of blocks $\left\{b_{s}^{(t)}\right\}_{t=0}^{\infty}, s \geq 0$, and in consequence M-cocycles φ : $X \rightarrow G$ and $\varphi_{s}: X \rightarrow G_{s}$ described in part 3.2.

We have a sequence of dynamical systems

$$
\begin{equation*}
\left(X \times G_{0}, T_{\varphi_{0}}\right) \stackrel{W_{0}}{\longleftrightarrow}\left(X \times G_{1}, T_{\varphi_{1}}\right) \stackrel{W_{1}}{\longleftrightarrow}\left(X \times G_{2}, T_{\varphi_{2}}\right) \stackrel{W_{2}}{\rightleftarrows} \cdots \tag{15}
\end{equation*}
$$

determined by the homomorphisms π_{t}, the mappings τ_{t} (in this case τ_{t} are homomorphisms) and by the blocks (12).
4.2. Additional conditions. The blocks $b_{s}^{(t)}, t, s \geq 0$, can be obtained by a procedure similar to that for b_{t} 's. If $t \leq s$ then $b_{s}^{(t)}=b^{(t)}$ (with $e_{i}^{(s)}$ instead of $\left.e_{i}^{(t)}, i=0, \ldots, r_{t}-1\right)$. If $t>s$, we define the blocks $F_{i, s}^{(t)}$ by (9) for $i=0,1, \ldots, r_{s}-1$ and $l=l_{t}$. We have

$$
\begin{equation*}
\pi_{s} \circ \ldots \circ \pi_{t-1}\left(F_{j}^{(t)}\right)=F_{i, s}^{(t)}, \quad\left|F_{i, s}^{(t)}\right|=l_{t} \tag{16}
\end{equation*}
$$

for $j=0,1, \ldots, r_{t}-1, i=0,1, \ldots, r_{s}-1$ and $j \equiv i\left(\bmod r_{s}\right)$.

Then we define $\beta_{u, k}^{(t, s)}, \beta_{u}^{(t, s)}, u=0,1, \ldots, 2^{s}-1, k=0,1, \ldots, r-1$, by (10) and (11) using the blocks $F_{u r+k, s}^{(t)}$. Let

$$
\begin{equation*}
\bar{\delta}_{a}=\overbrace{\beta_{0} \ldots \beta_{0}}^{q_{t, a 2^{s}}} \overbrace{\beta_{1} \ldots \beta_{1}}^{q_{t, a a^{s}+1}} \ldots \overbrace{\overbrace{2^{s}-1} \ldots \beta_{2^{s}-1}}^{q_{t, a 2^{s}+2^{s}-1}} \tag{17}
\end{equation*}
$$

for $a=0,1, \ldots, 2^{t-s}-1, \beta_{u}=\beta_{u}^{(t, s)}, u=0,1, \ldots, 2^{s}-1$. Then (16) implies $\beta_{u}^{(t, s)}=\psi_{s}\left(\beta_{a 2^{s}+u}^{(t)}\right)$ for $u=0,1, \ldots, 2^{s}-1$ and $a=0,1, \ldots, 2^{t-s}-1$.

Now, comparing the blocks (12) and (17) we get

$$
b_{s}^{(t)}=\bar{\delta}_{0} \bar{\delta}_{1} \ldots \bar{\delta}_{2^{t-s}-1}
$$

To finish the definition of φ we must give conditions for the numbers $q_{t, u}, u=0,1, \ldots, 2^{t}-1, t \geq 0$. To do this consider the dual group \widehat{G}. We have $\widehat{G}=\bigcup_{s=0}^{\infty} \widehat{G}_{s}$. The group automorphisms $v_{s}: G_{s} \rightarrow G_{s}$ satisfy $v_{s} \circ \pi_{s}=$ $\pi_{s} \circ v_{s+1}$ and they determine a continuous group automorphism $v: G \rightarrow G$ such that $v_{s} \circ \psi_{s}=\psi_{s} \circ v$. The dual group automorphism $\widehat{v}: \widehat{G} \rightarrow \widehat{G}$ satisfies $\widehat{v}\left(\widehat{G}_{s}\right)=\widehat{G}_{s}$. It is not hard to see that every \widehat{v}-trajectory of \widehat{G} has length $\leq r$ and there are \widehat{v}-trajectories having length r. Consider all possible pairs $\left(\gamma, \gamma^{\prime}\right), \gamma, \gamma^{\prime} \in \widehat{G}$, such that γ, γ^{\prime} are from different \widehat{v}-trajectories. Divide the set $\mathbb{N}=\{0,1, \ldots\}$ into disjoint infinite subsets $N\left(\gamma, \gamma^{\prime}\right)$. For every such pair $\left(\gamma, \gamma^{\prime}\right)$ we choose $s=s\left(\gamma, \gamma^{\prime}\right) \geq 0$ such that $\gamma, \gamma^{\prime} \in \widehat{G}_{s}$. The functions

$$
A_{\gamma}=\frac{1}{r} \sum_{p=0}^{r-1} \widehat{v}^{p}(\gamma), \quad A_{\gamma^{\prime}}=\frac{1}{r} \sum_{p=0}^{r-1} \widehat{v}^{p}\left(\gamma^{\prime}\right)
$$

are orthogonal in $L^{2}\left(G_{s}, m_{s}\right)$ so we can find $g=g\left(\gamma, \gamma^{\prime}\right) \in G_{s}$ such that

$$
\begin{equation*}
A_{\gamma}(g) \neq A_{\gamma^{\prime}}(g) . \tag{18}
\end{equation*}
$$

Choose $c=c\left(\gamma, \gamma^{\prime}\right)$ in such a way that

$$
\begin{equation*}
\frac{1}{2}<c<1 \quad \text { and } \quad 2(1-c)<\frac{1}{2} c\left|A_{\gamma}(g)-A_{\gamma^{\prime}}(g)\right| . \tag{19}
\end{equation*}
$$

To find the numbers $q_{t, u}$ we need probability vectors $\bar{\omega}^{(t, s)}=\bar{\omega}=\left\langle\omega_{z}^{(t, s)}\right\rangle$ where $s<t$ and $z=0,1, \ldots, 2^{s}-1$, defined as follows:

$$
\begin{equation*}
\omega_{z}=\sum_{a=0}^{2^{t-s}-1} \frac{q_{t, z+a 2^{s}}}{Q_{t}}, \quad Q_{t}=\sum_{u=0}^{2^{t}-1} q_{t, u} . \tag{20}
\end{equation*}
$$

Take $t \in N\left(\gamma, \gamma^{\prime}\right)$ and $t>s=s\left(\gamma, \gamma^{\prime}\right)$. Choose $q_{t, u}, u=0,1, \ldots, 2^{t}-1$, in such a way that

$$
\begin{gather*}
\omega_{0}^{(t, s)} \geq c\left(\gamma, \gamma^{\prime}\right), \tag{21}\\
\lim _{\substack{t \rightarrow \infty \\
t \in N\left(\gamma, \gamma^{\prime}\right)}} \omega_{0}^{(t, s)}=c\left(\gamma, \gamma^{\prime}\right), \tag{22}
\end{gather*}
$$

$$
\begin{equation*}
\omega_{z}^{(t, s)}=\omega_{z^{\prime}}^{(t, s)} \quad \text { for } z, z^{\prime}=1, \ldots, 2^{s}-1 \tag{23}
\end{equation*}
$$

If $t \in N\left(\gamma, \gamma^{\prime}\right)$ and $t \leq s\left(\gamma, \gamma^{\prime}\right)$ then we pick $q_{t, u}$ satisfying (23) for every $z, z^{\prime}=0,1, \ldots, 2^{s}-1$.
4.3. Propositions. In the sequel let T_{φ} be the group extension of T defined by the cocycle φ described in 4.1 and 4.2.

Proposition 3. T_{φ} is ergodic and φ is continuous.
Proof. Take $\gamma \in \widehat{G}_{s}$ and assume that

$$
f(T x) / f(x)=\gamma\left(\varphi_{s}(x)\right)
$$

for a.e. $x \in X$, where $f: X \rightarrow S^{1}$ is a measurable function (see (2)). Using the same arguments as in [FeKwMa] we get

$$
\begin{equation*}
\gamma\left(\varphi_{s}^{\left(p_{t}\right)}(x)\right) \xrightarrow{t} 1 \tag{24}
\end{equation*}
$$

in measure. The definition of $b_{s}^{(t)},(4),(19)$ and (21)-(23) imply that $\varphi_{s}^{\left(p_{t}\right)}(x)$ is equal to $e_{0}^{(s)}, \ldots, e_{r_{s}-1}^{(s)}$ on a set $E_{t} \subset X$ with $\mu\left(E_{t}\right) \rightarrow 1$.

Moreover, if

$$
E_{t, i}=\left\{x \in E_{t}: \varphi^{\left(p_{t}\right)}(x)=e_{i}^{(s)}\right\}, \quad i=0,1, \ldots, r_{s}-1
$$

then

$$
\mu\left(E_{t, i}\right) \geq \frac{1}{2} c\left(\gamma, \gamma^{\prime}\right)
$$

if $t \in N\left(\gamma, \gamma^{\prime}\right)$ and γ^{\prime} comes from a different \widehat{v}-trajectory than γ. It is obvious that the last inequality and (24) imply $\gamma=1$. Thus $T_{\varphi_{s}}$ is ergodic and then T_{φ} is ergodic because $T_{\varphi}=\lim _{\rightleftarrows} T_{\varphi_{s}}$.

To show the continuity of φ we must prove that the only eigenvalues of T_{φ} are p_{t}-roots of unity. Let $F(x, g)$ be an eigenfunction with eigenvalue λ. We have

$$
F(x, g)=\sum_{\gamma \in \widehat{G}} f_{\gamma}(x) \gamma(g)
$$

where $f_{\gamma} \in L^{2}(X, \mu)$. Then $f_{\gamma}(T x) \gamma(\varphi(x))=\lambda f_{\gamma}(x)$ for all $\gamma \in \widehat{G}$ and a.e. $x \in X$. Using again the same arguments as in [FeKwMa] we get

$$
\begin{equation*}
\gamma\left(\varphi^{\left(p_{t}\right)}(x)\right) \lambda^{-p_{t}} \rightarrow 1 \quad \text { in measure } \tag{25}
\end{equation*}
$$

for every $\gamma \in \widehat{G}$ such that $f_{\gamma} \neq 0$ in $L^{2}(X, \mu)$. Then $\gamma \in \widehat{G}_{s}$ for some $s \geq 0$ so (25) can be rewritten as

$$
\gamma\left(\varphi_{s}^{\left(p_{t}\right)}(x)\right) \lambda^{-p_{t}} \rightarrow 1
$$

Taking again γ^{\prime} as before and $t \rightarrow \infty, t \in N\left(\gamma, \gamma^{\prime}\right)$ we find that $\gamma\left(e_{i}^{(s)}\right)$ is constant for $i=0,1, \ldots, r_{s}-1$. Thus $\gamma=1$. This means that $F(x, y)=f_{0}(x)$ and λ is an eigenvalue of T, i.e. λ is a p_{t}-root of unity. We have proved the continuity of γ.

Proposition 4. $m\left(T_{\varphi}\right)=r$.
Proof. Let μ_{γ} be the spectral measure defined in part 3.1 , and $\gamma \in \widehat{G}$. We will show that

$$
\begin{gather*}
\mu_{\gamma} \simeq \mu_{\hat{v}(\gamma)} \tag{26}\\
\mu_{\gamma} \perp \mu_{\gamma^{\prime}} \quad \text { whenever } \gamma, \gamma^{\prime} \text { are in different } \widehat{v} \text {-trajectories. } \tag{27}
\end{gather*}
$$

It follows from (14) that every fragment $\overbrace{\beta_{u} \beta_{u} \ldots \beta_{u}}^{q_{t, u}}, u=0,1, \ldots, 2^{t}-1$, of $b^{(t)}$ is of the form $\beta_{u, 0} v\left(\beta_{u, 0}\right) \ldots v^{r^{\prime}}\left(\beta_{u, 0}\right), r^{\prime}=r q_{t, u}-1$. Thus

$$
\begin{equation*}
\bar{d}\left(b^{(t)}\left[l_{t}^{r_{t}}-1, \lambda_{t}-1\right], v\left(b^{(t)}\right)\left[0, \lambda_{t}-l_{t}^{r_{t}}-1\right]\right) \leq \frac{2^{t}\left|\beta_{u, 0}\right|}{\left|\beta_{u, 0}\right| r Q_{t}} \stackrel{(13)}{\leq} \frac{1}{q_{t}} \tag{28}
\end{equation*}
$$

Choose $s \geq 0$ such that $\gamma \in \widehat{G}_{s}$. The inequality (28) is valid for the blocks $b_{s}^{(t)}$, because $\psi_{s} \circ v=v_{s} \circ \psi_{s}$. Thus the sequence $\left(b_{s}^{(t)}\right)_{t=0}^{\infty}$ satisfies the conditions (a) and (b) of Proposition 1. In this manner (26) is proved.

Now we prove (27). Suppose γ, γ^{\prime} do not belong to the same \widehat{v}-trajectory. Let $\gamma, \gamma^{\prime} \in \widehat{G}_{s}$ and let $g=g\left(\gamma, \gamma^{\prime}\right)$ satisfy (18). Then

$$
g=g_{0} e_{0}^{(s)}+\ldots+g_{r_{s}-1} e_{r_{s}-1}^{(s)}
$$

with $g_{0}, \ldots, g_{r_{s}-1}=0,1, \ldots, n-1$. Define

$$
a_{t}=g_{0}+g_{1} l_{t}+\ldots+g_{r_{s}-1} l_{t}^{r_{s}-1}
$$

Then

$$
\frac{a_{t}}{l_{t}^{r_{t}}} \leq \frac{n r_{s} l_{t}^{r_{s}-1}}{l_{t}^{r_{t}}} \leq \frac{n r_{s}}{l_{t}} \xrightarrow{t} 0
$$

and

$$
\sum_{t=0}^{\infty} \frac{a_{t}}{\lambda_{t}} \leq n r_{s} \sum_{t=0}^{\infty} \frac{1}{l_{t} Q_{t}}<\infty
$$

We now show that

$$
\lim _{\substack{t \in N\left(\gamma, \gamma^{\prime}\right) \\ t \rightarrow \infty}}\left[\int_{X} \gamma\left(\varphi_{s}^{\left(a_{t} p_{t}\right)}(x)\right) \mu(d x)-\int_{X} \gamma^{\prime}\left(\varphi_{s}^{\left(a_{t} p_{t}\right)}(x)\right) \mu(d x)\right] \neq 0
$$

Repeating the same calculations as in [GoKwLeLi] and using (4) we get for $t>s$,

$$
\begin{align*}
& \int_{X} \widetilde{\gamma}\left(\varphi_{s}^{\left(a_{t} p_{t}\right)}(x)\right) \mu(d x) \tag{29}\\
& \quad=\underbrace{\sum_{h \in G_{t}}\left\{\sum_{u=0}^{2^{t}-1} \frac{q_{t, u}}{Q_{t}}\left[\frac{1}{r} \sum \widehat{v}^{p}(\widetilde{\gamma})\left(\psi_{s}(h)\right)\right] o_{t, u}\left(\psi_{s}(h)\right)\right\}}_{I_{1}}+\varrho_{t}
\end{align*}
$$

where

$$
\begin{gathered}
o_{t, u}(h)=\frac{1}{l_{t}^{r_{t}} \#\left\{0 \leq j \leq l_{t}^{r_{t}}-a_{t}-1: \beta_{u, 0}\left[j+a_{t}\right]-\beta_{u, 0}[j]=h\right\},} \\
\widetilde{\gamma}=\gamma \text { or } \gamma^{\prime}, \quad \varrho_{t} \leq \frac{a_{t}}{l_{t}^{r_{t}}}+\frac{2^{t}}{Q_{t}} \xrightarrow{t} 0, \quad \beta_{u, 0}=\beta_{u, 0}^{(t, s)} .
\end{gathered}
$$

But $o_{t, u}\left(\psi_{s}(h)\right)=o_{t, \bar{u}}\left(\psi_{s}(h)\right)$ if $u \equiv \bar{u}\left(\bmod 2^{s}\right)$. Thus

$$
\begin{align*}
& I_{1}=\sum_{g \in G_{s}}\left[\frac{1}{r} \sum_{p=0}^{r-1} \widehat{v}^{p}(\widetilde{\gamma})(g)\right]\left\{\sum_{z=0}^{2^{s}-1} o_{t, z}(g)\left[\sum_{u \equiv z} \frac{q_{t, u}}{Q_{t}}\right]\right\} \tag{30}\\
& \stackrel{(20)}{=} \sum_{g \in G_{s}}\left[\frac{1}{r} \sum_{p=0}^{r-1} \widehat{v}^{p}(\widetilde{\gamma})(g)\right]\left\{\sum_{z=0}^{2^{s}-1} o_{t, z}(g) \omega_{z}\right\} .
\end{align*}
$$

Take $j=0,1, \ldots, l_{t}^{r_{t}}-1$. We can represent it as

$$
j=j_{0}+j_{1} l_{t}+\ldots+j_{r_{t}-1} l_{t}^{r_{t}-1}
$$

where $j_{0}, j_{1}, \ldots, j_{r_{t}-1}=0,1, \ldots, l_{t}-1$. Let

$$
K_{t}=\left\{0 \leq j \leq l_{t}^{r_{t}}-1: 0 \leq j_{0}, j_{1}, \ldots, j_{r_{t}-1} \leq l_{t}-n-1\right\} .
$$

We have

$$
\begin{equation*}
\frac{\# K_{t}}{l_{t}^{r_{t}}} \geq\left(1-\frac{n}{l_{t}}\right)^{r_{t}} \tag{31}
\end{equation*}
$$

If $j \in K_{t}$ then it is easy to check that

$$
\text { (32) } \begin{aligned}
\beta_{u, 0}\left[j+a_{t}\right]-\beta_{u, 0}[j] & =g_{0} e_{z r}^{(s)}+g_{1} e_{z r+1}^{(s)}+\ldots+g_{r_{s}-1} e_{z r+r_{s}-1}^{(s)} \\
& =g_{z}^{*}, \quad z=0,1, \ldots, 2^{s}-1, u \equiv z\left(\bmod 2^{s}\right)
\end{aligned}
$$

In particular, $g_{0}^{*}=g\left(\gamma, \gamma^{\prime}\right)$.
(31) and (32) imply

$$
\begin{equation*}
o_{t, z}\left(g_{0}^{*}\right) \geq\left(1-\frac{n}{l_{t}}\right)^{r_{t}} \tag{33}
\end{equation*}
$$

Using (8) and (29)-(33) we obtain

$$
\begin{aligned}
& \int_{X} \widetilde{\gamma}\left(\varphi_{s}^{\left(a_{t} p_{t}\right)}(x)\right) \mu(d x)=\sum_{z=0}^{2^{s}-1} \omega_{z}\left[\frac{1}{\gamma} \sum \widehat{v}^{p}(\widetilde{\gamma})\left(g_{z}^{*}\right)\right]+\varrho_{t}+\varrho_{t}^{\prime} \\
& \varrho_{t} \rightarrow 0, \varrho_{t}^{\prime} \leq 1-\left(1-\frac{n}{l_{t}}\right)^{r_{t}} \xrightarrow{t} 0 .
\end{aligned}
$$

Now, if $t \in N\left(\gamma, \gamma^{\prime}\right)$ then (18), (19) and (21)-(23) imply

$$
\begin{aligned}
& \lim _{t \rightarrow \infty}\left[\int_{X} \gamma\left(\varphi_{s}^{\left(a_{t} p_{t}\right)}(x)\right) \mu(d x)-\int_{X} \gamma^{\prime}\left(\varphi_{s}^{\left(a_{t} p_{t}\right)}(x)\right) \mu(d x)\right] \\
&=c\left(\gamma, \gamma^{\prime}\right)\left[A_{\gamma}(g)-A_{\gamma^{\prime}}(g)\right]+b
\end{aligned}
$$

and

$$
|b| \leq 2\left(1-c\left(\gamma, \gamma^{\prime}\right)\right)<\frac{1}{2} c\left|A_{\gamma}(g)-A_{\gamma^{\prime}}(g)\right| .
$$

In this way

$$
\lim _{\substack{t \in N\left(\gamma, \gamma^{\prime}\right) \\ t \rightarrow \infty}}\left[\int_{X} \gamma\left(\varphi_{s}^{\left(a_{t} p_{t}\right)}(x)\right) \mu(d x)-\int_{X} \gamma^{\prime}\left(\varphi_{s}^{\left(a_{t} p_{t}\right)}(x)\right) \mu(d x)\right] \neq 0
$$

We have shown $\mu_{\gamma^{\prime}} \perp \mu_{\gamma}$ by Proposition 2. It follows from (5) and from the simplicity of $U_{T_{\varphi}}$ on $L_{\gamma}, \gamma \in \widehat{G}$, that

$$
m\left(T_{\varphi}\right)=\max \{\text { lengths of } \widehat{v} \text {-trajectories of } \widehat{G}\}=r
$$

Proposition 5. $r\left(T_{\varphi}\right)=\infty$.
Proof. We have $r\left(T_{\varphi}\right)=\lim _{s \rightarrow \infty} r\left(T_{\varphi_{s}}\right)$. The blocks $b_{s}^{(t)}, t=0,1, \ldots$, defining the M-cocycle φ_{s} over G_{s} have a similar structure to those investigated in [KwLa1]. Repeating the same reasoning as in [KwLa1] we get $r\left(T_{\varphi_{s}}\right)=r_{s}$. In this manner $r\left(T_{\varphi}\right)=\lim _{s} r_{s}=\infty$.
5. Example 2. In this part we construct an M-cocycle φ such that T_{φ} has the properties announced in the second part of the abstract.

To do this choose a prime number $p>r$, set $G_{t}=\mathbb{Z}_{p^{t+1}}, t \geq 0$, and denote by $\pi_{t}: G_{t+1} \rightarrow G_{t}$ the natural homomorphisms. Next, let $\tau_{t}: G_{t} \rightarrow$ G_{t+1} be defined by $\tau_{t}(g)=g, g=0,1, \ldots, p^{t+1}-1$. The groups G_{t}, the homomorphisms π_{t} and the mappings τ_{t} satisfy the conditions described in 3.2. Take a probability vector $\langle\omega(i)\rangle, i=1, \ldots, r$, with $\omega(i)>0$. Select positive integers $\lambda_{t}^{(1)}, \ldots, \lambda_{t}^{(r)}$ such that

$$
\begin{gather*}
\lambda_{t}^{(i)}=l_{t}^{(i)} p^{t}, \quad l_{t}^{(i)} \nearrow_{t} \infty \tag{34}\\
\omega_{t}(i)=\lambda_{t}^{(i)} / \lambda_{t} \xrightarrow{t} \omega(i), \quad i=1, \ldots, r, \lambda_{t}=\lambda_{t}^{(1)}+\ldots+\lambda_{t}^{(r)} \tag{35}
\end{gather*}
$$

Set

$$
\beta_{i}^{(t)}=\beta_{i}=0(i)(2 i) \ldots((l-1) i), \quad l=\lambda_{t}^{(i)}
$$

and

$$
b^{(t)}=\beta_{1}^{(t)} \beta_{2}^{(t)} \ldots \beta_{r}^{(t)}
$$

The sequence $\left\{b^{(t)}\right\}$ of blocks determines an M-cocycle φ over the group $G=\lim \left(G_{t}, \pi_{t}\right)$ (G is the group of p-adic integers) and M-cocycles φ_{s} over G_{s} according to the definitions in 3.2.

Proposition 6. There exists a probability vector $\langle\omega(i)\rangle, i=1, \ldots, r$, with $\omega(1)>1 / r, 0<\omega(i)<\omega(1), i=2, \ldots, r$, such that $r\left(T_{\varphi}\right)=r$, $F^{*}\left(T_{\varphi}\right)=\omega(1), \# C\left(T_{\varphi}\right) / \operatorname{wcl}\left\{T_{\varphi}^{n}: n \in \mathbb{Z}\right\}=\infty$ and T_{φ} has simple spectrum.

Proof. It is proved in [FiKw] that for every $s \geq 0, T_{\varphi_{s}}$ is ergodic and $r\left(T_{\varphi_{s}}\right)=r, F^{*}\left(T_{\varphi_{s}}\right)=\max (\omega(1), \ldots, \omega(r))=\omega(1)$. Then $r\left(T_{\varphi}\right)=$
$\lim _{s} r\left(T_{\varphi_{s}}\right)$ and $F^{*}\left(T_{\varphi}\right)=\lim _{s} F^{*}\left(T_{\varphi_{s}}\right)=\omega(1)$. To prove the next properties of T_{φ} let us remark that the set $\bigcup_{s=0}^{\infty} \bar{H}_{s}$ from 3.2 coincides with the set of all rational p-adic integers. For $g \in G$ let $\sigma_{g}: X \times G \rightarrow X \times G$ be defined by $\sigma_{g}(x, h)=(x, g+h), h \in G$. By this formula G acts as a group of measure-preserving transformations in $X \times G$. Moreover, $\sigma_{g} \in C\left(T_{\varphi}\right)$.

Consider $\sigma_{g}, g \in G_{s} \simeq \bar{H}_{s}, s \geq 0$. We show that $\sigma_{g} \notin \operatorname{wcl}\left\{T_{\varphi}^{n}: n \in \mathbb{Z}\right\}$. Assume that $\left(T_{\varphi}\right)^{u_{t}} \rightarrow \sigma_{g}$ in $C\left(T_{\varphi}\right)$. Then $\left(T_{\varphi}\right)^{u_{t}} \xrightarrow{t} \sigma_{g}$ for every $s \geq 0$, which implies

$$
\begin{equation*}
\mu\left\{x \in X: \varphi_{s}^{\left(u_{t}\right)}(x) \neq g\right\}=\varepsilon_{t, s} \xrightarrow{t} 0 . \tag{36}
\end{equation*}
$$

Fix $s \geq 0$. Choose $\tau(t)=\tau$ such that $u_{t} / p_{\tau}<\varepsilon_{t, s} / 2$. It follows from (3) that

$$
\varphi_{s}^{\left(u_{t}\right)}(x)=B_{\tau}\left[i+u_{t}\right]-B_{\tau}[i]
$$

if $x \in D_{i}^{\tau}, i=0,1, \ldots, p_{\tau}-u_{t}-1$. Then (36) implies

$$
\frac{1}{p_{\tau}}\left\{0 \leq i \leq p_{\tau}-u_{t}-1: B_{\tau}\left[i+u_{t}\right]-B_{\tau}[i]=g\right\} \geq 1-\varepsilon_{t, s}
$$

On the other hand, from $[\mathrm{FiKw}]$ we can deduce that

$$
\frac{1}{p_{\tau}}\left\{0 \leq i \leq p_{\tau}-u-1: B_{\tau}[i+u]-B_{\tau}[i] \neq g\right\} \geq \varrho>0
$$

whenever $g \neq 0$ and $0 \leq u<p_{\tau} / 2$.
In this way $\sigma_{g} \notin \operatorname{wcl}\left\{T_{\varphi}^{n}: n \in \mathbb{Z}\right\}$ for every $g \in \bigcup_{s=0}^{\infty} G_{s}$. To finish the proof it remains to select a probability vector $\langle\omega(i)\rangle, i=1, \ldots, r$, for T_{φ} to have simple spectrum. It follows from $[\mathrm{KwSi}]$ that if the numbers $\omega(i)$ satisfy the condition

$$
\begin{equation*}
\sum_{i=1}^{r}\left[\gamma(i)-\gamma^{\prime}(i)\right] \omega(i) \neq 0 \tag{37}
\end{equation*}
$$

whenever $\gamma \neq \gamma^{\prime}, \gamma, \gamma^{\prime} \in \widehat{G}_{s}$ then $T_{\varphi_{s}}$ has simple spectrum.
Fix $\omega(1)$ with $1 / r<\omega(1)<1$. If $r=2$ then $F^{*}\left(T_{\varphi}\right)>1 / 2$ and it is known [Fe2] that T_{φ} has simple spectrum.

Let $r \geq 3$. Consider the set

$$
\Delta=\left\{(\omega(2), \ldots, \omega(r)) \in \mathbb{R}^{r-2}: 0 \leq \omega(i) \leq \omega(1), \sum_{i=2}^{r} \omega(i)=1-\omega(1)\right\}
$$

For distinct $\gamma, \gamma^{\prime} \in \widehat{G}=\bigcup_{s=0}^{\infty} \widehat{G}_{s}$ we have an $(r-3)$-dimensional plane $D\left(\gamma, \gamma^{\prime}\right)$ in \mathbb{R}^{r-2} described by

$$
D\left(\gamma, \gamma^{\prime}\right)=\left\{(\omega(2), \ldots, \omega(r)): \sum_{i=2}^{r}\left[\gamma(i)-\gamma^{\prime}(i)\right] \omega(i)=\left[\gamma^{\prime}(1)-\gamma(1)\right] \omega(1)\right\} .
$$

The set $\Delta_{0}=\bigcup_{\gamma \neq \gamma^{\prime}} D\left(\gamma, \gamma^{\prime}\right)$ has Lebesgue measure 0 (in \mathbb{R}^{r-2}) so that we can find $\langle\omega(i)\rangle \in \Delta-\Delta_{0}, i=2, \ldots, r$. Then the condition (37) is satisfied and $T_{\varphi_{s}}$ has simple spectrum for $s \geq 0$. But $m\left(T_{\varphi}\right)=\sup _{s} m\left(T_{\varphi_{s}}\right)=1$.

The proposition is proved.

References

[Ch] R. V. Chacon, A geometric construction of measure preserving transformations, in: Proc. Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. II, Part 2, Univ. of California Press, 1965, 335-360.
[Fe1] S. Ferenczi, Systèmes localement de rang un, Ann. Inst. H. Poincaré Probab. Statist. 20 (1984), 35-51.
[Fe2] -, Systems of finite rank, Colloq. Math. 73 (1997), 35-65.
[FeKw] S. Ferenczi and J. Kwiatkowski, Rank and spectral multiplicity, Studia Math. 102 (1992), 121-144.
[FeKwMa] S. Ferenczi, J. Kwiatkowski and C. Mauduit, A density theorem for (multiplicity, rank) pairs, J. Anal. Math. 65 (1995), 45-75.
[FiKw] I. Filipowicz and J. Kwiatkowski, Rank, covering number and simple spectrum, ibid. 66 (1995), 185-215.
[GoKwLeLi] G. R. Goodson, J. Kwiatkowski, M. Lemańczyk and P. Liardet, On the multiplicity function of ergodic group extensions of rotations, Studia Math. 102 (1992), 157-174.
[GoLe] G. R. Goodson and M. Lemańczyk, On the rank of a class of bijective substitutions, ibid. 96 (1990), 219-230.
[dJ] A. del Junco, A transformation with simple spectrum which is not rank one, Canad. J. Math. 29 (1977), 655-663.
[Kin] J. King, The commutant is the weak closure of the powers, for rank 1 transformations, Ergodic Theory Dynam. Systems 6 (1986), 363-385.
[KwLa1] J. Kwiatkowski and Y. Lacroix, Multiplicity rank pairs, J. Anal. Math., to appear.
[KwLa2] -, 一, Finite rank transformations and weak closure theorem, preprint.
[KwRo] J. Kwiatkowski and T. Rojek, A method of solving a cocycle functional equation and applications, Studia Math. 99 (1991), 69-86.
[KwSi] J. Kwiatkowski and A. Sikorski, Spectral properties of G-symbolic Morse shifts, Bull. Soc. Math. France 115 (1987), 19-33.
[M1] M. Mentzen, Some examples of automorphisms with rank r and simple spectrum, Bull. Polish Acad. Sci. Math. 35 (1987), 417-424.
[M2] —, thesis, preprint no. 2/89, Nicholas Copernicus University, Toruń, 1989.
[Pa] W. Parry, Compact abelian group extensions of discrete dynamical systems, Z. Wahrsch. Verw. Gebiete 13 (1969), 95-113.
[R1] E. A. Robinson, Ergodic measure preserving transformations with arbitrary finite spectral multiplicities, Invent. Math. 72 (1983), 299-314.
[R2] —, Mixing and spectral multiplicity, Ergodic Theory Dynam. Systems 5 (1985), 617-624.
[dlR] T. de la Rue, Rang des systèmes dynamiques Gaussiens, preprint, Rouen, 1996.

Mathematics and Informatics Faculty
Nicholas Copernicus University
Chopina 12/18
87-100 Toruń, Poland
E-mail: jkwiat@mat.uni.torun.pl

Received 21 April 1997;
in revised form 6 March 1998

[^0]: 1991 Mathematics Subject Classification: Primary 28D05, 54H20.
 Key words and phrases: multiplicity, rank, compact group extension, Morse cocycle.

