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Inverse limit of M-cocycles and applications

by

Jan K w i a t k o w s k i (Toruń)

Abstract. For any m, 2 ≤ m <∞, we construct an ergodic dynamical system having
spectral multiplicity m and infinite rank. Given r > 1, 0 < b < 1 such that rb > 1
we construct a dynamical system (X,B, µ, T ) with simple spectrum such that r(T ) = r,
F ∗(T ) = b, and #C(T )/wcl{Tn : n ∈ Z} =∞.

1. Introduction. It was conjectured in [M1] that for any pair (m, r)
of integers or ∞, with m ≤ r, there exists an ergodic dynamical system
(X,µ, T ) with rank r(T ) = r and spectral multiplicity m(T ) = m. Partial
solutions of this question were obtained by several authors: [Ch] (the pair
(1, 1)), [dJ] (1, 2), [M1] (1, r), [GoLe] (2, r), [R1,2] (r, r), [M2] (r, 2r), [FeKw]
(p− 1, p), p prime, and [Fe1] (1,∞), [FeKwMa] (given m, the set of r such
that m(T ) = m and r(T ) = r has density 1). The latest result of this series
[KwLa1] says that for any pair (m, r) with 2 ≤ m ≤ r < ∞ there is an
ergodic automorphism T with r(T ) = r and m(T ) = m. Thus, together
with [M1], every finite pair (m, r) with m ≤ r is obtainable.

The solution of the (multiplicity, rank) problem will be complete if for
any finite m ≥ 1 and r =∞ we can find an ergodic automorphism realizing
(m,∞). The pair (1,∞) is realized by the Gaussian–Kronecker system [dlR].
In this note we construct an ergodic automorphism realizing the pairs (m,∞)
for every m ≥ 2.

We denote by C(T ) the set of all measure-preserving automorphisms of
(X,B, µ) wich commute with T . We say that a sequence {Sn} ⊂ C(T ) tends
weakly to S ∈ C(T ) if for every A ∈ B,

µ(SnA4 SA)→ 0.

With this topology, C(T ) is a Polish group. We denote by wcl{Tn : n ∈
Z} the weak closure of the set {Tn : n ∈ Z}. The weak closure theorem
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[Kin] says that C(T ) = wcl{Tn : n ∈ Z} if r(T ) = 1. It turns out that
it is the only relation between rank and the cardinality of the quotient
group C(T )/wcl{Tn : n ∈ Z} in the class of ergodic dynamical systems. In
[KwLa2] examples of ergodic automorphisms T are constructed such that
r(T ) = r ≥ 2 and #C(T )/wcl{Tn : n ∈ Z} = m ≥ 1, where r, m are given.
We construct an example of an ergodic automorphism T such that T has
simple spectrum, r(T ) = r, F ∗(T ) = b and #C(T )/wcl{Tn : n ∈ Z} = ∞,
where r, b are given and r ≥ 2, 0 < b < 1, br > 1.

In [KwLa1] we used Morse automorphisms over finite abelian groups.
Now, we use the class of inverse limits of Morse automorphisms over com-
pact metric abelian groups. There are positive aspects of examining such
dynamical systems. Any Morse automorphism is a group extension Tϕ of an
adding machine (X,T ) defined by a special cocycle ϕ : X → G, where G is
a compact abelian group (the details follow).

The cocycle ϕ is determined by a sequence {bt}, t ≥ 0, of blocks over G.
Each group homomorphism π : G → H defines a natural factor Tψ, where
ψ = π ◦ ϕ. The cocycle ψ is determined by the sequence {π(bt)}, t ≥ 0, of
blocks over H. Now, let G = lim←−(Gt, πt) be the inverse limit of finite groups
Gt with homomorphisms πt : Gt+1 → Gt, πt(Gt+1) = Gt, t ≥ 0.

Assume that {bs}∞s=0 is a sequence of blocks over Gs and that there are
mappings τs : Gs → Gs+1 such that πs ◦ τs = id, s ≥ 0. This allows us
to define an inverse limit Tϕ of Morse automorphisms over Gs (see 3.2 and
Sections 4 and 5). The spectral multiplicity m(Tϕ) and the rank r(Tϕ) of Tϕ
are the limits of m(Tϕs) and r(Tϕs). In Section 4 we construct an example of
a Morse automorphism Tϕ such that m(Tϕs) is constant while r(Tϕs)→∞.
To compute m(Tϕs) and r(Tϕs) we use the same methods as in [GoKwLeLi]
and in [KwLa1].

Similarly to [KwLa1] the automorphisms we construct here can be ob-
tained within the class of weakly mixing transformations.

2. Preliminaries. Let (X,B, µ, T ) be an ergodic dynamical system. We
can look at the associated spectral operator UT : L2

0(X,µ)→ L2
0(X,µ), UT f

= f◦T, f ∈ L2
0(X,µ), where L2

0(X,µ) consists of those functions of L2(X,µ)
such that

T
X
f dµ = 0. By the spectral multiplicity m(T ) of T we mean the

supremum of all essential spectral multiplicities of T on L2
0(X,µ). We refer

the reader to [Fe2] for the definition of the rank r(T ) and the covering
number F ∗(T ) of T and for more information on those notions.

Now let T : (X,B, µ) → (X,B, µ) be the (pt)-adic adding machine, i.e.
pt | pt+1, λt+1 = pt+1/pt ≥ 2 for t ≥ 0, p0 = λ0 ≥ 2,

X =
{
x =

∞∑
t=0

qtpt−1 : 0 ≤ qt ≤ λt − 1, p−1 = 1
}
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is the group of (pt)-adic integers and Tx = x+1̂, 1̂ = (1, 0, 0, . . .). The space
X has a standard sequence (ξt) of T -towers. Namely

ξt = (Dt
0, D

t
1, . . . , D

t
pt−1),

where Dt
0 = {x ∈ X : q0 = . . . = qt = 0}, Dt

j = T j(Dt
0), j = 0, . . . , pt − 1,

X =
⋃pt−1
j=0 Dt.

The tower ξt+1 refines ξt and the sequence (ξt) of partitions converges
to the point partition. Let G be an abelian compact metric group and let
mG be normalized Haar measure of G. A cocycle is a measurable function
ϕ : X → G. A cocycle ϕ defines an automorphism Tϕ on (X×G, B̃, µ×mG),

Tϕ(x, y) = (Tx, g + ϕ(x)), x ∈ X, g ∈ G,
where B̃ is the product of the σ-algebra B and the σ-algebra of borelian
subsets of G.

Then Tnϕ (x, y) = (Tnx, g + ϕ(n)(x)), n = 0,±1, . . . , where

(1) ϕ(n)(x) =




ϕ(x) + ϕ(Tx) + . . .+ ϕ(Tn−1x), n ≥ 1,
0, n = 0,
−ϕ(T−1x)− . . .− ϕ(Tnx), n ≤ −1.

The dynamical system (X×G, B̃, µ×mG, Tϕ) is called a group extension of
(X,B, µ, T ).

Tϕ is ergodic iff for every non-trivial γ ∈ Ĝ (Ĝ is the dual group), there
is no measurable solution f : X → S1 (the unit complex circle) to the
functional equation

(2) γ(ϕ(x)) =
f(Tx)
f(x)

, x ∈ X [Pa].

We say that ϕ : X → G is an M -cocycle if for every t ≥ 1, ϕ is constant
on each level Dt

i , i = 0, . . . , pt−2 (except on the top Dt
pt−1). Such a cocycle

is defined by a sequence a blocks b(0), b(1), . . . over G. By a block B over G
we mean a finite sequence

B = B[0] . . . B[k − 1],

where k ≥ 1 and B[i] ∈ G, i = 0, . . . , k − 1. The number k is called the
length of B and denoted by |B|. If C = C[0] . . . C[m − 1] is another block
then the concatenation of B and C is the block

BC = B[0] . . . B[k − 1]C[0] . . . C[m− 1].

We can concatenate more than two blocks in the obvious way. If v : G→ G
is a continuous group automorphism then we let v(B) be the block

v(B) = v(B[0]) . . . v(B[k − 1]).
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We denote by B(g), g ∈ G, the block

B(g) = (B[0] + g) . . . (B[k − 1] + g)

and by B̌ the block B̌ = (B[1]−B[0]) . . . (B[k− 1]−B[k− 2]), k ≥ 2. Now,
we can define the product B × C of B and C as follows:

B × C = B([C[0]) . . . B(C[m− 1]).

Clearly,

|B × C| = |B||C| and v(B × C) = v(B)× v(C).

This multiplication operation “×” is associative so it can be extended to
more than two blocks. If |B| = |C| = k then we define

d(B,C) = k−1#{0 ≤ i ≤ k − 1 : B[i] 6= C[i]}.
Now we describe Morse sequences (M -sequences). Let b(0), b(1), . . . be

finite blocks over G with |b(t)| = λt, b
(t)[0] = 0, t ≥ 0. Then we define a

one-sided sequence over G by

ω = b(0) × b(1) × . . .
Such a sequence ω allows one to define an M -cocycle ϕ = ϕω on X as
follows: let

Bt = b(0) × . . .× b(t), t ≥ 0.
Then |Bt| = pt and |B̌t| = pt − 1. We finally put

ϕ(x) = B̌t[j] if x ∈ Dt
j , j = 0, . . . , pt − 2.

Clearly, ϕ is an M -cocycle. It is easy to observe that each M -cocycle can
be obtained as described above. As a consequence of the definition of ϕ and
(1) we get

(3) ϕ(n)(x) = Bt[j + n]−Bt[j]
if x ∈ Dt

j and j = 0, . . . , pt−n−1. If we examine ϕ(kpt)(x), 1 ≤ k ≤ λt+1−1,
on the tower ξt+1 then (3) implies

(4) ϕ(kpt)(x) = b(t+1)[q + k]− b(t+1)[q]

if x ∈ D(t+1)
qpt+j , 0 ≤ q ≤ λt+1 − k − 1, j = 0, . . . , pt − 1.

3. Spectral analysis of M-cocycles and their inverse limit

3.1. Spectral calculations. It is known that

(5) L2(X ×G,µ×mG) =
⊕

γ∈Ĝ
Lγ ,

where
Lγ = {f ⊗ γ ∈ L2(X ×G,µ×mG) : f ∈ L2(X,µ)}.
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Moreover, the subspaces Lγ are UTϕ -invariant and using the same arguments
as in [KwSi] we see that UTϕ on Lγ has simple spectrum.

Let µγ be the spectral measure of UTϕ on Lγ . The subspace Le (e is
the trivial character) is generated by the eigenfunctions of Tϕ (in fact of
T ) corresponding to all pt-roots of unity. An M -cocycle ϕ = ϕω is called
continuous if Le contains all eigenfunctions of Tϕ, or equivalently if each
measure µγ , γ 6= e, is continuous. We shall use the following criteria to
find whether two measures µγ , µγ′ , γ, γ′ ∈ Ĝ, γ 6= γ′, are orthogonal or
equivalent.

Proposition 1 ([KwRo], [FeKw], [GoKwLeLi]). If v : G→ G is a group
automorphism and blocks b(0), b(1), . . . satisfy

(a)
∞∑
t=0

d(b(t)[kt, λt − 1], v(b(t))[0, λt − kt − 1]) <∞

for a sequence (kt)∞t=0, 0 ≤ kt < λt, for which

(b)
∞∑
t=0

kt
λt

<∞,

then µγ ' µv̂(γ) for all γ in Ĝ, where v̂ is the dual automorphism.

Proposition 2 [GoKwLeLi]. If for given γ, γ′ ∈ Ĝ,

(6) limt∈N
T
X
γ(ϕ(atpt)(x))µ(dx) and limt∈N

T
X
γ′(ϕ(atpt)(x))µ(dx) exist

along a subsequence N and are different

then µγ ⊥ µγ′ whenever
∑∞
t=1 at/λt+1 < ∞ (note that T atpt → Id in the

weak topology).

Let H0 be a subgroup of G and H = G/H0 be the quotient group. Let
π : G → H be the quotient map and let mH be Haar measure on H. We
can define a map P = IdX×π of the dynamical system (X ×G,Tϕ, µ×mG)
onto (X × H,Tϕ,H , µ ×mH), where ϕH(x) = π(ϕ(x)). The systems (X ×
H,Tϕ,H , µ ×mH) are called the natural factors of (X ×G,Tϕ, µ ×mG). If
B is a block over G then π(B) denotes the block over H defined by

π(B) = π(B[0]) . . . π(B[k − 1]), k = |B|.
Using the obvious equality π(B × C) = π(B) × π(C), it is not hard to see
that if ϕ is the M -cocycle defined by the sequence of blocks b(0), b(1), . . . over
G then ϕH is the M -cocycle determined by the blocks π(b(0)), π(b(1)), . . .

It is known that Ĥ can be identified with a subgroup of Ĝ, namely with
the subgroup of those γ ∈ Ĝ such that γ(H0) = 1. Let

Lγ,H = {f ⊗ γ ∈ L2(X ×H,µ×mH) : f ∈ L2(X,µ)}, γ ∈ Ĥ.
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Then

(7) L2(X ×H,µ×mH) =
⊕

γ∈Ĥ
Lγ,H

and the unitary operator UTϕ,H on Lγ,H is spectrally isomorphic to the
unitary operator UTϕ on Lγ . Thus UTϕ,H has simple spectrum on Lγ,H and
its spectral measure is µγ .

3.2. Inverse limit of M -cocycles. Let (X,B, µ, T ) and (Xs,Bs, µs, Ts),
s = 0, 1, . . . , be dynamical systems. We say that (X,B, µ, T ) is an inverse
limit of (Xs,Bs, µs, Ts) if there exist homomorphisms Vs : (X,B, µ, T ) →
(Xs,Bs, µs, Ts) such that V −1

s (Bs) ⊂ V −1
s+1(Bs+1) and the σ-algebras

V −1
s (Bs) generate B. For each s ≥ 0 we have a homomorphism Ws : (Xs+1,
Bs+1, µs+1, Ts+1) → (Xs,Bs, µs, Ts) and Ws ◦ Vs+1 = Vs. We write T =
lim←−Ts. It follows from the definition of the spectral multiplicity, rank and
covering number that m(T ) = limm(Ts), r(T ) = lim r(Ts), F ∗(T ) =
limF ∗(Ts) and moreover m(Ts) ≤ m(Ts+1), r(Ts) ≤ r(Ts+1), F ∗(Ts) ≥
F ∗(Ts+1).

It is clear that T is ergodic (weakly mixing, mixing) iff so is Ts for every
s ≥ 0. Consider an ergodic dynamical system (X,B, µ, T ) and sequences
(Gs)∞s=0 of metric compact abelian groups and group homomorphisms πs :
Gs+1 → Gs with π(Gs+1) = Gs. The sequence (Gs, πs), s ≥ 0, defines the
inverse limit G = lim←−(Gs, πs) and the homomorphisms ψs : G → Gs such
that πs◦ψs+1 = ψs. Note that G is a metric compact abelian group. Assume
that ϕs : X → Gs are cocycles such that πs ◦ ϕs+1 = ϕs. The cocycles ϕs
define a unique cocycle ϕ : X → G satisfying ψs◦ϕ = ϕs. Then Tϕ = lim←−Tϕs .

Now, let (X,B, µ, T ) be a (pt)-adic adding machine, pt = λ0 . . . λt, t ≥ 0.
We describe special inverse limits of group extensions Tϕs determined by M -
cocycles. To do this assume additionally that we have one-to-one measurable
mappings τs : Gs → Gs+1 such that πs ◦ τs = id, s ≥ 0. Set Hs = τs(Gs).

Let Hs be the set of all sequences {gt}∞t=0 ∈ G such that gs is an ar-
bitrary element of Gs and gs+1 = τs(gs), gs+2 = τs+1τs(gs) and so on,
gs−1 = πs−1(gs), . . . , g0 = π0 ◦ . . . ◦ πs−1(gs). Given blocks b(t), t ≥ 0, over
Gt, we can treat them as blocks over G if we identify the members of b(t)

with the corresponding elements of Ht. The sequence (b(t))∞t=0 defines a co-
cycle ϕ : X → G. Let m and ms be normalized Haar measures of G and
Gs respectively. The dynamical system (X ×G,B, Tϕ, µ×mG) has natural
factors

(X ×Gs,Bs, Tϕs , µ×ms), s ≥ 0,

where ϕs = ψs ◦ ϕ and the mappings

Ws = IdX ×ψs : X ×G→ X ×Gs



Inverse limit of M-cocycles 267

are homomorphisms of those systems. Each cocycle ϕs is an M -cocycle
determined by the blocks (b(t)s )∞t=0, where b

(t)
s = ψs(b(t)) if t ≥ s and

b
(t)
s = τt ◦ . . . ◦ τs−1(b(t)) if t < s.

4. Example 1. In this section we describe an example of an M -cocycle
ϕ such that Tϕ has infinite rank and spectral multiplicity r ≥ 1.

4.1. Definition of the cocycle. Let rt = r2t, t ≥ 0, and n ≥ 2. Select a
sequence (lt)∞t=0 of positive integers such that n | lt, lt ↗∞ and

(8) (1− n/lt)rt → 1.

Let Zn = {0, 1, . . . , n− 1} ' Z/nZ, and

Gt =

rt︷ ︸︸ ︷
Zn ⊕ . . .⊕ Zn

be the direct product of rt copies of Zn’s, t = 0, 1, . . . For g ∈ Gt we write
g = (g0, g1, . . . , grt−1), gi ∈ Zn.

We let

e
(t)
i = ei = (0, . . . , 0︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0), i = 1, . . . , rt − 1.

Define homomorphisms πt : Gt+1 → Gt by πt(e
(t+1)
j ) = e

(t)
i , where j =

0, 1, . . . rt+1−1, i = 0, 1, . . . , rt−1 and i ≡ j (mod rt). We have the natural
mappings τt : Gt → Gt+1 defined by

τt

( rt−1∑

i=0

gie
(t)
i

)
=
rt−1∑

i=0

gie
(t+1)
i , g0, . . . , grt−1 = 0, 1, . . . , n− 1.

Then πt ◦ τt = id. Set
G = lim←−(Gt, πt).

As above let ψt : G→ Gt be continuous homomorphisms such that

πt ◦ ψt+1 = ψt.

Now, we are in a position to describe M -cocycles ϕt as in part 3.2. To
do this we define a sequence {b(t)}∞t=0 of blocks, each block b(t) over Gt. Put

(9) Fi = F
(t)
i = 0(ei)(2ei) . . . (l − 1)(ei),

i = 0, 1, . . . , rt − 1, l = lt, ei = e
(t)
i .

Then define a block β
(t)
u,k = βu,k, u = 0, 1, . . . , 2t − 1, k = 0, . . . , r − 1, as

follows:

(10) δu,k = Fur+k×Fur+(k⊕1)×. . .×Fur+(k⊕r−1) where a⊕b is a+b taken
mod r, a, b = 0, 1, . . . , r−1, and βu,k = δu,k×δu⊕1,k×. . .×δu⊕2t−1,k,
and now u⊕ ũ is u+ ũ taken mod 2t.
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Finally, define

(11) β(t)
u = βu = βu,0βu,1 . . . βu,r−1, u = 0, 1, . . . , 2t − 1

and

(12) b(t) =

qt,0︷ ︸︸ ︷
β0 . . . β0

qt,1︷ ︸︸ ︷
β1 . . . β1 . . .

qt,2t−1︷ ︸︸ ︷
β2t−1 . . . β2t−1

where qt,u are positive integers such that

(13)
∞∑
t=0

1
qt
<∞, qt = min(qt,0, qt,1, . . . , qt,2t−1).

Some additional conditions on qt,u’s will be specified later.
Obviously, F (t)

i , β
(t)
u,k, β

(t)
u , b(t) are blocks over Gt and we have

|Fi| = lt, |βu,k| = lrtt , |βu| = rlrtt , |b(t)| = rlrtt Qt

where

Qt =
2t−1∑
u=0

qt,u.

Let v = vt : Gt → Gt be the group automorphisms defined by

v(eur+k) = eur+(k⊕1),

u = 0, 1, . . . , 2t − 1, k = 0, 1, . . . , r − 1, eur+k = e
(t)
ur+k.

Then we have

(14) v(Fur+k) = Fur+(k⊕1), v(βu,k) = βu,k⊕1.

Now, let (X,B, µ, T ) be the (pt)-adic adding machine, where pt = λ0 . . .
. . . λt, λt = |b(t)| = rlrtt Qt, t ≥ 0. The sequence {b(t)}∞t=0 determines the
sequences of blocks {b(t)s }∞t=0, s ≥ 0, and in consequence M -cocycles ϕ :
X → G and ϕs : X → Gs described in part 3.2.

We have a sequence of dynamical systems

(15) (X ×G0, Tϕ0) W0←− (X ×G1, Tϕ1) W1←− (X ×G2, Tϕ2) W2←− . . .
determined by the homomorphisms πt, the mappings τt (in this case τt are
homomorphisms) and by the blocks (12).

4.2. Additional conditions. The blocks b(t)s , t, s ≥ 0, can be obtained
by a procedure similar to that for bt’s. If t ≤ s then b

(t)
s = b(t) (with e

(s)
i

instead of e(t)
i , i = 0, . . . , rt − 1). If t > s, we define the blocks F (t)

i,s by (9)
for i = 0, 1, . . . , rs − 1 and l = lt. We have

(16) πs ◦ . . . ◦ πt−1(F (t)
j ) = F

(t)
i,s , |F (t)

i,s | = lt

for j = 0, 1, . . . , rt − 1, i = 0, 1, . . . , rs − 1 and j ≡ i (mod rs).
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Then we define β(t,s)
u,k , β

(t,s)
u , u = 0, 1, . . . , 2s − 1, k = 0, 1, . . . , r − 1, by

(10) and (11) using the blocks F (t)
ur+k,s. Let

(17) δa =

qt,a2s︷ ︸︸ ︷
β0 . . . β0

qt,a2s+1︷ ︸︸ ︷
β1 . . . β1 . . .

qt,a2s+2s−1︷ ︸︸ ︷
β2s−1 . . . β2s−1

for a = 0, 1, . . . , 2t−s− 1, βu = β
(t,s)
u , u = 0, 1, . . . , 2s− 1. Then (16) implies

β
(t,s)
u = ψs(β

(t)
a2s+u) for u = 0, 1, . . . , 2s − 1 and a = 0, 1, . . . , 2t−s − 1.

Now, comparing the blocks (12) and (17) we get

b(t)s = δ0δ1 . . . δ2t−s−1.

To finish the definition of ϕ we must give conditions for the numbers
qt,u, u = 0, 1, . . . , 2t − 1, t ≥ 0. To do this consider the dual group Ĝ. We
have Ĝ =

⋃∞
s=0 Ĝs. The group automorphisms vs : Gs → Gs satisfy vs◦πs =

πs ◦ vs+1 and they determine a continuous group automorphism v : G→ G

such that vs ◦ψs = ψs ◦v. The dual group automorphism v̂ : Ĝ→ Ĝ satisfies
v̂(Ĝs) = Ĝs. It is not hard to see that every v̂-trajectory of Ĝ has length
≤ r and there are v̂-trajectories having length r. Consider all possible pairs
(γ, γ′), γ, γ′ ∈ Ĝ, such that γ, γ′ are from different v̂-trajectories. Divide
the set N = {0, 1, . . .} into disjoint infinite subsets N(γ, γ′). For every such
pair (γ, γ′) we choose s = s(γ, γ′) ≥ 0 such that γ, γ′ ∈ Ĝs. The functions

Aγ =
1
r

r−1∑
p=0

v̂ p(γ), Aγ′ =
1
r

r−1∑
p=0

v̂ p(γ′)

are orthogonal in L2(Gs,ms) so we can find g = g(γ, γ′) ∈ Gs such that

(18) Aγ(g) 6= Aγ′(g).

Choose c = c(γ, γ′) in such a way that

(19) 1
2 < c < 1 and 2(1− c) < 1

2c|Aγ(g)−Aγ′(g)|.
To find the numbers qt,u we need probability vectors ω(t,s) = ω = 〈ω(t,s)

z 〉
where s < t and z = 0, 1, . . . , 2s − 1, defined as follows:

(20) ωz =
2t−s−1∑
a=0

qt,z+a2s

Qt
, Qt =

2t−1∑
u=0

qt,u.

Take t ∈ N(γ, γ′) and t > s = s(γ, γ′). Choose qt,u, u = 0, 1, . . . , 2t − 1, in
such a way that

ω
(t,s)
0 ≥ c(γ, γ′),(21)

lim
t→∞

t∈N(γ,γ′)

ω
(t,s)
0 = c(γ, γ′),(22)
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ω(t,s)
z = ω

(t,s)
z′ for z, z′ = 1, . . . , 2s − 1.(23)

If t ∈ N(γ, γ′) and t ≤ s(γ, γ′) then we pick qt,u satisfying (23) for every
z, z′ = 0, 1, . . . , 2s − 1.

4.3. Propositions. In the sequel let Tϕ be the group extension of T defined
by the cocycle ϕ described in 4.1 and 4.2.

Proposition 3. Tϕ is ergodic and ϕ is continuous.

P r o o f. Take γ ∈ Ĝs and assume that

f(Tx)/f(x) = γ(ϕs(x))

for a.e. x ∈ X, where f : X → S1 is a measurable function (see (2)). Using
the same arguments as in [FeKwMa] we get

(24) γ(ϕ(pt)
s (x)) t→ 1

in measure. The definition of b(t)s , (4), (19) and (21)–(23) imply that ϕ(pt)
s (x)

is equal to e(s)
0 , . . . , e

(s)
rs−1 on a set Et ⊂ X with µ(Et)→ 1.

Moreover, if

Et,i = {x ∈ Et : ϕ(pt)(x) = e
(s)
i }, i = 0, 1, . . . , rs − 1,

then
µ(Et,i) ≥ 1

2c(γ, γ
′)

if t ∈ N(γ, γ′) and γ′ comes from a different v̂-trajectory than γ. It is obvious
that the last inequality and (24) imply γ = 1. Thus Tϕs is ergodic and then
Tϕ is ergodic because Tϕ = lim←−Tϕs .

To show the continuity of ϕ we must prove that the only eigenvalues of
Tϕ are pt-roots of unity. Let F (x, g) be an eigenfunction with eigenvalue λ.
We have

F (x, g) =
∑

γ∈Ĝ
fγ(x)γ(g),

where fγ ∈ L2(X,µ). Then fγ(Tx)γ(ϕ(x)) = λfγ(x) for all γ ∈ Ĝ and a.e.
x ∈ X. Using again the same arguments as in [FeKwMa] we get

(25) γ(ϕ(pt)(x))λ−pt → 1 in measure

for every γ ∈ Ĝ such that fγ 6= 0 in L2(X,µ). Then γ ∈ Ĝs for some s ≥ 0
so (25) can be rewritten as

γ(ϕ(pt)
s (x))λ−pt → 1.

Taking again γ′ as before and t → ∞, t ∈ N(γ, γ′) we find that γ(e(s)
i ) is

constant for i = 0, 1, . . . , rs−1. Thus γ = 1. This means that F (x, y) = f0(x)
and λ is an eigenvalue of T , i.e. λ is a pt-root of unity. We have proved the
continuity of γ.
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Proposition 4. m(Tϕ) = r.

P r o o f. Let µγ be the spectral measure defined in part 3.1, and γ ∈ Ĝ.
We will show that

µγ ' µv̂(γ),(26)

µγ ⊥ µγ′ whenever γ, γ′ are in different v̂-trajectories.(27)

It follows from (14) that every fragment

qt,u︷ ︸︸ ︷
βuβu . . . βu, u = 0, 1, . . . , 2t − 1, of

b(t) is of the form βu,0v(βu,0) . . . vr
′
(βu,0), r′ = rqt,u − 1. Thus

(28) d(b(t)[lrtt − 1, λt − 1], v(b(t))[0, λt − lrtt − 1]) ≤ 2t|βu,0|
|βu,0|rQt

(13)
≤ 1

qt
.

Choose s ≥ 0 such that γ ∈ Ĝs. The inequality (28) is valid for the blocks
b
(t)
s , because ψs ◦ v = vs ◦ ψs. Thus the sequence (b(t)s )∞t=0 satisfies the

conditions (a) and (b) of Proposition 1. In this manner (26) is proved.
Now we prove (27). Suppose γ, γ′ do not belong to the same v̂-trajectory.

Let γ, γ′ ∈ Ĝs and let g = g(γ, γ′) satisfy (18). Then

g = g0e
(s)
0 + . . .+ grs−1e

(s)
rs−1,

with g0, . . . , grs−1 = 0, 1, . . . , n− 1. Define

at = g0 + g1lt + . . .+ grs−1l
rs−1
t .

Then
at
lrtt
≤ nrsl

rs−1
t

lrtt
≤ nrs

lt

t→ 0

and
∞∑
t=0

at
λt
≤ nrs

∞∑
t=0

1
ltQt

<∞.

We now show that

lim
t∈N(γ,γ′)
t→∞

[ \
X

γ(ϕ(atpt)
s (x))µ(dx)−

\
X

γ′(ϕ(atpt)
s (x))µ(dx)

]
6= 0.

Repeating the same calculations as in [GoKwLeLi] and using (4) we get for
t > s,

(29)
\
X

γ̃(ϕ(atpt)
s (x))µ(dx)

=
∑

h∈Gt

{ 2t−1∑
u=0

qt,u
Qt

[
1
r

∑
v̂p(γ̃)(ψs(h))

]
ot,u(ψs(h))

}

︸ ︷︷ ︸
I1

+%t
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where

ot,u(h) =
1
lrtt

#{0 ≤ j ≤ lrtt − at − 1 : βu,0[j + at]− βu,0[j] = h},

γ̃ = γ or γ′, %t ≤ at
lrtt

+
2t

Qt

t→ 0, βu,0 = β
(t,s)
u,0 .

But ot,u(ψs(h)) = ot,ū(ψs(h)) if u ≡ u (mod 2s). Thus

I1 =
∑

g∈Gs

[
1
r

r−1∑
p=0

v̂p(γ̃)(g)
]{ 2s−1∑

z=0

ot,z(g)
[∑
u≡z

qt,u
Qt

]}
(30)

(20)
=
∑

g∈Gs

[
1
r

r−1∑
p=0

v̂p(γ̃)(g)
]{ 2s−1∑

z=0

ot,z(g)ωz
}
.

Take j = 0, 1, . . . , lrtt − 1. We can represent it as

j = j0 + j1lt + . . .+ jrt−1l
rt−1
t ,

where j0, j1, . . . , jrt−1 = 0, 1, . . . , lt − 1. Let

Kt = {0 ≤ j ≤ lrtt − 1 : 0 ≤ j0, j1, . . . , jrt−1 ≤ lt − n− 1}.
We have

(31)
#Kt

lrtt
≥
(

1− n

lt

)rt
.

If j ∈ Kt then it is easy to check that

βu,0[j + at]− βu,0[j] = g0e
(s)
zr + g1e

(s)
zr+1 + . . .+ grs−1e

(s)
zr+rs−1(32)

= g∗z , z = 0, 1, . . . , 2s − 1, u ≡ z (mod 2s).

In particular, g∗0 = g(γ, γ′).
(31) and (32) imply

(33) ot,z(g∗0) ≥
(

1− n

lt

)rt
.

Using (8) and (29)–(33) we obtain

\
X

γ̃(ϕ(atpt)
s (x))µ(dx) =

2s−1∑
z=0

ωz

[
1
γ

∑
v̂p(γ̃)(g∗z)

]
+ %t + %′t,

%t → 0, %′t ≤ 1−
(

1− n

lt

)rt
t→ 0.

Now, if t ∈ N(γ, γ′) then (18), (19) and (21)–(23) imply

lim
t→∞

[ \
X

γ(ϕ(atpt)
s (x))µ(dx)−

\
X

γ′(ϕ(atpt)
s (x))µ(dx)

]

= c(γ, γ′)[Aγ(g)−Aγ′(g)] + b,
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and
|b| ≤ 2(1− c(γ, γ′)) < 1

2c|Aγ(g)−Aγ′(g)|.
In this way

lim
t∈N(γ,γ′)
t→∞

[ \
X

γ(ϕ(atpt)
s (x))µ(dx)−

\
X

γ′(ϕ(atpt)
s (x))µ(dx)

]
6= 0.

We have shown µγ′ ⊥ µγ by Proposition 2. It follows from (5) and from the
simplicity of UTϕ on Lγ , γ ∈ Ĝ, that

m(Tϕ) = max{lengths of v̂-trajectories of Ĝ} = r.

Proposition 5. r(Tϕ) =∞.

P r o o f. We have r(Tϕ) = lims→∞ r(Tϕs). The blocks b(t)s , t = 0, 1, . . . ,
defining the M -cocycle ϕs over Gs have a similar structure to those inves-
tigated in [KwLa1]. Repeating the same reasoning as in [KwLa1] we get
r(Tϕs) = rs. In this manner r(Tϕ) = lims rs =∞.

5. Example 2. In this part we construct an M -cocycle ϕ such that Tϕ
has the properties announced in the second part of the abstract.

To do this choose a prime number p > r, set Gt = Zpt+1 , t ≥ 0, and
denote by πt : Gt+1 → Gt the natural homomorphisms. Next, let τt : Gt →
Gt+1 be defined by τt(g) = g, g = 0, 1, . . . , pt+1 − 1. The groups Gt, the
homomorphisms πt and the mappings τt satisfy the conditions described in
3.2. Take a probability vector 〈ω(i)〉, i = 1, . . . , r, with ω(i) > 0. Select
positive integers λ(1)

t , . . . , λ
(r)
t such that

λ
(i)
t = l

(i)
t pt, l

(i)
t ↗t ∞,(34)

ωt(i) = λ
(i)
t /λt

t→ ω(i), i = 1, . . . , r, λt = λ
(1)
t + . . .+ λ

(r)
t .(35)

Set
β

(t)
i = βi = 0(i)(2i) . . . ((l − 1)i), l = λ

(i)
t ,

and
b(t) = β

(t)
1 β

(t)
2 . . . β(t)

r .

The sequence {b(t)} of blocks determines an M -cocycle ϕ over the group
G = lim←−(Gt, πt) (G is the group of p-adic integers) and M -cocycles ϕs over
Gs according to the definitions in 3.2.

Proposition 6. There exists a probability vector 〈ω(i)〉, i = 1, . . . , r,
with ω(1) > 1/r, 0 < ω(i) < ω(1), i = 2, . . . , r, such that r(Tϕ) = r,
F ∗(Tϕ) = ω(1), #C(Tϕ)/wcl{Tnϕ : n ∈ Z} =∞ and Tϕ has simple spectrum.

P r o o f. It is proved in [FiKw] that for every s ≥ 0, Tϕs is ergodic
and r(Tϕs) = r, F ∗(Tϕs) = max(ω(1), . . . , ω(r)) = ω(1). Then r(Tϕ) =
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lims r(Tϕs) and F ∗(Tϕ) = lims F
∗(Tϕs) = ω(1). To prove the next properties

of Tϕ let us remark that the set
⋃∞
s=0Hs from 3.2 coincides with the set

of all rational p-adic integers. For g ∈ G let σg : X × G → X × G be
defined by σg(x, h) = (x, g + h), h ∈ G. By this formula G acts as a group
of measure-preserving transformations in X ×G. Moreover, σg ∈ C(Tϕ).

Consider σg, g ∈ Gs ' Hs, s ≥ 0. We show that σg 6∈ wcl{Tnϕ : n ∈ Z}.
Assume that (Tϕ)ut → σg in C(Tϕ). Then (Tϕ)ut t→ σg for every s ≥ 0,
which implies

(36) µ{x ∈ X : ϕ(ut)
s (x) 6= g} = εt,s

t→ 0.

Fix s ≥ 0. Choose τ(t) = τ such that ut/pτ < εt,s/2. It follows from (3)
that

ϕ(ut)
s (x) = Bτ [i+ ut]−Bτ [i]

if x ∈ Dτ
i , i = 0, 1, . . . , pτ − ut − 1. Then (36) implies

1
pτ
{0 ≤ i ≤ pτ − ut − 1 : Bτ [i+ ut]−Bτ [i] = g} ≥ 1− εt,s.

On the other hand, from [FiKw] we can deduce that

1
pτ
{0 ≤ i ≤ pτ − u− 1 : Bτ [i+ u]−Bτ [i] 6= g} ≥ % > 0

whenever g 6= 0 and 0 ≤ u < pτ/2.
In this way σg 6∈ wcl{Tnϕ : n ∈ Z} for every g ∈ ⋃∞s=0Gs. To finish the

proof it remains to select a probability vector 〈ω(i)〉, i = 1, . . . , r, for Tϕ
to have simple spectrum. It follows from [KwSi] that if the numbers ω(i)
satisfy the condition

(37)
r∑

i=1

[γ(i)− γ′(i)]ω(i) 6= 0

whenever γ 6= γ′, γ, γ′ ∈ Ĝs then Tϕs has simple spectrum.
Fix ω(1) with 1/r < ω(1) < 1. If r = 2 then F ∗(Tϕ) > 1/2 and it is

known [Fe2] that Tϕ has simple spectrum.
Let r ≥ 3. Consider the set

∆ =
{

(ω(2), . . . , ω(r)) ∈ Rr−2 : 0 ≤ ω(i) ≤ ω(1),
r∑

i=2

ω(i) = 1− ω(1)
}
.

For distinct γ, γ′ ∈ Ĝ =
⋃∞
s=0 Ĝs we have an (r − 3)-dimensional plane

D(γ, γ′) in Rr−2 described by

D(γ, γ′) =
{

(ω(2), . . . , ω(r)) :
r∑

i=2

[γ(i)− γ′(i)]ω(i) = [γ′(1)− γ(1)]ω(1)
}
.
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The set ∆0 =
⋃
γ 6=γ′ D(γ, γ′) has Lebesgue measure 0 (in Rr−2) so that we

can find 〈ω(i)〉 ∈ ∆ −∆0, i = 2, . . . , r. Then the condition (37) is satisfied
and Tϕs has simple spectrum for s ≥ 0. But m(Tϕ) = supsm(Tϕs) = 1.

The proposition is proved.
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[Pa] W. Parry, Compact abelian group extensions of discrete dynamical sys-

tems, Z. Wahrsch. Verw. Gebiete 13 (1969), 95–113.
[R1] E. A. Robinson, Ergodic measure preserving transformations with arbi-

trary finite spectral multiplicities, Invent. Math. 72 (1983), 299–314.
[R2] —, Mixing and spectral multiplicity, Ergodic Theory Dynam. Systems 5

(1985), 617–624.



276 J. Kwiatkowski
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