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Abstract. We study the centraliser of locally compact group extensions of ergodic
probability preserving transformations. New methods establishing ergodicity of group ex-
tensions are introduced, and new examples of squashable and non-coalescent group exten-
sions are constructed.

1. Introduction. Let T be an ergodic probability preserving transfor-
mation of the probability space (X,B,m). Let (G, T ) be a locally compact,
second countable, topological group (T = T (G) denotes the family of open
sets in the topological space G), and let ϕ : X → G be a measurable func-
tion.

The (left) skew product or G-extension Tϕ : X ×G→ X ×G is defined
by

Tϕ(x, y) = (Tx, ϕ(x)y).
The skew product preserves the measure µ = m × mG where mG is left
Haar measure on G. There is an ergodic skew product Tϕ : X×G→ X×G
iff the group G is amenable (see [G-S], references therein, and [Z]). In this
paper, we are mainly concerned with Abelian G. Recall that on any locally
compact, Abelian, second countable topological group G, there is defined
a norm ‖ · ‖G (satisfying ‖x‖ = ‖−x‖ ≥ 0 with equality iff x = 0, and
‖x+ y‖ ≤ ‖x‖+ ‖y‖) which generates the topology of G.

Recall that a measurable function f : X → G is called a T -coboundary
if f = (h ◦ T )−1h for some measurable function h : X → G and that
measurable functions f, g : X → G are said to be T -cohomologous, written
f
T∼ g, if there is h : X → G measurable such that f = (h ◦ T )−1gh. In case

G is Abelian, f T∼ g iff f − g is a T -coboundary.
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The centraliser. Recall that the centraliser of a non-singular transforma-
tion R : X → X is the collection of commutors of R, that is, non-singular
transformations of X which commute with R. The collection of invertible
commutors (the invertible centraliser) is denoted by C(R).

We study those commutors Q of Tϕ of the form

(∗) Q(x, y) = (Sx, f(x)w(y))

where w : G → G is a surjective, continuous group endomorphism, S is a
commutor of T , and f : X → G is measurable.

It is evident that Q of the form (∗) satisfies Tϕ ◦Q = Q ◦ Tϕ iff for a.e.
x ∈ X,

S ◦ T (x) = T ◦ S(x), ϕ(Sx)f(x) = f(Tx)w(ϕ(x)).

It is shown in Proposition 1.1 of [A-L-M-N] that if T is a Kronecker trans-
formation, and Tϕ is ergodic, then every commutor of Tϕ is of the form (∗).

Let End(G) denote the collection of surjective, continuous group endo-
morphisms of G (a semigroup under composition) and let

Eϕ = {w ∈ End(G) :

there is a commutor Q of Tϕ of the form (∗) with w = wQ},
a sub-semigroup of End(G). Evidently

Eϕ = {w ∈ End(G) : there is a commutor S of T with ϕ ◦ S T∼ w ◦ ϕ}.
The study of Eϕ yields counterexamples:

• if Eϕ contains non-invertible endomorphisms, then Tϕ is not coalescent,
i.e. its centraliser contains some non-invertible transformation (see [H-P]);
and
• if Eϕ contains endomorphisms which do not preserve mG (a possibility

only for non-compact G), then Tϕ is squashable, i.e. its centraliser contains
some non-singular transformation which is not measure preserving (see [A1]
and below). Counterexamples like these (and others) will be discussed below.

Semigroup homomorphisms. Let Lϕ denote the collection of those com-
mutors S of T for which there is a commutor Q of Tϕ of the form (∗) with
S = SQ. As can be easily seen,

Lϕ = {S a commutor of T : there is w ∈ End(G) with ϕ ◦ S T∼ w ◦ ϕ}.
When G is Abelian and Tϕ is ergodic, there is a surjective semigroup

homomorphism πϕ : Lϕ → Eϕ such that if S ∈ Lϕ, and Q is a commutor of
Tϕ of the form (∗) with S = SQ, then wQ = πϕ(S). This result (called the
semigroup embedding lemma) is proved at the end of this introduction.

It implies that Eϕ is Abelian whenever the commutors of T form an
Abelian semigroup, for instance when T is a Kronecker transformation.
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It is shown in [A-L-V] that the restriction of πϕ to Lϕ(T ) = {SQ : Q ∈
C(Tϕ) of the form (∗)} is continuous with respect to the relevant Polish
topologies (cf. [G-L-S] for the case where G is compact).

The question arises when a homomorphism π from a sub-semigroup S of
commutors of T into End(G) occurs in this manner. That is, when does there
exist a measurable function ϕ : X → G such that Tϕ is ergodic, S ⊂ Lϕ,
and π = πϕ|S?

In [L-L-T] it is shown that for an invertible, ergodic probability preserv-
ing transformation T with some invertible commutor S so that {SmTn :
m,n ∈ Z} acts freely, and G = T, there is ϕ : X → T such that S ∈ Lϕ,
Eϕ 3 [x 7→ 2x mod 1], and indeed, πϕ(S) = [x 7→ 2x mod 1]. This includes
the first example of a non-coalescent Anzai skew product (i.e. T-extension
of a rotation of T).

The main results. We generalise this to all Abelian, locally compact,
second countable G:

Theorem 1. Suppose that T is an ergodic probability preserving trans-
formation, d ≤ ∞, and S1, . . . , Sd ∈ C(T ) (d ≤ ∞) are such that (T, S1, . . . ,
Sd) generate a free Zd+1 action of probability preserving transformations
of X. If w1, . . . , wd ∈ End(G) commute (i.e. wi ◦ wj = wj ◦ wi for all
1 ≤ i, j ≤ d), then there is a measurable function ϕ : X → G such that Tϕ
is ergodic, and

ϕ ◦ Si T∼ wi ◦ ϕ (1 ≤ i ≤ d)
(in other words, S1, . . . , Sd ∈ Lϕ, w1, . . . , wd ∈ Eϕ, and πϕ(Si) = wi (1 ≤
i ≤ d)).

Theorem 1 can be applied to any Kronecker transformation T of an
uncountable compact group.

Theorem 2. Suppose that T is an ergodic probability preserving trans-
formation, and {St : t ∈ R} ⊂ C(T ) are such that T and {St : t ∈ R}
generate a free Z×R action of probability preserving transformations of X.
There is a measurable function ϕ : X → R such that Tϕ is ergodic, and there
is g : R×X → R measurable (with respect to mR ×m) such that

ϕ ◦ St(x)− etϕ(x) = g(t, Tx)− g(t, x),(1)

g(t+ u, x) = g(t, Sux) + etg(u, x).(2)

Remarks. 1) If, under the conditions of Theorem 2, Qt(x, y) := (Stx, ety
+ g(t, x)), then {Qt : t ∈ R} is a flow by (2), and {Qt : t ∈ R} ⊂ C(Tϕ) by
(1). Indeed, St ∈ Lϕ, wt ∈ Eϕ where wt(y) = ety, and πϕ(St) = wt for all
t ∈ R.

2) Theorem 1 can be extended (with analogous proof) to enable “re-
alisation” of a semigroup homomorphism defined on a discrete, amenable
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sub-semigroup of the centraliser which has Følner sets which tile (see
[O-W]).

We show in §5 that the transformations Tϕ constructed in Theorem 2 are
isomorphic to Maharam transformations (Proposition 5.1), and we obtain Z-
extensions of Bernoulli transformations which are Maharam transformations
(see the remarks after Proposition 5.1).

In §2 we give an application of Theorem 1 to infinite ergodic theory show-
ing existence of pathological behaviour concerning laws of large numbers.
We also show that ergodic R-valued cocycles with Eϕ 6= {Id} are aperiodic.

The proofs of the main results are in §§3, 4.
Recall from [S] that the essential values of ϕ are defined by

E(ϕ) = {a ∈ G : ∀A ∈ B+, a ∈ U ∈ T , ∃n ≥ 1,

m(A ∩ T−nA ∩ [ϕn ∈ U ]) > 0},
which is a closed subgroup of G. It is shown in [S] that Tϕ is ergodic iff
E(ϕ) = G.

The (more specific) conditions for ergodicity of skew products discussed
in [A-L-M-N] and [L-V] are unsuitable for our constructions as they elimi-
nate squashability. We need new conditions for the ergodicity of a measur-
able function ϕ : X → G which are flexible enough to allow Eϕ 6= {Id}.

Such conditions, called essential value conditions, are introduced in §3.
The proofs of Theorems 1 and 2 are in §4. Cocycles are constructed as

infinite sums of coboundaries. Each coboundary “contributes” a particular
essential value condition, which the subsequent coboundaries are “too small”
to destroy. The essential value conditions remaining for the infinite sum give
its ergodicity.

This paper is a partial version of [A-L-V]. There is some overlap with
the subsequent [D].

To conclude this introduction, we prove the

Semigroup Embedding Lemma. Suppose that G is Abelian, and that
ϕ : X → G is such that Tϕ is ergodic. There is a surjective semigroup
homomorphism

πϕ : Lϕ → Eϕ
such that if Q(x, y) = (Sx, f(x) + w(y)) defines a commutor of Tϕ, then
w = πϕ(S).

P r o o f. We must show that if S ∈ Lϕ, w1, w2 ∈ E(G), fi : X → G
(i = 1, 2) are measurable, and Qi(x, y) = (Sx, fi(x) + wi(y)) are such that
Qi ◦ Tϕ = Tϕ ◦Qi (i = 1, 2), then w1 = w2.

To this end, let U = w1 − w2. Then TU◦ϕ is an ergodic transformation
of X × U(G) (being a factor of Tϕ via (x, y) 7→ (x,U(y))). The condition
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Qi ◦ Tϕ = Tϕ ◦Qi means that

ϕ ◦ S = wi ◦ ϕ+ fi ◦ T − fi (i = 1, 2),

whence

U ◦ ϕ = g ◦ T − g
where g = f1 − f2. Define g̃ : X → G/U(G) by g̃(x) = g(x) + U(G). It
follows that g̃ ◦ T = g̃, whence by ergodicity of T , there is γ ∈ G such that
g̃ = γ + U(G) a.e. Therefore h := g − γ : X → U(G) is measurable and
satisfies

U ◦ ϕ = h ◦ T − h.
The ergodicity of TU◦ϕ on X × U(G) now implies U(G) = {0}, i.e. U ≡ 0,
or w1 = w2.

We have shown that for every S ∈ Lϕ, there is a unique w =: πϕ(S) ∈ Eϕ
such that there exists fS : X → G measurable so that Q(x, y) = (Sx,
fS(x) + πϕ(S)(y)) defines a commutor of Tϕ. The rest of the lemma follows
easily from this.

2. Properties of some skew products Tϕ with Eϕ 6= {Id}
Laws of large numbers. Let (X,B,m, T ) be a conservative, ergodic mea-

sure preserving transformation of the σ-finite measure space (X,B,m).
A law of large numbers for T with respect to C ⊆ B is a function L :

{0, 1}N → [0,∞] such that

L(1A, 1A ◦ T, . . .) = m(A) a.e. for all A ∈ C.
Here, the intention is that C is either B or F := {B ∈ B : m(B) <∞}.

Proposition 2.1. There exists a conservative, ergodic measure preserv-
ing transformation (X,B,m, T ) which has a law of large numbers with re-
spect to F , but does not have a law of large numbers with respect to B.

P r o o f. Let G = Z∞ = {(n1, n2, . . .) ∈ ZN : nk → 0} and let w ∈
End(G) be the shift w((n1, n2, . . .)) = (n2, n3, . . .). Let T be a Kronecker
transformation. Then there is S ∈ C(T ) so that {S, T} generate a free Z2

action.
By Theorem 1, there exists ϕ : X → G such that Tϕ is ergodic and

ϕ ◦ S T∼ w ◦ ϕ, whence there is a commutor Q of Tϕ of the form Q(x, y) =
(Sx, f(x) + w(y)) where f : X → G is measurable. Note that m(Q−1A) =
|Kerw|m(A) =∞ whenever m(A) > 0.

It follows that Tϕ has no law of large numbers with respect to B. To
see this suppose otherwise that L : {0, 1}N → [0,∞] is such a law of large
numbers and let A ∈ B, m(A) = 1. Then L(1A(x), 1A(Tx), . . .) = m(A) = 1
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for a.e. x ∈ X, whence since Q is non-singular, for a.e. x ∈ X,

1 = L(1A(Qx), 1A(TQx), . . .) = L(1Q−1A(x), 1Q−1A(Tx), . . .)

= m(Q−1A) =∞.
On the other hand, G does not have any finite subgroup other than {0}

whence by Corollary 2.3 and Theorem 3.4 of [A2], Tϕ has a law of large
numbers with respect to F .

Eigenvalues. Recall that the measurable function ϕ : X → G is called
aperiodic if all eigenfunctions for the skew product Tϕ are eigenfunctions
for T ; that is, if f : X × G → S1 := {λ ∈ C : |λ| = 1} is measurable and
f ◦ Tϕ = λf where λ ∈ S1, then there is g : X → S1 measurable such that
f(x, y) = g(x) a.e.

We prove

Proposition 2.2. If G = R or T, Tϕ is ergodic, and Eϕ 6= {Id}, then
ϕ is aperiodic.

Lemma 2.2. Suppose that Tϕ is ergodic and f : X × G → S1 is mea-
surable such that f ◦ Tϕ = λ0f where λ0 ∈ S1. Then there is f0 : X → S1

measurable and there is a unique γ ∈ Ĝ such that f = f0 ⊗ γ (that is,
f(x, y) = f0(x)γ(y)).

P r o o f. For Q ∈ C(Tϕ), we have

(f ◦Q) ◦ Tϕ = f ◦ Tϕ ◦Q = λ0f ◦Q,
whence, by ergodicity of Tϕ, there exists λ(Q) ∈ S1 such that f ◦Q = λ(Q)f
(note that λ(Tϕ) = λ0). The mapping λ(Q) : C(Tϕ) → S1 is a continuous
homomorphism with respect to the natural Polish topologies.

Since G ⊂ C(Tϕ), we obtain γ ∈ Ĝ by setting γ(g) := λ(σg) where
σg(x, y) := (x, yg). Thus

f ◦ σg = γ(g)f ∀g ∈ G.
Set F (x, y) = γ(y)−1f(x, y). Then F ◦ σg = F for all g ∈ G, whence (by
ergodicity of right translation of G on itself) for a.e. fixed x ∈ X, F (x, ·) is
constant.

The unicity of γ follows from the ergodicity of Tϕ: if γi ∈ Ĝ, gi : X → G
are measurable (i = 1, 2) and λ ∈ S1 is such that gi ⊗ γi ◦ Tϕ = λgi ⊗ γi
(i = 1, 2), then γ(ϕ) = g ◦ Tg where γ = γ1γ2 and g = g1g2. It follows that
g⊗γ ◦Tϕ = g⊗γ, whence by ergodicity of Tϕ, g⊗γ is constant and γ ≡ 1.

Remarks. 1) It follows from Lemma 2.2 that λ is an eigenvalue of the

ergodic Tϕ iff there is γ ∈ Ĝ such that γ(ϕ) T∼ λ in S1.

2) If Tϕ is ergodic, then ϕ is aperiodic iff γ(ϕ) T∼ λ in S1 implies γ ≡ 1.
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Lemma 2.3. Suppose that Tϕ is ergodic, f = f0 ⊗ γ where f0 : X → S1

is measurable, γ ∈ Ĝ, and f ◦ Tϕ = λ0f for some λ0 ∈ S1. Then

γ ◦ w = γ ∀w ∈ Eϕ.
P r o o f. By ergodicity of Tϕ, for every Q ∈ C(Tϕ) there is λ(Q) ∈ S1

such that f ◦Q = λ(Q)f .
Suppose that w ∈ Eϕ, and let Q be a commutor of Tϕ with Q(x, y) =

(Sx, h(x)w(y)). Then

λ(Q)f0 ⊗ γ(x, y) = λ(Q)f(x, y) = f ◦Q(x, y)

= f0(Sx)γ(h(x))γ(w(y))

= [(f0 ◦ S) · (γ ◦ h)]⊗ γ ◦ w(x, y),

and since the character γ ∈ Ĝ appearing in the eigenfunction f0 ⊗ γ is
unique, we get γ ◦ w = γ.

Proof of Proposition 2.2. This now follows from Lemma 2.3, because if
G = T, R, and γ ∈ Ĝ, w ∈ End(G), then γ ◦ w = γ iff either γ ≡ 1 or
w = Id.

3. Essential value conditions. Let T be an invertible, ergodic proba-
bility preserving transformation of the standard probability space (X,B,m),
let G be a locally compact, second countable Abelian group, and let ϕ : X →
G be measurable. We develop here a countable condition for ergodicity of
Tϕ. The EVC’s to be defined are best understood in terms of orbit cocycles,
and the groupoid of T (see [F-M]).

A partial probability preserving transformation of X is a pair (R,A)
where A ∈ B and R : A → RA is invertible and m|RA ◦ R−1 = m|A.
The set A is called the domain of (R,A). We sometimes abuse this nota-
tion by writing R = (R,A) and A = D(R). Similarly, the image of (R,A) is
the set =(R) = RA.

The equivalence relation generated by T is

R = {(x, Tnx) : x ∈ X, n ∈ Z}.
For A ∈ B(X) and φ : A→ Z, define Tφ : A→ X by Tφ(x) := Tφ(x)x. The
groupoid of T is

[T ] = {Tφ : Tφ is a partial probability preserving transformation}.
It is not hard to see that [T ] = {R : R is a partial probability preserving
transformation with (x,Rx) ∈ R a.e.}. For R = Tφ ∈ [T ], write φ(R) := φ.
Let

[T ]+ = {R ∈ [T ] : φ(R) ≥ 1 a.e.}.
Recall from [H]:
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E. Hopf’s Equivalence Lemma. If T is an ergodic measure preserving
transformation of (X,B,m) and A,B ∈ B with m(A) = m(B), then there
is R ∈ [T ]+ such that D(R) = A and =(R) = B.

We also need a quantitative version of this lemma when A = B.

Lemma 3.1. Suppose that T is an ergodic probability preserving trans-
formation of (X,B,m), A ∈ B+, and c, ε > 0. Then for all p, q ∈ N large
enough, there is R ∈ [T ]+ such that

D(R),=(R) ⊂ A, m(A \ D(R)) < ε, φ(R) = cpq(1± ε).
The proof of Lemma 3.1 will be given at the end of this section.
Let R be the equivalence relation generated by T . An orbit cocycle is a

measurable function ϕ̃ : R→ G such that if (x, y), (y, z) ∈ R, then

ϕ̃(x, z) = ϕ̃(x, y) + ϕ̃(y, z).

Let ϕ : X → G be measurable, and let ϕn (n ∈ Z) denote the cocycle
generated by ϕ under T . The orbit cocycle ϕ̃ : R → G corresponding to ϕ
is defined by

ϕ̃(x, Tnx) = ϕn(x).

For R ∈ [T ], the function ϕR : D(R)→ G is defined by

ϕR(x) = ϕ̃(x,Rx).

Clearly ϕ(R ◦ S, x) = ϕ(S, x) + ϕ(R,Sx) on D(R ◦ S) = D(S) ∩ S−1D(R).

Definition. Let α be a measurable partition of X, U a subset of G,
and ε > 0. We say that the measurable cocycle ϕ : X → Γ satisfies
EVCT (U, ε, α) if for ε-almost every a ∈ α, there is R = Ra ∈ [T ]+ such
that

D(R),=(R) ⊂ a, ϕR ∈ U on D(Ra), m(D(R)) > (1− ε)m(a).

Definition. We say that the partitions {αk : k ≥ 1} approximately
generate B if

∀B ∈ B(X), ε > 0 ∃k0 ≥ 1, ∀k ≥ k0, ∃Ak ∈ A(αk), m(B MAk) < ε.

Here A(α) denotes the algebra generated by α. It is not hard to see that the
partitions {αk : k ≥ 1} approximately generate B if and only if E(1B |A(αk))
→ 1B in probability for all B ∈ B, and in this case,

∀ε > 0, B ∈ B, ∃k0, ∀k ≥ k0,
∑

a∈αk, 1−m(B|a)≤ε
m(a) ≥ (1− ε)m(B).

Proposition 3.1. Suppose that the partitions {αk : k ≥ 1} approxi-
mately generate B, and let εk ↓ 0, γ ∈ Γ , and Uk ⊂ G satisfy Un ↓ {γ} and
diamUn ↓ 0. If ϕ satisfies EVCT (Uk, εk, αk) for all k ≥ 1, then γ ∈ E(ϕ).
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P r o o f. Suppose that B ∈ B+ and V ⊂ G is an open neighbourhood
of γ. We show that

∃n ≥ 1, m(B ∩ T−nB ∩ [ϕn ∈ V ]) > 0.

Evidently, V ⊃ Uk for all k sufficiently large. It follows from the definitions
that for all k sufficiently large, there exists a ∈ αk such that

m(a \B) < 0.1m(a),

and there is R = Ra ∈ [T ]+ such that

D(R),=(R) ⊂ a, ϕR ∈ Uk on D(R), m(a \ D(R)) < 0.1m(a).

It follows that

m(B \ D(R)) < 0.2m(a).

Let R = Tφ, where φ : D(R)→ Z. We have
∑

n∈Z
m(B ∩ [φ = n] ∩ T−nB ∩ [ϕn ∈ Uk])

≥ m(B ∩ D(R) ∩R−1(B ∩ =(R)) ∩ [ϕR ∈ Uk]) ≥ 0.6m(a),

whence there is n ∈ Z such that

m(B ∩ T−nB ∩ [ϕn ∈ V ]) ≥ m(B ∩ [φ = n] ∩ T−nB ∩ [ϕn ∈ Uk]) > 0.

Corollary 3.2. Suppose that the partitions {αk : k ≥ 1} approximately
generate B, let {Uk : k ≥ 1} be a basis of neighbourhoods for the topology of
G, and let εk ↓ 0. If ϕ satisfies EVCT (Uk, εk, αk) for all k ≥ 1, then Tϕ is
ergodic.

This sufficient condition for ergodicity is actually necessary.

Proposition 3.3. If Tϕ is ergodic, then for all A ∈ B+ and U 6= ∅ open
in G, there is R ∈ [T ]+ such that

D(R) = =(R) = A, ϕR ∈ U a.e. on A,

and hence, ϕ satisfies EVCT (U, ε, α) for any measurable partition α of X, U
open in G, and ε > 0.

P r o o f. Let U be open in G. Choose g ∈ U ; then V := U − g is a
neighbourhood of 0 ∈ G. Choose W open in G such that W + W ⊂ V . By
ergodicity of Tϕ, for every A,B ∈ B+, there is n ∈ N such that µ((A×W )
∩ T−nϕ (B × (W + g))) > 0, whence m(A ∩ T−nB ∩ [ϕn ∈ U ]) > 0. The
proposition follows from this via a standard exhaustion argument.

We need a finite version of EVC better suited to sequential constructions.

Definition. Let α be a measurable partition of X, U open in G, ε > 0,
and N ≥ 1. We say that the measurable cocycle ϕ : X → G satisfies
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EVCT (U, ε, α,N) if for ε-almost every a ∈ α, there is R = Ra ∈ [T ]+ with
φ(R) ≤ N such that

D(R),=(R) ⊂ a, ϕR ∈ U on D(R), m(a \ D(R)) < εm(a).

Proposition 3.4. Let α be a measurable partition of X, U open in G,
and ε > 0. The measurable cocycle ϕ : X → G satisfies EVCT (U, ε, α) iff it
satisfies EVCT (U, ε, α,N) for some N ≥ 1.

The next lemma shows that addition of a sufficiently small cocycle does
not affect EVCT conditions too much.

Lemma 3.5. Let α be a partition, ε, δ > 0, N ∈ N, V ⊂ G, and φ : X →
G be a cocycle satisfying EVCT (U, ε, α,N) where U ⊂ G. If ϕ : X → G is
measurable, and

m([ϕ 6∈ V ]) < δ2/N,

then φ+ ϕ satisfies EVCT (U + V, ε+ δ, α,N).

P r o o f. Let B = [ϕ◦T j ∈ V for 0 ≤ j ≤ N−1]. Then since ϕn ∈ V on B
for all 1 ≤ n ≤ N, it follows that ϕR ∈ V on B ∩D(R) for all R ∈ [T ]+ with
φ(R) ≤ N. Let α1 consist of those a ∈ α such that there is R = Ra ∈ [T ]+
with φ(R) ≤ N such that

D(R),=(R) ⊂ a, ϕR ∈ U on D(R), m(a \ D(R)) < εm(a).

We have

m
( ⋃
a∈α1

a
)
> 1− ε.

Let α2 consist of those a ∈ α for which

m(B ∩ a) > (1− δ)m(a).

It follows from Chebyshev’s inequality that

m
( ⋃
a∈α2

a
)
> 1− m(B)

δ
> 1− δ.

Therefore

m
( ⋃
a∈α1∩α2

a
)
> 1− ε− δ.

If a ∈ α1 ∩ α2, and R′ = R′a := (Ra,D(Ra) ∩B) ∈ [T ]+, then

D(R′),=(R′) ⊂ a, (φ+ ϕ)R′ ∈ U + V on D(R′),

m(a \ D(R′)) < (ε+ δ)m(a).

Our main result in this section is a sufficient condition for a group ele-
ment to be an essential value of a sum of coboundaries.



A cut salad of cocycles 109

Theorem 3.6. Suppose that g ∈ G, the partitions {αj} approximately
generate B, Nk ∈ N, Nk ↑ ∞, and εk > 0,

∑
k≥1 εk < ∞. If for k ∈ N,

fk : X → G is measurable and
k∑

j=1

(fj ◦ T − fj) satisfies EVCT (N(g, εk), εk, αk, Nk),

m([‖fk ◦ T − fk‖ ≥ εk−1/Nk−1]) ≤ ε2
k−1/Nk−1,

then
∞∑

k=1

‖fk ◦ T − fk‖ <∞ a.e., and g ∈ E
( ∞∑

k=1

(fk ◦ T − fk)
)
.

P r o o f. By the Borel–Cantelli lemma,
∑∞
k=1 ‖fk◦T−fk‖ <∞ a.e. Write

φ :=
∞∑

k=1

(fk ◦ T − fk), φ̃k =
k∑

j=1

(fj ◦ T − fj), φ̂k =
∞∑

j=k+1

(fj ◦ T − fj).

Since φ = φ̃k+ φ̂k for all k ≥ 1, φ̃k satisfies EVCT (N(g, εk), εk, αk, Nk), and

m

([
‖φ̂k‖ ≥ 1

Nk

∞∑

j=k+1

εj

])
≤

∞∑

j=k+1

m([‖fj ◦ T − fj‖ ≥ εj/Nk])

≤
∞∑

j=k+1

m([‖fj ◦ T − fj‖ ≥ εj/Nj−1])

<

∞∑

j=k+1

ε2
j−1

Nj−1
≤ 1
Nk

∞∑

j=k

ε2
k,

it follows from Lemma 3.5 that φ satisfies

EVCT
(
N
(
g,

∞∑

j=k

εj

)
, 2
( ∞∑

j=k

ε2
k

)1/2
, αk, Nk

)
.

As promised above, we conclude this section with

Proof of Lemma 3.1. Let

An =
[∣∣∣∣

1
n

n−1∑

k=0

1A ◦ T k −m(A)
∣∣∣∣ < εm(A)

]
.

By Birkhoff’s ergodic theorem, there exists p0 ∈ N such that m(Ac
p) < ε4/2

for all p ≥ p0. Fix p ≥ p0. Now fix q ≥ p/(cε) =: q0. Set

B = Ap ∩ T−[cq]pAp.

Evidently m(B) > 1− ε2.
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By Birkhoff’s ergodic theorem there is N0 ∈ N such that

m(Cc
n) <

ε2

2p
∀n ≥ N0

where

Cn =
[

1
n

n−1∑

k=0

1B ◦ T pk ≥ E(1B |ITp)− ε2
]
.

Let N > (pq/ε) ∨ pN0. By Rokhlin’s theorem, there exists F ∈ B such that
{T jF : 0 ≤ j ≤ N − 1} are disjoint, and

m
(
X \

N−1⋃

j=0

T jF
)
<
ε

p
.

Note that since E(1B |ITp) is T p-invariant, we have

N

p

p−1∑

k=0

\
TkF

E(1Bc |ITp) dm ≤
\
X

E(1Bc |ITp) dm = m(Bc) < ε2,

whence there is 0 ≤ k ≤ p− 1 such that\
TkF

E(1Bc |ITp) dm < ε2m(F ).

There is no loss of generality in assuming k = 0 as this merely involves
taking T kF as the base for a slightly shorter Rokhlin tower, and adding⋃k−1
j=0 T

jF to the “error set”.
Set

X0 =
N−pq⋃

j=0

T jF, J = X0 ∩
⋃

j≥0, jp≤N
T jpF.

Then m(J) > 1/(2p) so

m(Cc
n ∩ J) ≤ ε2m(J) ∀n ≥ N0.

For y ∈ J , set κ(y) = #{0 ≤ j ≤ p− 1 : T jy ∈ A} and write

{T jy : 0 ≤ j ≤ p− 1, T jy ∈ A} = {T ji(y)y : 1 ≤ i ≤ κ(y)}
in case κ(y) ≥ 1, where ji(y) < ji+1(y). Note that

κ = pm(A)(1± ε) on J ∩Ap.
To estimate m(J ∩B), note that

∑

0≤j≤N/p:m(Cc
N/p|T jpF )≥ε

m(T jpF ) ≤
∑

0≤j≤N/p
m(Cc

N/p ∩ T jpF )/ε

= m(Cc
N/p ∩ J)/ε ≤ m(Cc

N/p)/ε

≤ ε

2p
≤ εm(J),
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whence, there is i ≤ εN/p such that

m(CN/p ∩ T ipF ) = m(T−ipCN/p ∩ F ) ≥ (1− ε)m(F ).

For y ∈ T−ipCN/p ∩ F ,

#{0 ≤ j ≤ N/p : T jpy ∈ B} ≥ #{0 ≤ j ≤ N/p : T (i+j)py ∈ B} − εN/p
≥ N

p
(E(1B |ITp)− 2ε).

Therefore,

m(J ∩B) =
N/p−1∑

k=0

m(T jpF ∩B) =
\
F

(N/p−1∑

k=0

1B ◦ T jp
)
dm

≥ N

p

\
T−ipCN/p∩F

(E(1B |ITp)− 2ε) dm

≥ N

p

\
F

(E(1B |ITp)− 3ε) dm

≥ (1− 4ε)m(F )N/p = (1− 4ε)m(J).

For x ∈ ⋃p−1
j=0 T

jJ , let j(x) be such that T−j(x)x ∈ J , and let y(x) =

T−j(x)x. Define ψ : A ∩⋃p−1
j=0 T

jJ → {1, . . . , p} by

ψ(x) =
j(x)∑

k=0

1A(T−kx) =
j(x)∑

k=0

1A(T ky(x)).

Note that
x = T jψ(x)(y(x))y(x).

Now define D ⊂ A ∩X0 by

D ∩
p−1⋃

j=0

T jJ0 = {x ∈ A ∩ J0 : ψ(x) ≤ κ(y(T [cq]px))},

and define φ : D → N by

φ(x) = [cq]p+ jψ(x)(y(T [cq]px)), x ∈ D ∩
p−1⋃

j=0

T jJ.

We claim that if R ∈ [T ]+ is defined by D(R) = D and φ(R) = φ, then
φ is as desired. To see this, check that κ ≥ (1− ε)m(A)p on J ∩B, whence

m(D) ≥ m(J0 ∩B)(1− ε)m(A)p ≥ (1− 6ε)m(J)pm(A) ≥ (1− 7ε)m(A).

4. Proof of Theorems 1 and 2. In this section, we prove Theorems 1
and 2. The proofs are sequential using Theorem 3.6. The inductive steps are



112 J. Aaronson et al.

Lemmas 4.1 and 4.2. Their proofs use the Rokhlin lemmas for Abelian group
actions of Katznelson and Weiss [K-W], and Lind [L] respectively (see also
[O-W] for a general Rokhlin lemma for amenable group actions implying
these).

Let G be a locally compact, second countable Abelian group with invari-
ant metric d, and let T be an ergodic probability preserving transformation
of the standard probability space (X,B,m).

Lemma 4.1. Let φ : X → G be a T -coboundary , let S1, . . . , Sd be prob-
ability preserving transformations generating a free Zd+1 action together
with T , and let w1, . . . , wd ∈ End(G), wi ◦ wj = wj ◦ wi. If α is a finite,
measurable partition of X, and ε > 0, then there is a measurable function
f : X → G such that

m([f ◦ T − f 6= 0]) < ε,(1)

m([f ◦ Sj 6= wj ◦ f ]) < ε (1 ≤ j ≤ d)(2)

and

(3) φ+ f − f ◦ T satisfies EVCT (N(γ, ε), ε, α).

P r o o f. Write φ = H −H ◦ T . Possibly refining α, we may assume that
for ε/2-a.e. a ∈ α, the oscillation of H on a is less than ε/2.

For i = (i1, . . . , id) ∈ Zd+, we write

Si := Si11 ◦ . . . ◦ Sidd , wi := wi11 ◦ . . . ◦ widd .
Then

Si+j = Si ◦ Sj , wi+j = wi ◦ wj
since Si ◦ Sj = Sj ◦ Si and wi ◦ wj = wj ◦ wi.

Given i = (i1, . . . , id), k = (k1, . . . , kd) we write i ≤ k (resp. i < k) if
ij ≤ kj (resp. ij < kj) for all 1 ≤ j ≤ d.

Fix k > 10/ε. There is an ergodic cocycle ϕ : X → G such that

m([ϕ 6= 0]) <
ε

3kd
.

It follows that wi ◦ ϕ ◦ S−i is ergodic for i ≥ 0 (as wi is surjective, and S−i
commutes with T for i ≥ 0), whence φ+wi ◦ϕ ◦S−i is ergodic for i ≥ 0 (as
φ is a coboundary), and so satisfies EVCT (N(γ, ε/4), ε/(4kd), α). Therefore
(by Propositions 3.3 and 3.4), there exists M ∈ N such that

φ+ wi ◦ ϕ ◦ S−i satisfies EVCT
(
N

(
γ,
ε

4

)
,
ε

4kd
, α,M

)

for 0 ≤ i ≤ k where k = (k, . . . , k) (d times).
Now choose N ≥ 1 such that

M

N
<
εηα
5
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where ηα := min {m(a) : a ∈ α}. By the Katznelson–Weiss Rokhlin lemma
[K-W], there is F ∈ B(X) such that {T jSiF : 0 ≤ j ≤ N − 1, 0 ≤ i < k}
are disjoint, and

m
(
X \

⋃

0≤j≤N−1, 0≤i<k
T jSiF

)
<
εηα
6
.

Let

C =
N−1⋃

j=0

T jF, C̃ =
N−M⋃

j=0

T jF, T =
⋃

0≤i<k
SiC, T̃ =

⋃

0≤i<k
SiC̃.

There is a measurable function f0 : X → G such that

ϕ = f0 − f0 ◦ T on T .
Set ϕ′ = f0 − f0 ◦ T . Then m([ϕ 6= ϕ′]) < εηα/6.

Now define f : T → G by

f =
{
wi ◦ f0 ◦ S−i on SiC (0 ≤ i ≤ k),
0 elsewhere,

and define

ψ = f − f ◦ T.
To establish (1), note that

m([ψ 6= 0]) < m([ψ 6= 0] ∩ T̃ ) +m(X \ T̃ )

≤ kdm([ϕ 6= 0] ∩ C̃) +m(X \ T̃ )

< ε/3 +M/N < ε.

Next, to prove (2), suppose that 0 ≤ i < k, 1 ≤ j ≤ d and ij < k − 1. If
x ∈ SiC, then

f(Sjx) = wi+ej ◦ f0 ◦ S−(i+ej)(Sjx)

= wj ◦ wi ◦ f0 ◦ S−i(x) = wj ◦ f(x),

whence

m([f ◦ Sj 6= wj ◦ f ]) < m
( ⋃

0≤i<k, ij=k−1

SiC
)

+m(X \ T )

< 1/k + εηα/6 < ε.

To complete the proof, we show (3). We know that φ + wi ◦ ϕ ◦ S−i
satisfies EVCT (N(γ, ε/4), ε/(4kd), α,M) for all i, whence φ + wi ◦ ϕ′ ◦ S−i
satisfies EVCT (N(γ, ε/4), ε/(3kd), α,M) for all i.

It follows that for ε/3-a.e. a ∈ α, and for each 0 ≤ i < k, there is
Ri = Ra,i ∈ [R]+ such that D(Ri),=(Ri) ⊂ a, m(a \ D(Ri)) < ε

3kdm(a),
and (φ+ wi ◦ ϕ ◦ S−i)Ri ∈ N(γ, ε/4) on D(Ri).
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Define R = Ra ∈ [T ]+ by

D(R) =
⋃

0≤i<k
D(Ri) ∩ SiC̃,

R = Ri on SiC̃ (0 ≤ i < k).

For x ∈ D(R), there is i = i(x) such that x ∈ D(Ri) ∩ SiC̃, and we have

(φ+ ψ)R(x) = (φ+ wi ◦ ϕ′ ◦ S−i)Ri(x) ∈ N(γ, ε/4).

Lastly,

m(a \ D(R)) =
∑

0≤i<k
m((a \ D(R)) ∩ SiC̃) +m(T \ T̃ ) +m(X \ T )

<
∑

0≤i<k
m(a ∩ SiC̃ \ D(Ri)) +

M

N
+m(X \ T )

≤
∑

0≤i<k
m(a \ D(Ri)) +

ε

5
ηα +

ε

6
ηα ≤ εm(a).

Proof of Theorem 1. We only prove Theorem 1 for d finite. The proof in
case d is infinite is analogous and left to the reader.

Choose a countable, dense subset Γ of G. Let (γ1, γ2, . . .) ∈ ΓN satisfy
{γk : k ≥ 1} = Γ , and

∀γ ∈ Γ, γk = γ for infinitely many k,

let the partitions {αj} approximately generate B, and let εk = 2−k
2
.

Using Lemma 4.1, construct (sequentially) a sequence of coboundaries
φk = fk − fk ◦ T such that

m([fk ◦ Sj 6= E ◦ fk]) ≤ εk (1 ≤ j ≤ d),

φ̃k :=
∑k
j=1 φj satisfies EVCT (N(γk, εk), εk, αk, Nk) where Nk ∈ N, Nk ↑,

and
m([φk 6= 0]) ≤ εk/Nk−1.

Clearly φ :=
∑∞
k=1 φk converges a.e. Also

ψj :=
∞∑

k=1

(fk ◦ Sj − wj ◦ fk) (1 ≤ j ≤ d)

converges a.e., whence

φ ◦ Sj − wj ◦ φ = ψj − ψj ◦ T (1 ≤ j ≤ d).

Theorem 3.6 now shows that Γ ⊂ E(φ), and the ergodicity of φ is estab-
lished.

Lemma 4.2. Let φ : X → R be a T -coboundary , and let {St : t ∈ R} be
probability preserving transformations generating a free Z×R action together
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with T . If α is a finite, measurable partition of X, ε > 0, and J ⊂ R+ is
an open interval , then there is a measurable function f : X → R such that

m([|f ◦ T − f | ≥ ε]) < ε,(1)

m([f ◦ St 6= etf ]) < ε (0 ≤ t ≤ 1),(2)

and

(3) φ+ f − f ◦ T satisfies EVCT (J, ε, α).

P r o o f. Write J = ((1− δ)b, (1 + δ)b) where b, δ > 0. We sometimes use
the notation x = (1± δ)b which means x ∈ J .

Write φ = ψ◦T−ψ where ψ : X → R is measurable. Choose a refinement
α1 of α with the property that

∀a ∈ α1, ∃ya ∈ R, |ψ − ya| < bδ/2 a.e. on a,

and set ηα := min {m(a) : a ∈ α}. Fix K = 10/ε, and 0 = t0 < t1 < . . . <
tM = K such that eti+1 < (1 + δ/3)eti .

By Lemma 3.1, there are p, q ∈ N such that beK/(pq) < ε, and for all
a ∈ α1 and 0 ≤ k ≤M − 1, there is Ra,k ∈ [T ]+ such that

D(Ra,k),=(Ra,k) ⊂ a, m(a \ D(Ra,k)) <
ε

7M
m(a),

φ(Ra,k) = e−tkpq(1± δ/9).

Now choose N ≥ 1 such that

eKpq

N
<
εηα
5
.

By the Rokhlin theorem for continuous groups ([L], [O-W]) there is F ∈
B(X) such that T kStF are disjoint for 0 ≤ k ≤ N , 0 ≤ t ≤ K, and

m
(
X \

⋃

0≤k≤N−1, 0≤t≤K
T kStF

)
<
εηα
6
.

Let

C =
N−1⋃

j=0

T jF, C̃ =
N−2⋃

j=0

T jF, T =
⋃

0≤t≤K
StC, T̃ =

⋃

0≤t≤K
StC̃.

There is a measurable function f : T → R such that

f ◦ T − f =
b

pq
et on StC̃.

Complete the definition of f : X → R by setting f = 0 on T c.
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It is immediate from this construction that f satisfies (1) and (2). We
establish (3) by showing that f ◦ T − f satisfies EVCT (J, ε, α1). Let

Ĉ =
N−pq⋃

j=0

T jF, T̂ =
⋃

0≤t≤K
StĈ.

For 0 ≤ k ≤M − 1, let

T̂k =
⋃

tk≤t<tk+1

StĈ.

Fix a ∈ α1, and define R′a ∈ [T ]+ by R′a = Ra,k on D(Ra,k) ∩ T̂k. It follows
that D(R′a),=(R′a) ⊂ a and

m(a \ D(R′a)) =
M−1∑

k=0

m(T̂k ∩ [a \ D(Ra,k)])

≤
M−1∑

k=0

m(a \ D(Ra,k)) ≤ ε

7
m(a);

moreover, on D(R′a) ∩ T̂k,

|ψ ◦R′a − ψ| < bδ/2,

whence, on StC̃ for t ∈ [tk, tk+1],

ϕR′a =
etb

pq
φ(R′a) ± bδ

2
= et−tkb

(
1± δ

9

)
± bδ

2

= b

(
1± δ

9

)(
1± δ

3

)(
1± δ

2

)
∈ J.

Proof of Theorem 2. Fix (g1, g2, . . .) = (1,
√

2, 1,
√

2, . . .). Using Lemma
4.2, construct a sequence of coboundaries fk ◦ T − fk such that

m([fk ◦ St 6= etfk]) ≤ 1/2k (0 ≤ t ≤ 1),

φk :=
k∑

j=1

(fj ◦ T − fj) satisfies EVCT
((

γk − 1
2k
, γk +

1
2k

)
, εk, αk, Nk

)

where Nk ∈ N, Nk ↑, and

m

([
|fk ◦ T − fk| ≥ 1

2kNk−1

])
≤ 1

2kNk−1
.

The ergodicity of
∑∞
k=1(fk ◦ T − fk) follows from

1,
√

2 ∈ E
( ∞∑

k=1

(fk ◦ T − fk)
)
,

which follows from Theorem 3.6.
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5. Maharam transformations. For a non-singular conservative, er-
godic transformation R of (Ω,A, p), the transformation T : X = Ω×R→ X
defined by

T (x, y) =
(
Rx, y − log

d(p ◦R)
dp

)

preserves the measure dmT (x, y) = dp(x)eydy, and is called the Maharam
transformation of R; it was shown in [M] to be conservative. If Qt(x, y) =
(x, y + t), then Qt ∈ C(T ) and D(Qt) := d(mT ◦Q−1)/dmT = et.

Conservative, ergodic Maharam transformations were constructed in [K].
In this section, we give conditions for a conservative, ergodic, measure

preserving transformation to be isomorphic to a Maharam transformation
showing that the transformations constructed in Theorem 2 are Maharam
transformations. We conclude by showing that any Bernoulli transformation
has a Z-extension which is isomorphic to a Maharam transformation.

Proposition 5.1. A conservative, ergodic, measure preserving trans-
formation T of the standard , non-atomic, σ-finite measure space (X,B,m)
is isomorphic to a Maharam transformation if and only if there is a flow
{Qt : t ∈ R} ⊂ C(T ) such that D(Qt) = et for all t ∈ R.

P r o o f. Suppose first that T is a Maharam transformation, i.e. T : X =
Ω × R→ X is defined by

T (x, y) =
(
Rx, y − log

d(p ◦R)
dp

)

and preserves the measure dm(x, y) := dp(x)eydy, where R is a non-singular
conservative, ergodic transformation of the standard probability space
(Ω,A, p). Set Qt(x, y) = (x, y+ t). Then {Qt : t ∈ R} ⊂ C(T ) is a flow, and
D(Qt) = et.

Conversely, suppose that there is a flow {Qt : t ∈ R} ⊂ C(T ) such that
D(Qt) = et for all t ∈ R. The flow {Qt : t ∈ R} is dissipative on X. It is
well known that up to measure-theoretic isomorphism, X = Ω×R where Ω
is some probability space, Qt(x, y) = (x, y + t), and dm(x, y) = eydp(x)dy
where p is the probability on Ω.

Since {Qt : t ∈ R} ⊂ C(T ), there is a non-singular transformation
R : Ω → Ω such that

T (x, y) = (Rx, Y (x, y)).

A calculation shows that indeed Y (x, y) = y − logR′(x) where R′ =
d(λ ◦R)/dλ, i.e. T is the Maharam transformation of R. The ergodicity
of T implies that Ω is non-atomic, and hence standard.

Remark. By Proposition 5.1, the skew products constructed in Theorem
2 are isomorphic to Maharam transformations.
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Proposition 5.2. If T is Bernoulli , then there is an ergodic Z-extension
of T which is isomorphic to a Maharam transformation.

P r o o f. Let (X,B,m, T ) be a Bernoulli probability preserving transfor-
mation. By Theorem 2 and the above remark, there is ψ : X → R such that
Tψ is a conservative, ergodic Maharam transformation.

As in [M-S] and [H-O-O] let

H := {t ∈ R : e2πitψ cohomologous to a constant in S1},
a Borel subgroup of R. We claim that there is c > 0 with nc 6∈ H for all
n ≥ 1. This follows from H having Lebesgue measure zero.

To see that H indeed has Lebesgue measure zero, we note that otherwise
H = R and (by [M-S] and [H-O-O]) ψ is cohomologous to a constant in R,
contradicting ergodicity of Tψ.

Let ϕ : X → T ∼= [0, 1/c) be defined by ϕ = ψ mod 1/c. There is a
measurable function φ : X × T→ Z such that Tψ ∼= (Tϕ)φ.

By construction of c > 0, there are no n ≥ 1 and g : X → S1 measurable
and non-constant such that e2πinϕ = g ◦ Tg. It follows from §2 that Tϕ
is weakly mixing, whence by Theorem 1 of [R], Tϕ is Bernoulli, and since
h(Tϕ) = h(T ), we see by [O] that Tϕ ∼= T . The conclusion is that Tψ ∼=
(Tϕ)φ ∼= Tφ′ , a Z-extension of T .
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[L-V] P. Liardet and D. Voln ý, Sums of continuous and differentiable functions
in dynamical systems, Israel J. Math. 98 (1997), 29–60.

[L] D. Lind, Locally compact measure preserving flows, Adv. Math. 15 (1975),
175–193.

[M] D. Maharam, Incompressible transformations, Fund. Math. 56 (1964), 35–
50.

[M-S] C. Moore and K. Schmidt, Coboundaries and homomorphisms for non-
singular actions and a problem of H. Helson, Proc. London Math. Soc. 40
(1980), 443–475.

[O] D. Ornste in, Ergodic Theory, Randomness, and Dynamical Systems, Yale
Math. Monographs 5, Yale Univ. Press, New Haven, 1974.

[O-W] D. Ornste in and B. Weiss, Entropy and isomorphism theorems for actions
of amenable groups, J. Anal. Math. 48 (1987), 1–142.

[R] D. Rudolph, Classifying the isometric extensions of a Bernoulli shift, ibid.
34 (1978), 36–60.

[S] K. Schmidt, Cocycles of Ergodic Transformation Groups, Lecture Notes in
Math. 1, Mac Millan of India, 1977.

[Z] R. Zimmer, Amenable ergodic group actions and an application to Poisson
boundaries of random walks, J. Funct. Anal. 27 (1978), 350–372.

School of Mathematical Sciences
Tel Aviv University
69978 Tel Aviv, Israel
E-mail: aaro@math.tau.ac.il
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