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Computing Reidemeister classes

by

Davide F e r r a r i o (Milano)

Abstract. In order to compute the Nielsen number N(f) of a self-map f : X → X,
some Reidemeister classes in the fundamental group π1(X) need to be distinguished. In
this paper some algebraic results are given which allow distinguishing Reidemeister classes
and hence computing the Reidemeister number of some maps. Examples of computations
are presented.

1. Introduction. Let X be a finite CW-complex and F : X → X be
a given map. The generalized Lefschetz number L(F ) is defined to be the
alternating sum of the Reidemeister traces of F (see [Hu]). It lies in ZR(F ),
the free Z-module generated by the F -Reidemeister classes in π1(X). The
Nielsen number N(F ) is the minimum number of nonzero summands in the
sum representing L(F ) and gives a lower bound for the number of fixed
points of maps homotopic to F . For background on Nielsen fixed point
theory, the best general references are [B, J].

As McCord pointed out in [McC], a great deal of work has been devoted
to the question of computation of N(F ). Several results of this work can be
easily written in terms of L(F ). For example, if X is a Jiang space then L(F )
is an integral multiple of a certain known element (see [J, McC]); if F is a
fibre map then formula (1) of Section 5.2 below holds true (see [Y, HKW]);
if X is a nilmanifold or a solvmanifold (see [McC]) then F can be factored
through a sequence of fibrations and hence formula (1) can be used. More-
over, X is defined to be of Jiang type if L(F ) 6= 0⇒ N(F ) = #R(F ), where
#R(F ) is the Reidemeister number, and L(F ) = 0⇒ N(F ) = 0. It has been
recently proved by Wong [W] that a wide class of homogeneous spaces are of
Jiang type. For such spaces therefore the question is to compute the Reide-
meister number of the map. Again, the useful trace-formula of [Hu] allowed
Fadell and Husseini [FaHu] to compute generalized Lefschetz numbers and
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2 D. Ferrario

hence some Nielsen numbers on surfaces. Davey, Hart and Trapp [DHT] im-
proved upon this algebraic method, and again one of the essential steps was
to distinguish Reidemeister classes. In brief, once either L(F ) is known or
X is of Jiang type, it is only left to distinguish Reidemeister classes.

The aim of this article is to give some algebraic results which allow one
to distinguish Reidemeister classes and hence to compute R(F ). Let G be a
group and f : G→ G an endomorphism. Let R(f) denote the set of Reide-
meister classes in G. The most used and known method is the abelianization
of G: if [G,G] is the commutator subgroup of G, then the induced projec-
tion q∗ : R(f) → R(f ; [G,G]) can distinguish classes with distinct images
in R(f ; [G,G]). Moreover, in the abelianized group G/[G,G] classes can be
distinguished as left cosets of Im(1 − f), where f is the endomorphism in-
duced on G/H. As shown in [B, J], if f is eventually commutative, then q∗
is a bijection. Another kind of result is given in [FeHi]: if G is a finite group,
then #R(f) is the number of ordinary conjugacy classes 〈ω〉 in G such that
〈f(ω)〉 = 〈ω〉.

The main idea we use to computeR(f) is the following: consider a normal
subgroup H E G such that f(H) ⊂ H; let q∗ : R(f)→R(f ;H) be the pro-
jection onto the quotient. Let [x1] denote the Reidemeister class of x1 ∈ G.
Then R(f) is the disjoint union of all the counter-images q−1

∗ (q∗([x1])) for

[x1] ∈ R(f ;H). For any x1 ∈ G there is a natural surjection i∗ : R(fx
−1
1

H )→
q−1
∗ (q∗([x1])) induced by the inclusion i : H → G, where fx

−1
1

H : H → H is

defined by f
x−1

1
H (x) := x1f(x)x−1

1 for all x ∈ H (see Section 2). Using the
results of Sections 3 and 4, for any x1 we find a subgroup Tx1 E H and a

surjection in the opposite direction A : q−1
∗ (q∗([x1]))→ R(fx

−1
1

H ;Tx1) which
is injective under the hypotheses of Lemma 3.2. The main result is The-
orem 4.1, which allows us to split the question of computing Reidemeister
classes in G into two problems: computation of classes in G/H and in H/Tx1

for some x1 ∈ G.

The paper is organized as follows. In Section 2 some preliminaries on
Reidemeister classes are given; in Section 3 the main idea is developed: the
subgroup T and the surjection A are defined for the simpler case of base
point [x1] = [1]. In Section 4 Theorem 4.1 is proved, and as corollaries some
additive formulae are given which estimate R(f) and allow computing it
exactly in some interesting cases. In Section 5 we directly apply these results
to fibre maps; after some preliminaries Theorem 5.1 and Corollaries 5.2
and 5.3 are directly deduced from Theorem 4.1 and Corollaries 4.2, 4.3 of
Section 4.

Examples are given to illustrate the method and the results. Example 1
is an easy example of an endomorphism f and a subgroup H E G such that
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the induced map i∗ is not injective. In Example 2 the method is used to
distinguish two Reidemeister classes, defined in [DHT], in a purely algebraic
way. In Examples 3, 4, 5, 6 and 8, Theorem 4.1 and its corollaries are used
to compute exactly #R(f). In Example 7 a non-eventually commutative
endomorphism f is defined such that R(f) = R(f ; [G,G]).

I would like to thank R. F. Brown, Z. Kucharski, E. Hart and R. Piccinini
for their kind help, comments and suggestions. I would also like to thank
the referees for their comments that helped to improve on this paper.

2. The Reidemeister action. Let G be a group and f : G → G an
endomorphism. The Reidemeister (left) action induced by f on G is defined
by setting g ·x := gxf(g−1) for all g, x ∈ G. The orbit set R(f) is called the
Reidemeister set of f . If F : X → X is a self-map of a space X and Fπ :
π1(X)→ π1(X) is the endomorphism induced on the fundamental group, a
function cd : Fix(F )→ R(Fπ) can be given such that cd(y1) = cd(y2) if and
only if y1 and y2 belong to the same Nielsen fixed point class, for all fixed
points y1, y2 ∈ Fix(F ) := {y ∈ X | F (y) = y}. For full details see Section 5
and [B, Hu, J, McC]. An orbit [x] ∈ R(f) is also called a Reidemeister class.
Note that the orbits of the Reidemeister action induced by the identity are
exactly the ordinary conjugacy classes in G.

Just as the fixed point class functor of [J], it can be shown that R is
actually a functor: let G~r be the category of group endomorphisms (an
object f is a group endomorphism f : G→ G; a morphism h : f1 → f2 from
f1 : G1 → G1 to f2 : G2 → G2 is a group homomorphism h : G1 → G2 such
that f2h = hf1) and Set∗ the category of pointed sets. Then R : G~r → Set∗
is well defined if the base-point of R(f) is [1], and it is a functor if we define
the base-point preserving function R(h) : R(f1) → R(f2) by R(h)([x]) :=
[h(x)] for all x ∈ G1 and any morphism h : f1 → f2. For brevity we set
h∗ := R(h).

Now let f : G → G be an endomorphism of a group G. A normal
subgroup H E G is said to be f -invariant if f(H) ⊂ H and fully invariant if
this happens for every endomorphism of G. Let i : H → G be the inclusion
homomorphism and q : G → G/H be the quotient homomorphism. Let
fH : H → H denote the restriction of f to H and f : G/H → G/H the
endomorphism induced on the left coset group G/H. The Reidemeister set
R(f) is also called the Reidemeister set of f relative to H and it is denoted
by R(f ;H) := R(f).

Example 1. Let f : G→ G be an endomorphism of an abelian (additive)
group andH an f -invariant subgroup. ThenR(f) ∼= Coker(IG−f),R(fH) ∼=
Coker(IH − fH) and R(f ;H) ∼= Coker(IG/H − f) where IG, IH and IG/H
are the identity endomorphisms of G, H and G/H. Moreover, if i : H → G
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and q : G→ G/H are the inclusion and the quotient homomorphisms, then
i∗ and q∗ are actually group homomorphisms, and the short sequence

R(fH) i∗→R(f)
q∗→R(f ;H)→ {0}

is exact.
Let G := Z be the additive group of integers; let n, k ∈ Z be given;

let H := nZ ⊂ G be the fully invariant subgroup of multiples of n; let
f : G → G be the endomorphism given by f(x) := kx for all x ∈ G. Then
R(f) = R(fH) = Z/(1− k)Z and R(f ;H) = Z/dZ where d := gcd(1−k, n)
is the greatest common divisor of 1− k and n; the short sequence

Z/(1− k)Z n→ Z/(1− k)Z→ Z/dZ→ 0

is exact, where n := i∗ is the homomorphism induced by the inclusion
i : H → G. It is worth while seeing that n = i∗ : R(fH) → R(f) is not
injective unless d = 1.

The main problem is to know whether two elements x1 and x2 of the
group G are in the same Reidemeister class or not. This is a difficult problem,
even in the simpler case of conjugacy classes. If G is abelian then [x1] = [x2]
if and only if x1−x2 ∈ Im(1−f); it is the problem of taking the quotient of
G modulo a subgroup, as seen in the previous example. If G is not abelian
we try to take as H ⊂ G the commutator subgroup [G,G] of G and to
look at the abelianized images q∗([x1]) and q∗([x2]) in R(f ; [G,G]); in this
case R(f ; [G,G]) is computable as a quotient group, and if the images are
distinct as abelianized classes, they are distinct also in R(f). But what
can we say if they have the same abelianized image in R(f ; [G,G])? If f
is eventually commutative, i.e. there exists a positive integer n such that
fn(x1x2x

−1
1 x−1

2 ) = 1 for each x1, x2 ∈ G, then (see [J]) R(f) ∼= R(f ; [G,G])
and therefore the answer is that they are in the same class even in R(f).

In the following we give examples of endomorphisms such that q∗ is not
injective. More generally, a method to distinguish classes could be the fol-
lowing: first choose an f -invariant normal subgroup H of G, e.g. the derived
subgroup, then look at R(f ;H) and see if q∗([x1]) 6= q∗([x2]). In this case
we are done, else, we try to see what happens to the counter-images of
q∗([x1]) = q∗([x2]).

For any x ∈ G, let fx denote the endomorphism of G defined by fx(g) :=
x−1f(g)x for all g ∈ G. It is the composition of f with the inner auto-
morphism induced by x. Then there is a canonical bijection of the Reide-
meister sets of f and fx denoted by x∗ : R(f) → R(fx) and given by
x∗([g]) := [gx]. Hence, by replacing f with fx

−1
1 , it can be supposed that

x1 = 1 and hence that q∗([x1]) = q∗([x2]) = [1]. We want to study the
surjection i∗ : R(fH)→ q−1

∗ ([1]).
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2. Computing Reidemeister classes. As seen in Example 1 for a
simpler case, given f : G→ G and an f -invariant normal subgroup H E G,
the exact sequence in G~r

{1} → fH
i→ f

q→ f → {1}
induces an exact sequence of pointed sets

R(fH) i∗→R(f)
q∗→R(f ;H)→ {1}

which is an exact sequence of groups if G is abelian. We have seen that
i∗ need not be injective. In any case, i∗(R(fH)) = q−1

∗ ([1]), where 1 ∈ G;
moreover, we try to find a normal f -invariant subgroup T E H such that the
map i′∗ : R(fH ;T ) ­ q−1

∗ ([1]) induced by i∗ is a bijection. If this happens,
then we could work in a group different from G, namely in H/T , because in
this case, for all h ∈ H, [h] = [1] in R(f) if and only if the same equation
holds in R(fH ;T ). Therefore the sequence of pointed sets

{1} → R(fH ;T )
i′∗→R(f)

q∗→R(f ;H)→ {1}
would be exact.

For any endomorphism ϕ we define the subgroup Fix(ϕ) to be {x ∈ G |
ϕ(x) = x}; if f : G/H → G/H is defined as above, the subgroup q−1 Fix(f)
⊂ G is f -invariant and H ⊂ q−1 Fix(f). Therefore there exists at least
one f -invariant subgroup K ⊂ q−1 Fix(f) such that KH = q−1 Fix(f).
Let [K,H] denote the subgroup of G generated by all khk−1h−1 such that
k ∈ K and h ∈ H. If KG is defined as the smallest normal subgroup of G
containing K, we see that the subgroup [KG, H] = [K,H]G of G is normal
and f -invariant. Let the set OfK be defined by OfK := {kf(k−1) | k ∈ K}.
For any such subgroup K let the subgroup Tf (K) be defined as

Tf (K) = [KG,H] ∪OfK,
the smallest subgroup of G containing both [KG,H] and OfK.

Proposition 3.1. The subgroup Tf (K) is normal in H, f-invariant and
the equality Tf (K) = {xkf(k−1) | x ∈ [KG,H], k ∈ K} holds true.

P r o o f. By definition q(k) = q(f(k)) for all k ∈ K, hence OfK ⊂ H.
Since H is normal, [KG, H] ⊂ H and therefore Tf (K) ⊂ H. Because

hkf(k−1)h−1 = (kf(k−1))f(k)(k−1hkh−1)f(k−1)(f(k)hf(k−1)h−1)

= (kf(k−1))f(k)[k−1, h]f(k−1)[f(k), h]

for all h ∈ H and k ∈ K, we deduce that Tf (K) is normal in H.
Again, observe that for k, k1, k2 ∈ K,

k1f(k−1
1 )k2f(k−1

2 ) = (k1f(k−1
1 )k2(k1f(k−1

1 ))−1k−1
2 )k2k1f(k2k1)−1,

f(k)k−1 = k−1f(k)(f(k−1)kf(k)k−1),
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and thus, each element of Tf (K) can be written as stated. In fact, by defini-
tion each g ∈ Tf (K) is a finite product g =

∏j
i=0 gi where for all i = 0, . . . , j

either gi ∈ [KG,H] or gi ∈ OfK ∪ (OfK)−1 (where (OfK)−1 is the set of
inverses of elements in OfK). Because [KG,H] is normal in G, without loss
of generality we can assume that gi ∈ [KG,H] ⇔ i = 0. By the second
displayed identity above we can assume that gi ∈ OfK for all j ≥ 1, and by
the first one that j = 1. Therefore

Tf (K) = {g0g1 | g0 ∈ [KG, H], g1 ∈ OfK}
and the last claim is proved.

As we have seen in Example 1 the natural surjection i∗ : R(fH) →
q−1
∗ ([1]) may not be injective. Nevertheless the following lemma shows that

for a suitable subgroup T := Tf (K) ⊂ H there exists a natural surjection
in the opposite direction q−1

∗ ([1])→R(fH ;T ).

Lemma 3.2. For any f -invariant subgroup K of G such that

KH = q−1 Fix(f)

there exists a surjection

A : q−1
∗ ([1]) = i∗R(fH)→R(fH ;Tf (K))

defined by A([h]) := [p(h)] where p is the projection p : H → H/Tf (K); A
is injective whenever R(f) = R(f ; [KG,H]).

P r o o f. Consider the natural projections

i∗(R(fH)) i∗← R(fH)
p∗→ R(fH ;Tf (K)).

We will show that p∗i−1
∗ [h] is a single element inR(fH ;Tf (K)) for all h ∈ H.

If h′ = ghf(g−1) with h, h′ ∈ H and g ∈ G, then q(g) = q(f(g)), and hence
g ∈ q−1 Fix(f) = KH; then g = k1h1 with k1 ∈ K and h1 ∈ H. Therefore
h′ = k1h1hf(h−1

1 )f(k−1
1 ) and the equality

p(h′) = p(h1hf(h−1
1 ))p(k1f(k−1

1 )) = p(h1)p(h)p(f(h−1
1 ))

shows that A is well defined and surjective. Note that p(hk) = p(kh) for all
h ∈ H and k ∈ K.

Now assume that R(f) = R(f ; [KG,H]). If A([h1]) = A([h2]) then there
exists h ∈ H such that

p(h2) = p(h)p(h1)p(f(h−1)).

Thus, from Proposition 3.1, we can find h ∈ H, k ∈ K and x ∈ [K,H]G

such that h2 = hh1f(h−1)xkf(k−1); as a consequence, there exist h ∈ H,
k ∈ K and x′ ∈ [KG, H] such that h2 = khh1f(h−1)f(k−1)x′, i.e. [h1] =
[h2] ∈ R(f ; [KG,H]); now, from the assumption R(f) = R(f ; [KG,H]) we
conclude that [h1] = [h2] ∈ R(f), that is to say, A is injective.



Computing Reidemeister classes 7

Corollary 3.3. If Fix(f) = {1} then

i∗ : R(fH)→ q−1
∗ ([1]) ⊂ R(f)

is a bijection.

P r o o f. In this case we can define K to be the trivial subgroup {1}.
Then Tf (K) = {1}, [KG, H] = {1} and hence the assertion follows from
Lemma 3.2.

Example 2. Let

G := 〈a, b, c, d | aba−1b−1cdc−1d−1 = 1〉
be the fundamental group of the double torus. For any integer n ≥ 2 let f
be the automorphism of G defined by

a 7→ c−n+1d−1, c 7→ a,

b 7→ dcn, d 7→ b.

It is the homomorphism induced on G by the self-map of the double torus
defined in Example 4 of [DHT]. In [DHT] the question arises if the elements
1 and bab−1a−1 belong to the same Reidemeister class in R(f). With purely
topological arguments the authors prove that they do not. Here we give an
algebraic proof.

Let H := [G,G]. Then G/H = Z4 and, if F is the matrix representing
f : G/H → G/H, we see that det(I − F ) = n 6= 0 and hence Fix(f) = 0.
Therefore we can use Corollary 3.3 to show that [bab−1a−1] = [1] in R(f) if
and only if the same equality holds in R(fH).

For each x = (x1, x2, x3, x4) ∈ Z4 define the elements

gx,a := ax1bx2cx3dx4ad−x4c−x3b−x2a−1−x1 ,

gx,b := ax1bx2cx3dx4bd−x4c−x3b−1−x2a−x1 ,

gx,c := ax1bx2cx3dx4cd−x4c−1−x3b−x2a−x1 ,

of H. According to [MKS], pp. 86–98, H is generated by the sets of gen-
erators I1 := {gx,a | x ∈ Z4, |x2| + |x3| + |x4| 6= 0}, I2 := {gx,b | x ∈ Z4,
|x3|+ |x4| 6= 0} and I3 := {gx,c | x ∈ Z4, |x4| 6= 0}. The two generators

g(0,1,0,0),a = bab−1a−1 = g(0,0,0,1),c = dcd−1c−1

coincide and therefore I1 ∪ I2 ∪ I3 − {g(0,0,0,1),c} is a set of free generators
for the free group H. Let the homomorphism δ : H → Z2 be defined by

δ(gx,α) =
{

1 if x = (0, 1, 0, 0) and α = a,
0 otherwise,

and let H1 be the kernel of δ. Using the Reidemeister–Schreier rewriting
process applied to the images under fH of the generators (we refer to [MKS]
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for full details) it can be shown that f(H1) ⊆ H1. Therefore the quo-
tient map q′∗ : R(fH) → R(fH ;H1) is well defined. But f(bab−1a−1) =
(bab−1a−1)−1, hence the endomorphism induced on H/H1 = Z2 is the iden-
tity and R(fH ;H1) ∼= Z2. Since

q′∗([1]) 6= q′∗([g(0,1,0,0),a])

it follows that [1] 6= [bab−1a−1] ∈ R(fH) and hence 1 and bab−1a−1 do not
belong to the same class in R(f).

4. Additive formulae for Reidemeister sets. In this section we prove
some additive formulae for Reidemeister sets. The main idea is the following:
for a given endomorphism f : G → G and an f -invariant subgroup H E G
with quotient homomorphism q : G → G/H, the Reidemeister set R(f) is
split into the disjoint counter-images q−1

∗ (j) of all j ∈ R(f ;H). Lemma 3.2
can be applied to any such counter-image and so we can prove the following
theorem. Let S1 and S2 be sets. Then we write S1 ≥ S2 if there exists a
surjection S1 → S2. If there is a bijection between S and the disjoint union⊔
j∈Z Sj then we write S =

∑
j∈Z Sj . Let #S denote the cardinality of S.

Theorem 4.1. For all j ∈ R(f ;H) let xj ∈ G be such that [q(x−1
j )] = j;

for any j ∈ R(f ;H) let Kj be an fxj -invariant subgroup of G such that

q−1 Fix(f
q(xj)) = KjH.

Then

R(f) ≥
∑

j∈R(f ;H)

R(fxjH ;Tfxj (Kj))

and equality holds if R(f) = R(f ; [KG
j ,H]) for all j.

P r o o f. We have seen that for all x ∈ G there is a bijection x∗ :
R(f) → R(fx) where fx is defined by fx(g) := f(g)x = x−1f(g)x and
x∗([g]) := ([gx]). Moreover, for each y ∈ G we can apply Lemma 3.2 to
the endomorphism fy. Let q∗y : R(fy) → R(fy;H) denote the function
induced by q on R(fy). On the other hand, for each y ∈ G, if we choose an

fy-invariant subgroup Ky of G such that KyH = q−1 Fix(f
q(y)

) then there
exists a surjection

Ay : q−1
∗y ([1])→R(fyH ;Tfy (Ky))

defined by Ay([h]) := [py(h)] where py : H → H/Tfy (Ky); according to
Lemma 3.2, Ay is injective whenever R(fy) = R(fy; [KG

y ,H]). Now, R(f)
is the disjoint union of q−1

∗ (j) for all j ∈ R(f ;H); if y ∈ G is such that
[q(y−1)] = j then the bijection y∗ : R(f) → R(fy) induces a bijection
y′∗ : q−1

∗ (j) → q−1
∗y ([1]). Thus, because of the choice of xj there is a surjec-
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tion Axjx
′
j∗ : q−1

∗ (j) → R(fxjH ;Tfxj (Kj)) for all j, which gives the desired
inequality.

Moreover, R(fxj ) = R(fxj ; [KG
j ,H]) for all j if and only if R(f) =

R(f ; [KG
j ,H]) for all j, and hence the proof is complete using again

Lemma 3.2.

Corollary 4.2. If Fix(f
q(xj)) = {1} for all j ∈ R(f ;H) then

R(f) =
∑

j∈R(f ;H)

R(fxjH ).

P r o o f. As in Corollary 3.3 it suffices to define Kj = 1 for all j.

Example 3 (Semidirect product of finitely generated free abelian
groups). Let H = Zn and A = Zk be two (additive) finitely generated
free abelian groups and let M : A → Aut(Zn) be a homomorphism from
A to the automorphism group of H, i.e. to the group of all nonsingular
integer matrices with determinant ±1. Denote by Ma := M(a) the im-
age of each a ∈ A. Let G be the external semidirect product of H and A
via M ; it is the set of all pairs (a, h) ∈ A × H, with the group operation
(a1, h1)+(a2, h2) = (a1+a2,Ma2(h1)+h2). The subgroup H ∼= 0×H E G is
normal in G and G/H ∼= A ∼= A× {0} ⊆ G. Let f : G→ G be an endomor-
phism such that f(H) ⊆ H. Then f : A → A and fH : H → H are defined
by two matrices F ∈ Matk,k(Z) and FH ∈ Matn,n(Z). Note that Fix(f) 6= 0
if and only if det(I − F ) = 0, and this happens if and only if #R(f) = ∞.
Therefore either R(f) and R(f ;H) are infinite or Fix(f) = 0. In this last
case, because A is abelian and so fq(x) = f for all x ∈ A, Fix(fq(x)) = {0}
for all x ∈ A and therefore Corollary 4.2 can be used. For each j ∈ R(f ;H)
let aj ∈ A be such that [a−1

j ] = j; thus

R(f) =
∑

j∈R(f ;H)

R(fajH )

by the Corollary; moreover, because

R(f ;H) = A/Im(I − f)

it follows that #R(f ;H) = |det(I − F )|. For all a ∈ A and h ∈ H the
conjugation is −(a, 0) + (0, h) + (a, 0) = (0,Mah), hence fajH is defined by
the matrix MajFH and so #R(fajH ) = |det(I −MajFH)| if this determinant
is 6= 0, otherwise it is infinite. Thus if all the determinants involved are
different from 0 then

#R(f) =
|det(I−F )|∑

j=1

|det(M−1
aj − FH)|.
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If |det(M−1
aj − FH)| are constant then we get the product formula

#R(f) = |det(I − F )| · |det(M−1
a1
− FH)|

= |det(I − F )| · |det(I − FH)|
because without loss of generality Ma1 = I.

Example 4 (The Klein bottle). Let G be the fundamental group of the
Klein bottle, i.e. G := 〈α, β | βα = α−1β〉. The subgroup H := 〈α〉 E G is
a fully invariant normal subgroup of G and if M : Z → Aut(Z) = {1,−1}
is the homomorphism defined by M(x) = (−1)x for all x ∈ Z then G is
the semidirect product of H and A := Z via M . So let f : G → G be an
endomorphism. As in the previous example, fH : H → H and f : G/H ∼=
A → A are defined by elements of Mat1,1(Z), thus they are integers u
and w. In other words, fH(x) = ux for all x ∈ H and f(y) = wy for all
y ∈ G/H ∼= A. If w = 1 then #R(f ;H) = ∞, otherwise, if (−1)j − u 6= 0
for all j = 1, . . . , |1− w|, then as in the previous example

#R(f) =
|1−w|∑

j=1

|(−1)j − u|,

and if u = ±1 then #R(f) = ∞. It can be seen that if w is even then u
must be zero, hence if w is even then #R(f) = |1− w|; on the other hand,
w odd, w 6= 1, u 6= ±1 implies #R(f) = |u(1− w)|. Thus

#R(f) =

{ |(1− w)| if w 6= 1 odd and u 6= 0,±1,
|1− w| if w even,
∞ otherwise.

The commutator subgroup of G is [G,G] = 〈α2〉 and the quotient
G/[G,G] is the direct sum Z2⊕Z. Let a := (1, 0) and b := (0, 1) be the gen-
erators of Z2 and Z respectively. Let ϕ denote the endomorphism induced
on the abelianized group Z2 ⊕ Z. Then ϕ(a) = (u, 0) and ϕ(b) = (v, w)
for an integer v mod 2 and w even implies u = 0. We want to compute
Coker(1− ϕ). It is not difficult to see that

#R(f ; [G,G]) =




|2(1− w)| if w 6= 1 and u(v − 1) ≡ 1 mod 2,
|1− w| if w 6= 1 and u(v − 1) ≡ 0 mod 2,
∞ if w = 1,

and so if w is even then R(f) = R(f ; [G,G]) but if w is odd then either
both R(f) and R(f ; [G,G]) are infinite or #R(f) is strictly greater than
#R(f ; [G,G]).

Example 5. Let N be a nilpotent, finitely generated and torsion free
group and f : N → N an endomorphism. Then, as shown e.g. in [McC],
there exists a fully invariant central series {Ni} ⊂ N with torsion free and
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finitely generated factors. In other words, for i = 0, . . . , n + 1 there exist
subgroups Ni ⊂ N such that 1 = Nn+1 ⊂ Nn ⊂ . . . ⊂ N1 ⊂ N0 = N ,
[Ni−i, N ] ⊂ Ni, f(Ni) ⊂ Ni and the factors Ni−1/Ni are torsion free abelian
finitely generated groups. By Corollary 4.2 it is easy to see that if Fix(f) 6= 0
then R(f) is infinite. Hence, as shown in [McC], either R(f) is infinite or

R(f) =
n∏

i=0

|det(I − f |Ni/Ni+1)|

where f |Ni/Ni+1 : Ni/Ni+1 → Ni/Ni+1 are the restrictions of f to Ni/Ni+1

and the determinants are all nonzero.
Now let G be a group and f : G → G be an endomorphism such that

there exists an f -invariant series

1 = Gn+1 ⊂ Gn ⊂ . . . ⊂ G1 ⊂ G0 = G

with nilpotent torsion free finitely generated factors. Again, either #R(f) =
∞ or we can compute R(f) step by step: for any i = 0, . . . , n− 1 and y ∈ G
the sequence

{1} → Gi+1 → Gi → Gi/Gi+1 → {1}
is exact; Fix(fGi/Gi+1) = 0 because otherwise #R(f) = ∞, and hence
Corollary 4.2 can be used to obtain

R(fyGi) =
∑

j∈R(fyGi/Gi+1
)

R((fy)xjGi+1
)

where [x−1
j ] = j; R(fyGi/Gi+1

) can be computed as in the previous example
because Gi/Gi+1 is nilpotent torsion free and finitely generated; we omit
the quotient homomorphisms in writing for simplicity. In the following lines
we write j instead of xj for the same reason. Using the previous formula we
can thus prove that either R(f) =∞ or

R(f) =
∑

j1∈R(fG0/G1 )

∑

j2∈R(fj1G1/G2
)

R(f j1j2G2
)

=
∑

j1∈R(fG0/G1 )

∑

j2∈R(fj1G1/G2
)

∑

j3∈R(fj1j2G2/G3
)

R(f j1j2j3G3
)

= . . . =

=
∑

j1∈R(fG0/G1 )

∑

j2∈R(fj1G1/G2
)

∑

j3∈R(fj1j2G2/G3
)

. . .
∑

jn∈R(f
j1j2...jn−1
Gn−1/Gn

)

R(f j1j2...jnGn
).

As seen in the previous examples, the easiest way of computingR(f) is to
reduce it to the abelian case in which only the Coker of some endomorphisms
has to be computed. In the following two corollaries we apply this idea to
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more general settings. We want to compute R(f) as a sum of quotients of
subgroups.

Corollary 4.3. For all j ∈ R(f ;H) put Kj := q−1 Fix(f
q(xj)) where

as before [q(x−1
j )] = j. Then

R(f) ≥
∑

j∈R(f ;H)

H/Tfxj (Kj)

and equality holds whenever R(f) = R(f ; [KG
j , H]) for every j.

P r o o f. By Theorem 4.1 it suffices to show that, for every j,

R(fxjH ;Tfxj (Kj)) = H/Tfxj (Kj)

where the right hand side is a quotient of groups. In fact, since H ⊆ Kj , the
homomorphism ϕj induced by fxjH on the quotient

ϕj : H/Tfxj (Kj)→ H/Tfxj (Kj)

is the identity homomorphism and hence R(ϕj) = R(fxjH ;Tfxj (Kj)) is the
set of conjugacy classes in H/Tfxj (Kj). But H/Tfxj (Kj) is an abelian group
because [H,H] ⊂ [Kj ,H] ⊂ Tfxj (Kj) for all j and hence

R(ϕj) = H/Tfxj (Kj),

which completes the proof.

Corollary 4.4. If R(f) = R(f ; [G,H]), then

R(f) =
∑

j∈R(f ;H)

H/Tfxj (q−1 Fix(f
q(xj))).

In particular , if R(f) = R(f ; [G,G]) (for example, if f is eventually com-
mutative), then

R(f) = G/Tf (G).

P r o o f. The first assumption implies that R(f) = R(f ; [Kj ,H]G) for

each j ∈ R(f ;H), where Kj = q−1 Fix(f
q(xj)). Applying Corollary 4.3 we

obtain the stated formula. If we take H = G we obtain

R(f) =
∑

j∈R(f ;G)={1}
G/Tf (G) = G/Tf (G).

Example 6. Let G be a nilpotent group. Then there exists a fully in-
variant central series

1 = Gn+1 ⊂ Gn ⊂ Gn−1 ⊂ . . . ⊂ G1 ⊂ G0 = G

where [Gi−1, G] ⊂ Gi for all i = 1, . . . , n + 1. For any i, k = 0, . . . , n + 1
let fGi/Gk : Gi/Gk → Gi/Gk denote the endomorphism induced by f on
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Gi/Gk. Because [Gi−1/Gi, G/Gi] = 1, the hypothesis of Corollary 4.4 is true
for the short exact sequence

{1} → Gi−1/Gi → G/Gi
qi→ G/Gi−1 → {1}

and therefore

R(fG/Gi) =
∑

j∈R(fG/Gi ;Gi−1/Gi)

Gi−1/Gi

T
f
xj
G/Gi

(q−1
i Fix(fqi(xj)G/Gi−1

))

where xj ∈ G/Gi is such that [qi(x−1
j )] = j for all j. Now since

R(fG/Gi ;Gi−1/Gi) = R(fG/Gi−1)

and R(fG/G1) = Coker(1 − fG/G1) we can compute R(f) starting from
R(fG/G1) and using the previous formula a finite number of times if every
R(fG/Gi) is finite. We recall that

T
f
xj
G/Gi

(q−1
i Fix(fqi(xj)G/Gi−1

)) = (1− fxjG/Gi)(q
−1
i Fix(fqi(xj)G/Gi−1

))

and that Gi−1/Gi is abelian. Hence the problem becomes that of computing
quotients of abelian groups.

The following corollary is an easy consequence of the preliminaries in
Sections 2 and 3.

Corollary 4.5. Let f be an endomorphism of a group G and H ⊂ G
a normal f -invariant subgroup. If R(fyH) = 1 for all y ∈ G then R(f) =
R(f ;H).

P r o o f. For all j ∈ R(f ;H) let xj ∈ G be such that [q(x−1
j )] = j, where

as usual q denotes the projection q : G → G/H. For each y ∈ G we have
i∗yR(fyH) = q−1

∗y ([1]), where q∗y : R(fy) → R(fy;H) and i∗y : R(fyH) →
R(f) are the maps induced by i : H → G and q. Hence if R(fyH) = 1 for all
y ∈ G then q−1

∗y ([1]) = {[1]}. Moreover, as in the proof of 4.1, if y = xj then
the bijection y∗ : R(f) → R(fy) induces a bijection y′∗ : q−1

∗ (j) → q−1
∗y ([1])

and hence each counter-image q−1
∗ (j) consists of a single element. Thus

R(f) = R(f ;H) as claimed.

If we apply this corollary to the case of the commutator subgroup H :=
[G,G] then a weaker condition occurs than the eventual commutativity of f .
In fact, if f is eventually commutative, then R(fyH) = 1 for all y; as shown
in the following example, the converse is not true.

Example 7. Let G := U(3,Z) be the group of 3×3 (upper) unitriangular
matrices over Z, that is, matrices with 1 on the diagonal and 0 below it. It
is a nilpotent torsion free group, generated by the elements a := 1 + E13,
b := 1 + E12 and c := 1 + E23 where Eij is the matrix with 1 in the
ij entry and 0 elsewhere. It is easy to see that ab = ba, ac = ca and
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bc = cba. The commutator subgroup H := [G,G] = 〈a〉 ∼= Z is generated by
a and the quotient is G/H ∼= Z + Z. Let f : G → G be the endomorphism
defined by f(a) := a2, f(b) := b−1 and f(c) := c−2. It is well defined
because f(bc) = f(cba). Then fyH : H → H is the multiplication by 2 for
all y ∈ G, therefore R(fyH) = 1 for all y and hence the corollary implies
that R(f ;H) = R(f). On the other hand, f is not eventually commutative,
because fn(bcb−1c−1) = fn(a) 6= 1 for all n.

For i ∈ {1, 2} let the integers u, xi, yi and zi be given. Then it is
possible to define an endomorphism f : G → G by setting f(a) := au,
f(b) := ax1by1cz1 and f(c) := ax2by2cz2 if and only if u = y1z2− z1y2. Every
endomorphism of G can be defined in this way. Again, if u = 2 it turns out
that R(f) = R(f ; [G,G]) even if f is not eventually commutative.

5. Nielsen numbers of fibre maps. In this section the previous results
are directly applied to the study of Reidemeister sets of fibre maps. In a
straightforward way Theorem 4.1 and Corollaries 4.2, 4.3 are translated
into Theorem 5.1 and Corollaries 5.2, 5.3. Some preliminaries are needed;
results are in Subsection 5.3.

5.1. The generalized Lefschetz number. Let X be a connected, finite CW-
complex. A self-map f of X with a path w in X such that f(w(0)) = w(1)
is called path-based and denoted by (f, w). Let AMpb be the category of all
path-based self-maps. If (f, w) and (g, v) are path-based self-maps of X and
Y respectively, then a morphism h : (f, w) → (g, v) is a map h : X → Y
such that gh = hf and h(w) = v.

We are going to define a functor π : AMpb → G~r which can be viewed
as an extension of the concept of the fundamental group functor. Let (f, w)
be as before and let π(f, w) be the endomorphism of π1(X,w(0)) defined
by π(f, w)(α) := wf(α)w−1 for every α ∈ π1(X,w(0)). If h : (f, w) →
(g, h(w)), then π(h) := (π1(h) : π1(X,w(0)) → π1(Y, h(w(0)))). Now we
take the composition of π and R to obtain a functor Rπ : AMpb → Set
which, by an abuse of notation, we still call R.

Let Fix(f) = {x ∈ X | f(x) = x} be the space of fixed points of f .
Define the function cd : Fix(f) → R(f, w) as follows: for every x ∈ Fix(f)
choose a path λx from w(0) to x and set cd(x) := [λxf(λ−1

x )w−1]. The
counter-image cd−1(ξ) of every ξ ∈ R(f, w) is a set of fixed points, to which
we can associate an integer Ind(ξ) := Ind(cd−1(ξ)) (cf. [B, J]). The integer
Ind(ξ) is the Fixed Point Index of ξ. We now define the generalized Lefschetz
number (cf. [Hu])

L(f, w) :=
∑

ξ∈R(f,w)

Ind(ξ) · ξ

as an element of the free abelian group ZR(f, w) generated by the elements
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of R(f, w). The number of ξ ∈ R(f, w) such that Ind(ξ) 6= 0 is the Nielsen
number of f (cf. [Hu]); the sum of the indices coincides with the classical
Lefschetz number.

Let w and w′ be two base paths for f . If λ is a third path such that
λ(0) = w(0) and λ(1) = w′(0), define the bijection λ∗ : R(f, w)→ R(f, w′)
(called “change of coordinates”) by λ∗[α] := [λ−1αwf(λ)w′−1]; it is easy to
check that at the free group level, λ∗L(f, w) = L(f, w′) because Ind(λ∗ξ) =
Ind(ξ) for every ξ ∈ R(f, w).

5.2. Fibre maps. Let p : (f, w) → (f, p(w)) be a morphism of AMpb

represented by a commutative diagram

E B

E B

f

²²

p //

f̄

²²p //

If p : E → B is a fibration with path-connected fibres, the map f is called
a fibre map. Some of the results about fibre maps can be summed up in the
formula

(1) L(f, w) =
∑

j∈R(f̄ ;p(w))

Ind(j) · λ−1
j∗ i∗L(fbj ; vj)

in which bj is chosen arbitrarily in cd−1(j), fbj is the restriction of f to
p−1(bj), vj is a base path for fbj in the fibre, i∗ is induced by i : p−1(bj)→ E,
and λj∗ : R(f, w)→ R(f, vj) is the change of coordinates determined by the
path λj such that λj(0) = w(0) and λj(1) = vj(0) (cf. [He, Y, HKW, J]).
The formula holds true also in the case in which we have empty fixed point
classes since in that situation, although there is no fbj , the index is zero.

In order to establish a connection between the Nielsen numbers of f and
of fbj and f , we note that from the previous formula we deduce that

(2) N(f) =
∑

j∈ER(f̄ ,p(w))

c(bj)

where ER = {ξ ∈ R(f, p(w)) | Ind(ξ) 6= 0} is the set of all the essential
classes in R(f), and c(bj) is the minimum number of distinct, nonzero sum-
mands in i∗L(fbj , vj) viewed as an element of ZR(f, vj) (for full details see
[HKW]). To see this, observe that λ−1

j1∗i∗R(fbj1 ; vj1)∩λ−1
j2∗i∗R(fbj2 ; vj2) 6= ∅

if and only if j1 = j2. Thus, we must study c(bj).

5.3. Additive formulae for fibre maps. Associated with every j ∈
ER(f, p(w)) there is the exact sequence

π1(Fbj , vj(0)) iπ→ π1(E, vj(0))
pπ→ π1(B, bj)→ 1
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where Fb is the fibre over b ∈ B. Let

k : π1(Fbj , vj(0))→ π1(Fbj , vj(0))/Ker(iπ) ' Ker(pπ)

be the quotient homomorphism; moreover, let fπj := π(f, vj) and fπj :=
π(f, p(vj)) be the images by the functor π.

Theorem 5.1. Suppose that , for every j ∈ ER(f, p(w)), there exists a
subgroup Kj ⊆ π1(E, vj(0)) such that

Kj Ker(pπ) = p−1
π Fix(fπj)

and fπj(Kj) ⊆ Kj. Then

N(f) ≥
∑

j∈ER(f̄ ,p(w))

N(fbj ;Hj)

where Hj := k−1(Tfπj (Kj)). If

R(π(f, vj)) = R(π(f, vj); [Kj ,Ker(pπ)]π1(E))

for every j, then

N(f) =
∑

j∈ER(f̄ ,p(w))

N(fbj ;Hj).

P r o o f. Let

π1(Fbj , vj(0))/Ker(iπ) iπ→ π1(E, vj(0))
pπ→ π1(B, bj)

be the exact sequence associated with j ∈ ER(f, p(w)). Now, using
Lemma 3.2, we obtain a surjection

Aj : i∗(R(fbj ))→R(fbj ;Hj)

with Hj := k−1(Tfπj (Kj)). Thus, c(bj) ≥ N(fbj ;Hj). If

R(π(f, vj)) = R(π(f, vj); [Kj ,Ker(pπ)]π1(E))

then Aj turns out to be a bijection and hence c(bj) = N(fbj ;Hj) because es-
sential classes correspond to essential ones. The conclusion stated is reached
on adding over all j and using formula (2).

Corollary 5.2. If Fix(fπj) = 1 for every j ∈ ER(f, p(w)), then

N(f) =
∑

j∈ER(f̄ ,p(w))

N(fbj ; Ker(iπ)).

P r o o f. Apply Corollary 4.2.

Corollary 5.3. If there is b ∈ Fix(f) such that R(f ; [π1(E), iπ(π1(Fb))])
= R(f), then

N(f) =
∑

j∈ER(f̄ ,p(w))

N(fbj ;Hj)
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where Hj := q−1(Tfπj (p
−1
π Fix(fπj))); we can distinguish the fixed point

classes by just computing the quotient groups Ker(pπ)/Tfπj (q
−1 Fix(fπj)).

P r o o f. Note that if the hypothesis holds true for a b ∈ Fix(f) then it is
satisfied for every b ∈ Fix(f). Then apply 4.4.

Example 8 (Well known, the Klein bottle). The computations of the
Nielsen classes for the Klein bottle were first given by Halpern [Ha]. Here
we show a different approach, following the lines of this paper. Let G be
the subgroup of the isometries of R2 generated by a : (x, y) 7→ (x + 1, y)
and b : (x, y) 7→ (1 − x, y + 1). The orbit space R2/G is the Klein bottle
K, and G is the fundamental group of K with presentation 〈a, b | ba =
a−1b〉. Two self-maps of K are homotopic (with base point fixed) if and
only if the induced endomorphisms on G are the same, because the Klein
bottle is a K(π1(K), 1). It is easy to see that for all u, v, w ∈ Z such that
u(1 + (−1)w) = 0 the endomorphism fπ : a, b 7→ au, avbw is well defined,
and every endomorphism of G belongs to this family. Let f̃0 : R2 → R2 be
defined by

f̃0(x, y) =
{

(vy, wy) if w is even,
(ux+ 1

2 (v − u+ 1)(1− cosπy), wy) if w is odd.

It is an equivariant map and it induces a self-map f : K → K. Moreover,
fπ : a, b 7→ au, avbw. Therefore every self-map of K is homotopic to such a
self-map.

We want to compute the Nielsen number N(f) and the minimum number
MF(f) of fixed points among all the maps homotopic to f . Consider the
projection p : K → S1 of the Klein bottle onto the unit circle S1 = R/Z
given by p(x, y) := [y]. Then p is a fibration with total spaceK, base space S1

and fibre S1. The map induced on the base space is f : S1 3 [y] 7→ [wy] ∈ S1.
If w 6= 1 then all the |1−w| classes ofR(f) = {0, . . . , |1−w|−1} are essential
and consist of the points {bj := [j/(w − 1)]} of S1 for j = 0, . . . , |1−w| − 1;
on the other hand, if w = 1 then N(f) = 0 and it is possible to find a
map homotopic to f without fixed points, just “rotating” along the y-axis.
So consider the case w 6= 1. For every j = 0, . . . , |1 − w| − 1, Fix(f) = 1,
therefore, conditions of Corollary 5.2 are satisfied and hence as in Example 4,

N(f) =
|1−w|−1∑

j=0

N(fbj ).

Let us remark that Ker(iπ) = 1. We have to compute the maps fbj restricted
to the fibres Fbj . If w is even they are constant maps, hence N(fbj ) = 1
and N(f) = |1 − w|. If w is odd then fbj is defined as follows: if we let
dj(α) := (−1)j + 1

2 (1− (−1)j) then
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fbj : [x] 7→
[
dj

(
ux+

1
2

(v − u+ 1)
(

1− cos
πj

1− w
))]

,

which is a self-map of degree (−1)j on S1. Therefore N(fbj ) = |1− (−1)ju|
and hence N(f) = |u(1 − w)|. Note that for all the maps involved the
number of fixed points of f is equal to N(f), up to homotopy in case w = 1.
This means that the Klein bottle is Wecken, i.e. N(f) = MF(f) for all
self-maps f .
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