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The distributivity numbers of finite products of P(w)/fin
by

Saharon Shelah (Jerusalem) and Otmar Spinas (Ziirich)

Abstract. Generalizing [ShSp], for every n < w we construct a ZFC-model where
h(n), the distributivity number of r.o.(P(w)/fin)", is greater than h(n + 1). This answers
an old problem of Balcar, Pelant and Simon (see [BaPeSi]). We also show that both Laver
and Miller forcings collapse the continuum to h(n) for every n < w, hence by the first
result, consistently they collapse it below h(n).

Introduction. For A a cardinal let h(\) be the least cardinal s for
which r.0.(P(w)/fin)* is not k-distributive, where by (P(w)/fin)* we mean
the (full) A-product of P(w)/fin in the forcing sense; so f € (P(w)/fin)* if
and only if f: A — P(w)/fin \ {0}, and the ordering is coordinatewise.

In [ShSp] the consistency of h(2) < b (where h = §(1)) with ZFC has
been proved, which provided a (partial) answer to a question of Balcar,
Pelant and Simon in [BaPeSi|. This inequality holds in a model obtained by
forcing with a countable support iteration of length ws of Mathias forcing
over a model of GCH. That ) = wy in this model is folklore, but the proof
of h(2) = wy is long and difficult.

The two main theorems which imply this are the following:

(a) Whenever some r € VFPv2 N [w]¥ (where P, is the above iteration)
induces a Ramsey ultrafilter on V N [w]* which is a P-filter in VP2 then
this filter is induced by some r; € V0 N [w]* (where Q) is the first iterand
of P,,) and hence belongs to V0.

(b) Whenever some r € V@ N [w]* induces a Ramsey ultrafilter on
VN [w]¥ then this filter is Rudin—Keisler equivalent to the canonical Ramsey
filter induced by the first Mathias real, and this equivalence is witnessed by
some element of V Nw*.
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The following are the key properties of Mathias forcing (M.f.) which are
essential to the proofs of these (see [ShSp| or below for precise definitions):

(1) M.f. factors into a o-closed and a o-centered forcing.

(2) M.f. is Suslin-proper, which means that, firstly, it is simply defin-
able, and, secondly, it permits generic conditions over every countable model
of ZF~.

(3) Every infinite subset of a Mathias real is also a Mathias real.

(4) M.f. does not change the cofinality of any cardinal from above h to
below b.

(5) M.f. has the pure decision property and it has the Laver property.

In this paper we present a forcing )", where 0 < n < w, which is an
n-dimensional version of M.f. which satisfies all the analogues of the five key
properties of M.f. The following list indicates where the analogues of these
properties will be proved:

(1) <> Lemma 1.5,

(2) <> Corollary 1.12,

(3) «<» Corollary 1.11,

(4) < Corollary 1.14,

(5) <> Lemma 1.16 and Lemma 1.18.

In this paper we only prove these. Once this has been done the proof of
[ShSp] can be generalized in a straightforward way to prove (a’) and (b’),
analogues of (a) and (b) above, where (a’) is like (a) except that M.f. is
replaced by Q", and (b’) is as follows:

(b’) Whenever some 7 € V@ N [w]* induces a Ramsey ultrafilter on
VN [w]“ then this filter is Rudin—Keisler equivalent to one of the n (pairwise
non-RK-equivalent) canonical Ramsey ultrafilters induced by the length-
n-sequence of QQ"-generic reals, and the equivalence is witnessed by some
function from V.

Then as in [ShSp] we obtain the following:

THEOREM. Suppose V |= ZFC+ GCH. If P is a countable support itera-
tion of Q™ of length wo and G is P-generic over V, then V|G] E h(n+1) =
w1 Ab(n) = ws.

Besides the fact that the consistency of h(n+1) < h(n) was an open prob-
lem in [BaPeSi], our motivation for working on it was that in [GoReShSp]
it was shown that both Laver and Miller forcings collapse the continuum to
h. Moreover, using ideas from [GoJoSp] and [GoReShSp]| it can be proved
that these forcings do not collapse ¢ below h(w). We do not know whether
they do collapse it to h(w). But in §2 we show that they collapse it to h(n),
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for every n < w. Combining this with the first result we conclude that,
for every n < w, consistently Laver and Miller forcings collapse ¢ strictly
below h(n).

The reader should have a copy of [ShSp] at hand. We do not repeat all the
definitions from [ShSp] here. Notions as Ramsey ultrafilter, Rudin-Keisler
ordering, Suslin-proper are explained there and references are given.

1. The forcing

DEFINITION 1.1. Suppose that Dy,..., D, are ultrafilters on w. The
game G(Dy,..., D,_1) is defined as follows: In his mth move player I
chooses (Ag,...,Ap—1) € Dy X ... X D, _1 and player II responds playing
kp € A mod n- Finally, player IT wins if and only if for every i < n, {k; :
j =imod n} € D; holds.

LEMMA 1.2. Suppose Dy,...,D,_1 are Ramsey ultrafilters which are
pairwise not RK-equivalent. Let (m(l) : | < w) be an increasing sequence
of integers. There exists a subsequence (m(l;) : j < w) and sets Z; € D,
1 < n, such that:

(1) lj+1 — lj > 2 fOT’ all] < w,

(2) Z’i g U]:z mod n[m(l])vm(lj+l)) fOT all i < n,

(3) Zi N [m(l;),m(lj+1)) has precisely one member for every i < n and
7 =1 mod n.

Proof. For j < 3, k < w define
(2n—1)(3k+j+1)—1

Ij,lc = U [ms7ms+1)> Jj = U Ij,k

s=(2n—1)(3k+j) k<w
As the D; are Ramsey ultrafilters, there exist X; € D; such that for every
1< n:
(a) X; C J; for some j < 3,
(b) if X; C J;, then X; N I contains precisely one member, for every
k<w.

Next we want to find Y; € D;, Y; C X;, such that for any distinct
i,i" <n, Z; and Z; do not meet any adjacent intervals I; .

Define h : Xo — X; as follows. Suppose Xy C J;. For every k < w, h
maps the unique element of X¢ N I;; to the unique element of X; which
belongs either to I or to one of the two intervals of the form I;: ;» which
are adjacent to I (note that these are I _1,11 if j = 0, or Lo, 2 if
j=10r I, Lo k+1 if j = 2). As h does not witness that Dy, D; are RK-
equivalent, there exist X! € D;, X! C X; (i < 2) such that h[X}] N X]| = 0.
Note that if n = 2, we can let ¥; = X/. Otherwise we repeat this procedure,
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starting from X, and Xo, and get X/ and X/. We repeat it again, starting
from X7 and X}, and get X{ and XJ. If n = 3 we are done. Otherwise we
continue similarly. After finitely many steps we obtain Y; as desired.

By the definition of I} , it is now easy to add more elements to each Y; in
order to get Z; as in the lemma. The “worst” case is when some Y; contains
integers s < t such that (s,t) NY, = 0 for all u < n. By construction there
is some I C (s,t). For every u < n — 1 pick

xy € [m((2n —1)(Bk +j) + 2u+1),m((2n — 1)(3k + j) + 2u + 2))
and add z, to Y1411 mod n- The other cases are similar. m

COROLLARY 1.3. Suppose Dy, ...,Dyp_1 are Ramsey ultrafilters which
are pairwise not RK-equivalent. Then in the game G(Dy,...,D,_1) player
I does not have a winning strategy.

Proof. Suppose o is a strategy for player 1. For every m < w, i < n let
A7 C D; be the set of all ith coordinates of moves of player I in an initial
segment of length at most 2m + 1 of a play in which player I follows ¢ and
player II plays only members of m.

As the D; are p-points and each A]" is finite, there exist X; € D; such
that YmVi < nVA € A"(X; C* A). Moreover, we may clearly find a strictly
increasing sequence (m(l) : I < w) such that m(0) = 0 and, for all | < w,

Vi <nvA e AMD(X; C AUm(l+1) A X; 0 [m(l),m(l + 1)) # 0).

Applying Lemma 1.2, we obtain a subsequence (m(l;) : j < w) and sets
Z; € D;.

Now let player II in his jth move play k;, where k; is the unique member
of [m(1;), m(lj41)) N X, mod n N Zj mod n if it exists, or otherwise is any mem-
ber of [m(l;),m(l;4+1)) N Xj mod n (note that this intersection is nonempty
by the definition of m(l;41)). Then this play is consistent with o, moreover
XiNZ; C{k; : j =imodn} for every i < n, and hence it is won by player
II. Consequently, o could not have been a winning strategy for player I. m

REMARK. It is easy to see that in 1.2 and 1.3 the assumption that the
D; are pairwise not RK-equivalent is necessary.

DEFINITION 1.4. Let n < w be fixed. The forcing @ (really Q™) is defined
as follows: Its members are (w,A) € [w]<* x [w]*. If (k; : j < w) is the
increasing enumeration of A we let A; = {k; : j = i mod n} for i < n, and
if (I; : j < m) is the increasing enumeration of w then let w; = {l; : j =
i mod n}, for i < n.

Let (w, A) < (v, B) if and only if wN (max(v) + 1) = v, w; \ v; € B; and
A; C B;, for every i < n.
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If p € Q, then wP, w!, AP, A? have the obvious meaning. We write p < ¢
and say “p is a pure extension of ¢” if p < ¢ and w? = wq.

If Dg,...,D,_1 are ultrafilters on w, let Q(Dy,...,D,_1) denote the
subordering of @ containing only those (w, A) € Q with the property A; €
D;, for every i < n.

LEMMA 1.5. The forcing Q is equivalent to (P(w)/fin)"*Q (G, . .. Gp_1),
where (Go,...,Gn_1) is the canonical name for the generic object added by
(P(w)/fin)", which consists of n pairwise not RK-equivalent Ramsey ultra-

filters.

Proof. Clearly, (P(w)/fin)" is o-closed and hence does not add reals.
Moreover, members (zo,...,Tp—1) € (P(w)/fin)" with the property that if
A =|J{x;:i <n}, then z; = A; for every i < n, are dense. Hence the map
(w, A) — ((Ag,..., An_1),(w, A)) is a dense embedding of the respective
forcings.

That Go,...,Gn_1 are ((P(w)/fin)"-forced to be) pairwise not RK-
equivalent Ramsey ultrafilters follows by an easy genericity argument and
again the fact that no new reals are added. =

NoOTATION. We will usually abbreviate the decomposition of @ from
Lemma 1.5 by writing Q = Q' * Q”. So members of Q' are A, B € [w]¥
ordered by A; C B; for all i < n; Q" is Q(Go, ... ,Gn,l). It is easy to see
that Q" is o-centered. If G is a Q-generic filter, we denote by G’ * G” its

decomposition according to Q@ = Q'*Q", and we write G’ = ( 0y Gh 1)

DEFINITION 1.6. Let I C Q(Dy, ..., D,_1) be open dense. We define a
rank function rk; on [w]<* as follows. Let tk;(w) = 0 if and only if (w, A) € T
for some A. Let rk;(w) = « if and only if « is minimal such that there exists
A € D)y| mod n With the property that for every k € A, rky(w U {k}) = 3
for some < a. Let rky(w) = oo if for no ordinal «, rk;(w) = a.

LEmMA 1.7. If Dy, ..., D,_1 are Ramsey ultrafilters which are pairwise
not RK-equivalent and I C Q(Dy,...,D,_1) is open dense, then for every
w € [w]<¥, 1k (w) # oo.

Proof. Suppose we had rk;(w) = oo for some w. We define a strategy
o for player I in G(Dy, ..., D,_1) as follows: o(0) = (Ag, ..., Apn_1) € Dy X
... X Dy, _1 such that for every k € Aj,y| mod n, rkr(wU{k}) = oco. This choice
is possible by assumption and by the fact that the D; are ultrafilters. In gen-
eral, suppose that o has been defined for plays of length 2m such that when-
ever ko, ...,kmn_1 are moves of player II which are consistent with o, then
ko < k1 < ... < ky—1 and for every {kzo < ... < kilfl} - {ko,... ,kmfl}
with i; = jmod n, j < I, we have rky(w U {ki,,..., ki, ,}) = oo. Let S
be the set of all {k;, < ... < kj,_,} € {ko,...,km—1} with i; = j mod n,
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J <l,and I = mmod n. As Dy|4+m mod n 18 an ultrafilter, by induction
hypothesis, if we let

Ajw|+m modn = 1k > km—1: Vs € Sakr(wUsU{k}) = o0)},

we have Ajy|4+m mod n € Djw|+m mod n- For i # |w| 4+ m mod n, choose A; €
D; arbitrarily, and define

O'<,IC0, e kim,1> = <A0, N ,An,1>.

Since by Lemma 1.2, ¢ is not a winning strategy for player I, there
exist kg < ... < kn, < ... which are moves of player II consistent with o,
such that, letting A = {k,, : m < w}, we have (w, A) € Q(Dy,...,Dy_1).
By construction we see that for every (v, B) < (w, A), tk;(v) = oo. This
contradicts the assumption that [ is dense. =

DEFINITION 1.8. Let p € Q. A set of the form w? U {kj,| < Kjuw|+1
< ...} € [w]¥ is called a branch of p if and only if max(wP) < kj,| and
{kj:j=1imodn} C A? for every i < n. A set F C [w]<¥ is called a front
in p if for every w € F, (w, AP) < p and for every branch B of p, BNm € F
for some m < w.

LEMMA 1.9. Suppose Dy, ..., D, _1 are pairwise not RK-equivalent Ram-
sey ultrafilters. Suppose p € Q(Dy,...,Dp—1) and (I, : m < w) is a family
of open dense sets in Q(Dy,...,Dn_1). There exists ¢ € Q(Do,...,Dn_1),
q <° p, such that for every m, {w € [W]<¥ : (w, A9) € I, A (w, A?) < q} is
a front in q.

Proof. First we prove this in the case I,,, = I for all m < w, by induction
on rky(wP). We define a strategy o for player Iin G(Dy, ..., D,_1) as follows.
Generally we require that

0’<k7(),...,kr>i ga(ko,...,/{$>i

for every s < r and ¢ < n, where o(ko,...,k,), is the ith coordinate of
o{ko,...,kr). We also require that o ensures that the moves of II are in-
creasing. Define o(()) = (Ao, ..., A,_1) such that for every k € Aj,p| mod n»
rky(w? U{k}) < rky(wP).

Suppose now that o has been defined for plays of length 2m, and let
(ko,...,km—1) be moves of II, consistent with o. The interesting case is
that of m — 1 = 0 mod n. Let us assume this first. By the definition of o()
and the general requirement on o we conclude rky(w? U{k,,—1}) < rky(wP).
By induction hypothesis there exists (Ag, ..., An—1) € Do X ...x D,_; such
that, letting A = J,_,, 4;, we have (w?, A) < p and

{vew<: (A el A) < (W U{kn,_1},A)}
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is a front in (w? U {k;,,_1}, A). We shrink A so that, letting
0'<]{50, ceey km_1> = <A0, e ,An_1>,

the general requirements on o above are satisfied.

In the case of m — 1 # 0 mod n, define o(ko, ..., k,_1) arbitrarily, but
consistently with the rules and the general requirements above.

Let A = {k; : i < w} be moves of player II witnessing that o is not
a winning strategy. Let ¢ = (w?, A). Let B = wP U {ljyr| < ljr|+1 < ...}
be a branch of ¢. Hence [j,» = k; for some j = 0modn. Then
wP U{k; } U{ljwp |41, ljwr|+2, - - -} is @ branch of (w? U{k;},0(ko,...,k;)). By
the definition of o there exists m such that (B Nm,o(ko,...,k;)) € I. As
(BNm,A) < (BNm,o(ko,...,k;)) and I is open we are done.

For the general case where we have infinitely many I,,, we make a diag-
onalization, using the first part of the present proof. Define a strategy o
for player I satisfying the same general requirements as in the first part as
follows. Let o(()) = (Ao, ..., A,_1) be such that, letting A = |J{4; : i < n},
(wP, A) <Y p and it satisfies the conclusion of the lemma for Iy. In general, let
o(koys .- km—1) = (Ao,..., An_1) be such that, letting A = [J{A; : i < n},
for every v C {k; : i < m} and j < m, (wP Uv, A) <° (wP Uwv, AP) and it
satisfies the conclusion of the lemma for I; (in fact we do not have to consider
all such v here, but it does not hurt doing it). Then if A = {k; : i < w} are
moves of player II witnessing that ¢ is not a winning strategy for I, similarly
to the first part it can be verified that ¢ = (w?, A) is as desired. =

COROLLARY 1.10. Let Dy, ..., D, _1 be pairwise not RK-equivalent Ram-

sey ullrafilters. Suppose A € [w]® is such that for every i <mn and X € D,
A; C* X. Then A is Q(Dy,...,Dy,_1)-generic over V.

Proof. Let I C Q(Dy,...,D,_1) be open dense. Let w € [w]<¥. It is
easy to see that the set

I, ={(v,B) € Q(Dy,...,Dp_1):
(w U [v\ min{k € V)| mod n : max(w)}], B) € I'}

is open dense. If we apply Lemma 1.9 to p = (), w, . ..,w) and the countably
many open dense sets I, where w € [w]<%, we obtain ¢ = (0, B). Let
{a; : i < w) be the increasing enumeration of A. Choose m large enough so
that for each i < n, A; \ {a; : 7 < mn} C B;. Let w = {a; : j < mn}. By
construction, there exists v C AN B\ (@mn—1+ 1) such that (v, B) € I,, and
wUv = ANk for some k < w. Hence (w U v, B) € I, and so the filter on
Q(Dy,...,D,_1) determined by A intersects I. As I was arbitrary, we are
done. m
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An immediate consequence of Lemma 1.5 and Corollary 1.10 is the fol-
lowing.

COROLLARY 1.11. Suppose A€ w)¥ is Q-generic over V., and B e [w)¥
18 such that B; C A; for every i < n. Then B is Q-generic over V as well.

Recall that a forcing is called Suslin if its underlying set is an analytic
set of reals and its order and incompatibility relations are analytic subsets
of the plane. A forcing P is called Suslin-proper if it is Suslin and for every
countable transitive model (NN, €) of ZF~ which contains the real coding P
and for every p € P N N, there exists an (N, P)-generic condition extend-
ing p. See [JuSh] for the theory of Suslin-proper forcing and [ShSp] for its
properties which are relevant here.

COROLLARY 1.12. The forcing Q is Suslin-proper.

Proof. It is trivial to note that @ is Suslin, without parameter in its
definition. Let (N, €) be a countable model of ZFC™, and let p € @ N N.
Without loss of generality, |wP| = 0 mod n. Let A € [w]* NV be Q-generic
over N such that p belongs to its generic filter. Hence w! C A; C w! U
(AP\ (max(wP) + 1)) for all i < n. But if ¢ = (wP, A), then clearly ¢ <° p
and ¢ is (N, Q)-generic, as every B € [w]* which is Q-generic over V and
contains ¢ in its generic filter is a subset of A and hence ) N N-generic over
N by Corollary 1.11 applied in N. =

The following is an immediate consequence of Corollary 1.12.

COROLLARY 1.13. If p € Q and (1, : n < w) are Q-names for members
of V, there exist ¢ € Q, ¢ <° p and (X,, : n < w) such that X,, € V N[V]*
and q |-q Vn(m, € Xp).

COROLLARY 1.14. Forcing with @) does not change the cofinality of any
cardinal X with cf(X\) > h(n) to a cardinal below h(n).

Proof. Suppose there were a cardinal k < h(n) and a Q-name f for a
cofinal function from s to A. Working in V' and using Corollary 1.13, for
every a < Kk we may construct a maximal antichain (p§ : 8 < ¢) in Q

and (X§ : 8 < c) such that for all 3 < c, wPs = ), Xg e [V]*NV and
p3 H_Q fla) € X5

Then clearly A, = ((AY” : i < n) : § < ¢) is a maximal antichain in
(P(w)/fin)". By & < h(n), (Aa : @ < k) has a refinement, say .A. Choose
(A; i <n) €A Let A=[J{4i:i<n}. Wemay assume that the A; also
have the meaning from Definition 1.4 with respect to A. For each o < &

there exists B(a) such that (A; : i < n) <(p(w)/fin)» (A?gm) 14 < n). Then

7
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clearly

0, 4) |- range(f) | XG0 < K}
But as cf(A) > h(n) and k < h(n), we have a contradiction. m

LEMMA 1.15. Suppose Dy,...,D,_1 are pairwise not RK-equivalent
Ramsey ultrafilters. Then Q(Dy, ..., Dy,—_1) has the pure decision property
(for finite disjunctions), i.e. given a Q(Do, ..., Dyp_1)-name 7 for a member

of {0,1} and p € Q(Dy,...,Dy—_1), there exist ¢ € Q(Dy,...,Dp_1) and
i € {0,1} such that ¢ <° p and q IFo(po,...pw 1y T =1

Proof. Theset I = {r € Q(Dy,...,D,_1) : r decides 7} is open dense.
By a similar induction on rk; as in the proof of Lemma 1.9 we may find
q € Q(Do,...,Dy_1), ¢ <° p, such that for every ¢’ < g, if ¢’ decides T
then (wq/,ﬁq) decides 7. Now again by induction on rk; we may assume
that for every k € Al (w? U {k}, A9) satisfies the conclusion of the

|w?] mod n? o
lemma, and hence by the construction of ¢, (w? U {k}, A?) decides 7. But
then clearly a pure extension of ¢ decides 7, and hence ¢ does. m

LEMMA 1.16. Lemma 1.15 holds if Q(Dy,...,D,_1) is replaced by Q.
Proof. Suppose p € @, 7 is a Q-name and p H—Q 7 € {0,1}. As

AP H—Q, “pe Q(GO, ... ,Gn—1)”, by Lemma 1.15 there exists a Q-name A
such that

AP |- “(wp,j) ceQ" N (wp,Z) <pA (wp,Z) decides 77.

As Q' does not add reals there exist Ay, Ay € [w]¥ NV such that A; C AP
and A, g A = A,. Letting B = A; N Ay we conclude (w?,B) € Q,
(wP, B) <% p and (wP, B) decides 7. m

The rest of this section is devoted to the proof that if the forcing @ is
iterated with countable supports, then in the resulting model cov(M) = wy,
where M is the ideal of meagre subsets of the real line, and cov(M) is the
least number of meagre sets needed to cover the real line. Hence for every
n < w, we obtain the consistency of cov(M) < h(n).

DEFINITION 1.17. A forcing P is said to have the Laver property if for
every P-name f for a member of “w, g € “wNV and p € P, if

plp Vn <w(f(n) <g(n)),
then there exist H : w — [w]<¥ and ¢ € P such that H € V, ¥n < w
(|H(n)| <2"), ¢ <p and
0 lp < w(f(n) € H).
It is not difficult to see that a forcing with the Laver property does not
add Cohen reals. Moreover, by [Shb, 2.12, p. 207] the Laver property is
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preserved by a countable support iteration of proper forcings. See also [Go,
6.33, p. 349] for a more accessible proof.

LEMMA 1.18. The forcing QQ has the Laver property.

Proof. Suppose f is a Q-name for a member of “w and g € “wNV such
that p [ Vn < w(f(n) < g(n)). We shall define ¢ <° p and (H(3) : i < w)
such that |H(z)] < 2% and ¢ o Vi(f(i) € H(i)). We may assume |wP| =
0 mod n and min(AP) > max(w?).

By Lemma 1.15 choose gy <° p and K such that gg -0 f(0) = K°,
and let H(0) = {K"}.

Suppose ¢; <" p, (H(j) : j < i) have been constructed and let a’ be the
set of the first i + 1 members of A%. Let (v* : k < k*) list all subsets v
of a® such that v; C (a'); for every | < n (see Definition 1.4). Then clearly
k* < 2!, By Lemma 1.15 we may shrink A% k* times so as to obtain
A and (K;™ : k < k*) such that for every k < k*, (w% U v*, A) o
fi+1) = K;™'. Without loss of generality, min(A4) > max(a’). Let gi1
be defined by w%+' = wP and A%+ = a' U A’, where A’ is A without
its first (¢ + 1) mod n members. Let H(i + 1) = {K;"' : k < k*}. Then
¢ o f(i+1) € H(i + 1). Finally, let ¢ be defined by w? = w? and
A? = J{a' : i < w}. Then q and (H(i) : i < w) are as desired. m

As explained above, from Lemma 1.18 and Shelah’s preservation theorem
it follows that if P is a countable support iteration of () and G is P-generic
over V', then in V[G] no real is Cohen over V; equivalently, the meagre sets
in V' cover all the reals of V[G]. Now starting with V' satisfying CH we
obtain the following theorem.

THEOREM 1.19. For every n < w, the inequality cov(M) < h(n) is con-
sistent with ZFC.

2. Both Laver and Miller forcings collapse the continuum
below each h(n)

DEFINITION 2.1. Let p C <“w be a tree. For any 7 € p let succ,(p) =
{n < w:n™(n) € p}. We say that p has a stem, and denote it stem(p), if
there is 7 € p such that [succ,(p)| > 2 and for every v C 1, |succ, (p)| = 1.
Clearly, stem(p) is uniquely determined, if it exists. If p has a stem, by p~ we
denote the set {n € p : stem(p) C n}. We say that p is a Laver tree if p has a
stem and for every n € p~, succ,(p) is infinite. We say that p is superperfect
if for every n € p there exists v € p with n C v and |[succ,(p)] = w. We
denote by LL the set of all Laver trees, ordered by reverse inclusion, and by
M the set of all superperfect trees, ordered by reverse inclusion. L, M is
usually called Laver, Miller forcing, respectively.
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THEOREM 2.2. Suppose that G is LL-generic or M-generic over V. Then
in VIG], [¢V] = [b(n)]".

Proof. Completely similarly to [BaPeSi| for the case n = 1, a base tree
T for (P(w)/fin)" of height h(n) can be constructed, i.e.

(1) T ( (w)/fin)™ is dense;

(2) (T,2*) is a tree of height h(n);

(3) each level Ti,, a < h(n), is a maximal antichain in (P(w)/fin)";
(4) every member of T has 2* immediate successors.

It follows easily that, firstly, every chain in T of length of countable
cofinality has an upper bound, and secondly, every member of T has an
extension in T}, for arbitrarily large o < h(n).

Using 7', we will define an L-name for a map from h(n) onto ¢. For p € LL
and {ng,...,nm—1} € [p7]"™, let AI{)n i<n) = (SUCCqy, (p) 1@ <n).

By induction on « < ¢ we will construct (pa,0a,va) € L X h(n) x ¢ such
that the following clauses hold:

(5) if {no,-..,Mm—1} € [pa]™, then AI{); <ot € Toas
(6) if ﬁ < «, 5/3 - 50&7 {7707"'77777»—1} € [ a]n N [pﬁ]n then A%{); 1<n}?

APS are incompatible in (P(w)/fin)™;

{ni:i<n}
(7) if p € L, v < ¢, then for some o < ¢, every extension of p, is
compatible with p and v, = 7.

At stage «, by a suitable bookkeeping we are given v < ¢, p € L, and
have to find 4, po such that (5)—(7) hold. For n € p~ let B,, = succ,(p); for
ne€<“w\p~, By =w. Let ({nd,...,nH_1} i< w) list [<“w]™ so that every
member is listed R times.

Inductively we define (¢; : i < w) and (B¢ : n € ~“w, ¢ € <“2) such that

(8) Bf € [w]” and (& : i < w) is a strictly increasing sequence of
ordinals below h(n);
(9) Bg = B77§
(10) for every i < w, the map g +— <BS€.’ . ,Bf;:-z 1) is one-to-one from
12 into Tg,;
(11) for every i < k and ¢ € ¥12, B¢ C* Bgl*t! C* Bg.

Suppose that at stage i of the construction, (§; : j < i) and (B2
ne{m,...,n._| :j < i}, o € =<2) have been constructed. For n €
{nG,...,nh_1} and ¢ € =72, if BZ is not yet defined, there is no problem
to choose it so that (8) and (11) hold. Next by the properties of T' it is
easy to find & and Bg, for every ¢ € “"'2 and n € {nf,...,n},_1}, so that
(8)—(11) hold up to .
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By the remark following the properties of T', letting d, = sup{§; : i < w},
for every n € <“w and g € “2, there exists B¢ € [w]” such that

(12) for all i < w, BZ C* Bl
(13) for all {no, ..., -1} € [S“w]™, (BE,..., B2 ) €T;,.
For o € “2 let p¢ € L be defined by
stem(p?) = stem(pa), Vi € (p?)~ (succ, (p?) = By).
It is easy to see that every extensic)rgl of p? is compatible with p,. Moreover,
if {no,...,Mm—1} € [(p?)~], then A?n-:i<n} € Ts,, by construction. Hence we
have to find ¢ € “2 such that, letting p, = p?, (6) holds. Note that for every
{10,y Mn-1} € [F“w]™ and B < a with 65 = o and {0, ..., Nn-1} € [p5]"
there exists at most one p € “2 such that {ng,...,m,—1} € [(p?)~]" and
Ap° APs
{ni:i<n}’ A{m:i<n} -

and by the fact that T, is an antichain, either AI{);:Kn} = A‘Eii:i<n} or

are compatible in (P(w)/fin)". In fact, by construction

P AP
{nii<n} “H{mixi<n}
incompatible. Hence, as Ny - |a] < ¢ we may certainly find ¢ such that,
letting po, = p? and v, =7, (5)—(7) hold.

But now it is easy to define an L-name f for a function from h(n) to
¢ such that for every o < ¢, po | f(da) = 7a. By (7) we conclude
. “f :h(n)” — " is onto”.

A similar argument works for Miller forcing. m

Combining Theorem 2.2 with Con(h(n + 1) < h(n)) from §1 we obtain
the following:

they are incompatible; and moreover, for o # o, A are

COROLLARY 2.3. For every n < w, it is consistent that both Laver and
Miller forcings collapse the continuum (strictly) below h(n).
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