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How to recognize a true Σ0
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Etienne M a t h e r o n (Talence)

Abstract. Let X be a Polish space, and let (Ap)p∈ω be a sequence of Gδ hereditary
subsets of K(X) (the space of compact subsets of X). We give a general criterion which
allows one to decide whether

⋃
p∈ω Ap is a true Σ0

3 subset of K(X). We apply this criterion

to show that several natural families of thin sets from harmonic analysis are true Σ0
3.

1. Introduction. In this paper, we are interested in a particular instance
of the following problem: let X be a separable metric space, and denote by
Σ0
ξ(X ) (resp. Π0

ξ(X )) the additive (resp. multiplicative) Borel classes of X .
The problem is to find some simple criterion allowing one to decide whether
a given Σ0

ξ set A ⊆ X is a “true” Σ0
ξ , that is, a Σ0

ξ set which is not Π0
ξ .

As a matter of fact, we will limit ourselves to the third level of the Borel
hierarchy (Gδσ and Fσδ sets). Moreover, since the examples we have in mind
are ideals of compact sets coming from harmonic analysis, we will concen-
trate on proving criteria of “true-Σ0

3-ness” for ideals of compact subsets of
some Polish space X. We denote by K(X) the space of all compact subsets
of X, equipped with its natural (Polish) topology, generated by the sets
{K ∈ K(X) : K ∩ V 6= ∅} and {K ∈ K(X) : K ⊆ V }, where V is an open
subset of X. For any subset M of X, we let K(M) = {K ∈ K(X) : K ⊆M}.

In this particular setting, it turns out that the simplest nontriviality
condition is enough to ensure true-Σ0

3-ness. To be precise, let (Ap)p∈ω be
a sequence of dense Gδ hereditary subsets of K(X), and let A =

⋃
p∈ω Ap.

Assume that A is an ideal of K(X), and that the union is “nontrivial” in
the following sense: for each nonempty open set V ⊆ X and for each p ∈ ω,
Ap ∩ K(V ) is a proper subset of A ∩ K(V ). Then one can conclude that A
is a true Σ0

3 set.
We prove this in the first part of the paper together with some related

results. We apply these results in the second part to show that quite a lot of
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natural families of thin sets from harmonic analysis happen to be true Σ0
3

(a rather curious descriptive phenomenon). In particular, we show that if G
is a second-countable nondiscrete locally compact abelian group, then the
family H of compact Helson subsets of G is a true Σ0

3. The same result holds
within any M0 set, and H is also a true Σ0

3 inside the countable sets. In the
case of the circle group, we already proved these results in [M]. However,
the proofs given there were somewhat obscured by an immoderate use of
constructions which are very classical in harmonic analysis, but still rather
technical. In the present paper, we actually use very little harmonic analysis.

2. General results. In this section, X is a Polish space, K(X) is the
space of compact subsets of X, and Kω(X) is the family of countable com-
pact subsets of X.

Definition 1. Let A be a subset of K(X).

(a) A is said to be hereditary if it is downward closed under inclusion.
(b) A is an ideal of K(X) if it is hereditary and stable under finite unions.
(c) If A is hereditary, we say that A is a big subset of K(X) if it contains

a dense Gδ hereditary subset of K(X).

It is quite possible that any comeager hereditary subset of K(X) is big,
but we are unable to prove it.

Definition 2. Let M1 and M2 be two subsets of K(X). We say that
M1 is nowhere contained in M2 if for each nonempty open set V ⊆ X,
M1 ∩ K(V ) is not contained in M2.

We can now state the main results of this section.

Theorem A. Let (Ap)p∈ω be a sequence of nonempty hereditary subsets
of K(X), and let A =

⋃
p∈ω Ap. Assume that A is a big ideal of K(X).

(a) If A is nowhere contained in any Ap, then A is not Π0
3 in K(X).

(b) If the perfect sets in A are nowhere contained in any Ap, then the
family of perfect sets in A is not Π0

3 in K(X).
(c) If the finite sets in A are nowhere contained in any Ap, then A ∩

Kω(X) is not relatively Π0
3 in Kω(X).

Theorem A follows immediately from a more precise and less readable
result, Theorem B below, which we will state after a few definitions.

In the sequel, we will use the notations B and B1 for the following families
of compact sets: either B = B1 = K(X), or B = B1 = the family of perfect
compact subsets of X, or else B = {∅} ∪ {{x} : x ∈ X} and B1 = {K ∈
K(X) : K is of the form {x} ∪ {xn : n ∈ ω}, where (xn) ⊆ X and xn → x}.
Notice that in each case, ∅ ∈ B and B is a Gδ subset of K(X).
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IfM is a subset of K(X), we denote byMf the family of compact subsets
of X which are finite unions of elements of M.

We denote by 2ω the Cantor space of all infinite 0-1 sequences, endowed
with its usual (compact, metrizable) topology.

If α ∈ 2ω and p ∈ ω, we define αp ∈ 2ω by αp(q) = α(〈p, q〉), where
(p, q) 7→ 〈p, q〉 is any fixed bijection from ω2 onto ω.

Finally, let Q = {α ∈ 2ω : ∃k ∀n ≥ k α(n) = 0}, and W = {α ∈ 2ω :
∃p αp 6∈ Q}. It is well known that W is a true Σ0

3 subset of 2ω (see [Ke2]).
Our slightly more precise version of Theorem A now reads as follows.

To deduce Theorem A from it, one just has to take B = K(X) in case (a),
B = the perfect subsets of X in case (b), and B = {∅} ∪ {{x} : x ∈ X} in
case (c).

Theorem B. Let (Ap)p∈ω be a sequence of (nonempty) hereditary subsets
of K(X), and let A be any big subset of K(X). Assume that (A ∩ B)f is
nowhere contained in any Ap. Then there exists a continuous map α 7→ E(α)
from 2ω into K(X) such that :

• For each α ∈ 2ω, E(α) ∈ B1.
• If α ∈W, then E(α) ∈ Af .
• If α 6∈W, then E(α) 6∈ ⋃p∈ω Ap.

In particular , there is no Π0
3 set M ⊆ K(X) such that Af ∩ B1 ⊆ M∩

B1 ⊆
⋃
p∈ω Ap.

As an immediate consequence, we get a kind of “Baire category theorem”
for big Π0

3 ideals:

Corollary. Let A ⊆ K(X) be a big Π0
3 ideal. If (Ap)p∈ω is a sequence

of hereditary subsets of K(X) such that A ⊆ ⋃p∈ω Ap, then there exist an
integer p and a nonempty open set V ⊆ X such that A ∩K(V ) ⊆ Ap.

Some simple remarks may help to justify the hypotheses of Theorem B.
Assume that X is perfect.

1) If A is not big, the result is not true. For example, let A be the ideal
of finite sets and Ap = {K ∈ K(X) : card(K) ≤ p} (p ∈ ω); then A is
nowhere contained in any Ap, but it is obviously an Fσ set.

2) One cannot drop the hypothesis that A is an ideal. For example, let
D = {xn : n ∈ ω} be a countable dense subset of X, and let G = X \ D.
Define A = K(G) ∪⋃n∈ω K({xn}) and Ap = K(G) ∪⋃n≤pK({xn}). Then
A is big, the Ap’s are hereditary and A is nowhere contained in any Ap; yet
A is Π0

3 (it is the union of a Gδ and a countable set).
3) Finally, one cannot remove the hereditarity assumption on the Ap’s.

For example, let {Kp : p ∈ ω} be any countable dense subset of K(X) (the
Kp’s being pairwise distinct), and let Ap = K(X) \ {Kn : n > p}.
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In the proof of Theorem B, we will make use of the following two lemmas.
The first one is easy; the second one is proved by applying the Baire category
theorem in 2ω (identified with P(ω)).

Lemma 1. The map φ : K(X) × K(X) → K(X) defined by φ(K,L) =
K ∪ L is (continuous and) open.

Lemma 2 ([Ke1]). Let G ⊆ K(X) be Gδ, F ∈ K(X), and let (Fm)m∈ω be
a sequence converging to F in K(X). Assume that for each finite set I ⊆ ω,
the set F ∪⋃m∈I Fm belongs to G. Then the compact set F ∪⋃m∈ω Fm is
the union of two elements of G.

Next, we introduce some notation.
Recall that we denote by 〈p, q〉 the image of a pair (p, q) under some

fixed bijection from ω2 onto ω. The image of an integer n under the inverse
map will be denoted by ((n)0, (n)1).

Let 2<ω be the set of all finite 0-1 sequences (including the empty se-
quence). We write |s| for the length of a sequence s ∈ 2<ω. If s ∈ 2<ω (and
s 6= ∅), we denote by s′ the immediate predecessor of s in the extension
ordering.

If α ∈ 2ω and n ∈ ω, we denote by αdn the length-n initial segment of α;
thus, if n ≥ 1, then αdn = (α(0), . . . , α(n− 1)).

Next, we define inductively a sequence (θp)p∈ω of functions from 2<ω

into ω ∪ {+∞} in the following way:

(0) θp(∅) = +∞ for all p ∈ ω.
(i) If |s| = n+ 1 and (n)0 > p, then θp(s) = θp(s′).

(ii) If |s| = n+ 1, (n)0 ≤ p and s(n) = 0, then

θp(s) =
{
θp(s′) if θp(s′) < +∞,
n if θp(s′) = +∞.

(iii) If |s| = n+ 1, (n)0 ≤ p and s(n) = 1, then θp(s) = +∞.

In other words, if we define Ap(s) = {m < |s| : (m)0 ≤ p}, then θp(s) =
min{m ∈ Ap(s) : ∀m′ ∈ Ap(s), m′ ≥ m, s(m′) = 0} (with the convention
that min(∅) = +∞). Thus, if we denote by sp : Ap(s)→ {0, 1} the restriction
of s to Ap(s), then θp(s) indicates the beginning of the longest “cofinal”
0-segment in sp.

Finally, we define another sequence of functions from 2<ω into ω ∪
{+∞} by

mp(s) = max(〈p, 0〉, θp(s)).
The following facts will be useful later.

Claim 1. Let p ∈ ω and α ∈ 2ω. Assume that αl ∈ Q for all l ≤ p.

(a) The sequence (mp(αdn))n∈ω is eventually finite-valued and constant.
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(b) If we let Mp = limn→∞mp(αdn), then α(Mp) = 0 and

∀n ≥Mp mp(αdn+1) = Mp and ((n)0 > p or α(n) = 0).

P r o o f. Since for each s ∈ 2<ω, mp(S) ≥ θp(s) and the first coordinate
of mp(s) is ≤ p, we may content ourselves with proving (a) and (b) with θp
in place of mp.

By definition of Q, there is a smallest integer N with the following prop-
erties:

(N)0 ≤ p, ∀n ≥ N (n)0 ≤ p⇒ α(n) = 0.
The claim will be proved if we can show that θp(αdn+1) = N for all n ≥ N .

(i) First, θp(αdn+1) = θp(αdN+1) for every integer n ≥ N . This follows
by induction from the definition of the function θp: by the choice of N , we
have α(N) = 0 and (N)0 ≤ p, hence θp(αdN+1) < +∞; and if n > N , then
either (n)0 > p or α(n) = 0, so θp(αdn+1) = θp(αdn) for all n > N .

(ii) By (i), it is now enough to check that θp(αdN+1) = N . Let

N1 =
{

the greatest n < N such that (n)0 ≤ p if there is any,
−1 if there is no such n.

By the choice of N , we have α(N1) = 1 if N1 ≥ 0; thus, in both cases
θp(αdN1+1) = +∞. Now, by the choice of N1, we also have (n)0 > p for all
n such N1 < n < N . This implies that θp(αdN ) = θp(αdN1+1) = +∞. Thus
θp(αdN+1) = N .

Proof of Theorem B . The result is trivial if X is not perfect (one just
has to let E(α) ≡ {x0}, where x0 is an isolated point of X). Hence, from
now on, X will be perfect.

For simplicity, we assume first that X is compact. We fix some metric
compatible with the topology of X and we choose a complete metric δ for
B, which is possible since B is a Gδ subset of K(X).

Since each Ap is hereditary, the hypotheses of Theorem B remain un-
changed if we replace Ap by

⋃
l≤pAl. Thus, we may assume that the se-

quence (Ap)p∈ω is nondecreasing.
Finally, let G be a dense Gδ hereditary subset of K(X) contained in A.

We can write G =
⋂
n∈ω Un, where (Un)n∈ω is a nonincreasing sequence of

hereditary open subsets of K(X) (if (Wn)n∈ω is any nonincreasing sequence
of open sets such that G =

⋂
n∈ωWn, let Un = {K ∈ K(X) : ∀L ⊆ K

L ∈ Wn}).
Claim 2. For each positive integer N , the set {(x,K1, . . . ,KN ) ∈ X ×

BN : {x} ∪⋃Ni=1Ki ∈ G} is dense in X × BN .

P r o o f. By Lemma 1, the set {(K0,K1, . . . ,KN ) ∈ K(X)N+1 :
⋃N
i=0Ki

∈ G} is a dense Gδ subset of K(X)N+1; and since G is hereditary, this
implies that the set {(x,K1, . . . ,KN ) ∈ X × K(X)N : {x} ∪⋃Ni=1Ki ∈ G}
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is a dense Gδ subset of X × K(X)N . Thus, the claim is true if B = K(X).
If B is the family of perfect sets, which is comeager in K(X) because X
is perfect, the claim follows from the Baire category theorem. Finally, if
B = {∅} ∪ {{x} : x ∈ X}, we use again the fact that G is hereditary.

Now, we shall construct inductively a sequence (jm)m∈ω of positive inte-
gers and, for each s ∈ 2<ω, a compact set E(s) ⊆ X and a nonempty open
set V (s) ⊆ X.

For s 6= ∅, E(s) will be written as E(s) =
⋃
m<|s|E

m(s), where each

Em(s) is compact and of the form Em(s) =
⋃jm
j=1E

m
j (s) (Emj (s) compact).

We also construct (for s ∈ 2<ω \ {∅}, 0 ≤ m < |s|, and 1 ≤ j ≤ jm)
nonempty open sets V mj (s) ⊆ X, and we let V m(s) =

⋃jm
j=1 V

m
j (s).

The closure of any set A involved in the construction will be denoted
by A.

The following requirements have to be fulfilled (to avoid typographic
heaviness, we have omitted more often than not obvious information like “if
|s| ≥ 1”, “m < |s|” or “j ≤ jm”).

(1) Emj (s) ∈ A ∩ B and Em(s) 6= ∅.

(2)




Emj (s) ⊆ V mj (s) ⊆ V mj (s) ⊆ V mj (s′),
the V m(s) are pairwise disjoint and disjoint from V (s),
V (s) ⊆ V (s′), V n(s) ⊆ V (s′) if |s| = n+ 1.

(3) δ(Emj (s), Emj (s′)) < 2−|s|, diamV (s) < 2−|s|.

(4) If |s| = n + 1, then E
mp(s)
j (s) = E

mp(s)
j (s′) for each p < (n)0 (notice

that mp(s) = mp(s′) here, because p < (n)0).
(5) If |s| = n+ 1 and s(n) = 0, then Emj (s) = Emj (s′) for all m < |s′|.
(6) If |s| = n+ 1 and s(n) = 0, then En(s) 6∈ An.
(7) If |s| = n+ 1 and s(n) = 1, then

V (s) ∪
⋃
{V m(s) : m < |s|, ∀p < (n)0 m 6= mp(s)} ∈ U |s|.

To begin the construction, we choose a nonempty open set V (∅) ⊆ X of
diameter < 1, and we let E(∅) = ∅.

Assume that the sets E(t) and V (t) have been constructed for all se-
quences t of length ≤ n. We have to define the positive integer jn and the
sets V (s), Emj (s), V mj (s) (0 ≤ m ≤ n, 1 ≤ j ≤ jm) for every sequence s of
length n+ 1.

(a) First, for each sequence t of length n, we choose two nonempty open
sets W1(t),W2(t) ⊆ V (t) with W1(t) ∩W2(t) = ∅. This is possible because
X is perfect.

(b) Next, we define jn and the sets Emj (s) and V mj (s) for all sequences
s of length n+ 1 such that s(n) = 0.
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(i) By (5), there is nothing to do for an integer m < n.
(ii) Let S0 = {s ∈ 2<ω : |s| = n+1, s(n) = 0}. Since (A∩B)f is nowhere

contained inAn, we can find a positive integer jn and, for all s ∈ S0, compact
sets En1 (s), . . . , Enjn(s) ⊆W1(s′) such that each Enj (s) belongs to A∩B, but⋃jn
j=1E

n
j (s) 6∈ An. Notice that we can choose the same integer jn for all

sequences s because, since ∅ ∈ A∩B, we may always add the empty set (as
many times as necessary) to the sets Enj (s).

At this point, (4), (5) and (6) are satisfied, as well as (1) for s ∈ S0

(En(s) is nonempty because ∅ ∈ An). Then we can choose for each s ∈ S0

nonempty open sets V (s) ⊆W2(s′) and V mj (s) ⊇ Emj (s) in order to get (2)
and (3).

(c) Now, let s be a sequence of length n+ 1 such that s(n) = 1.

(i) By (4), we must let Emp(s)
j (s) = E

mp(s)
j (s′) for all the integers p <

(n)0 such that mp(s) = mp(s′) < |s′|.
(ii) Let I(s) = {m < |s| : ∀p < (n)0 m 6= mp(s)} and N =

∑
m∈I(s) jm.

By Claim 2, the set {(x,K1, . . . ,KN ) ∈ X × BN : {x} ∪ ⋃Ni=1Ki ∈ G} is
dense in X×BN . Therefore, we can find a point x(s) ∈ X and compact sets
Emj (s) ∈ B (m ∈ I(s), 1 ≤ j ≤ jm) such that

(∗)





δ(Emj (s), Emj (s′)) < 2−n−1 and Emj (s) ⊆ V mj (s′) if m < n,
Enj (s) ⊆W1(s′) and Enj (s) 6= ∅,
x(s) ∈W2(s′) ,
{x(s)} ∪⋃{Emj (s) : m ∈ I(s), 1 ≤ j ≤ jm} ∈ G.

We can also ensure that Emj (s) 6= ∅ whenever Emj (s′) 6= ∅, because ∅ is
an isolated point in K(X). Moreover, since G is hereditary (and contained
in A), the last condition implies that each Emj (s) belongs to A; hence (1) is
true for m ∈ I(s) (of course, it was also true for m 6∈ I(s)).

(iii) It is now easy to choose open sets V (s) 3 x(s) and V mj (s) ⊇ Emj (s)
in order to get (2), (3) and (7).

This concludes the inductive step.

It follows from (1) and (3) that if m ∈ ω and j ≤ jm are fixed, then
for any α ∈ 2ω, the sequence (Emj (αdn))n>m converges to a compact set
Emj (α) ∈ B.

For each α ∈ 2ω and each m ∈ ω, let Em(α) =
⋃
j≤jm E

m
j (α). By (1),

all the Em(α)’s are nonempty (because ∅ is isolated in K(X)). Moreover,
conditions (2) and (3) imply that the sequence (Em(α))m∈ω converges in
K(X) to the singleton {xα} =

⋂
n∈ω V (αdn).

Thus, the set E(α) = {xα} ∪
⋃
m∈ω E

m(α) is compact, and in fact it
belongs to B1. Furthermore, it follows from (2) and (3) that the map α 7→
E(α) is continuous.
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Claim 3. Let α ∈ 2ω and p ∈ ω. Assume that αl ∈ Q for all l ≤ p, and
let Mp = limn→∞ mp(αdn). Then EMp(α) = EMp(αdMp+1).

P r o o f. By Claim 1, the integer Mp is well defined. Moreover, we know
that for each n ≥Mp, mp(αdn+1) = Mp, and either (n)0 > p or α(n) = 0.

This implies that EMp(αdn+1) = EMp(αdn) for each n > Mp. Indeed, we
can use (4) if (n)0 > p and (5) if α(n) = 0. Thus EMp(α) = EMp(αdMp+1).

Let us now fix α ∈ 2ω.

Case 1. Assume α 6∈W. By Claims 1 and 3, all sequences (mp(αdn))n∈ω
are eventually constant, and if we let Mp = limn→∞ mp(αdn) (p ∈ ω), then
α(Mp) = 0 and EMp(α) = EMp(αdMp+1). Hence, by (6), EMp(α) 6∈ AMp .
Since each AMp is hereditary, this implies that E(α) 6∈ ⋃p∈ω AMp . Now
Mp ≥ 〈p, 0〉 for all p, hence limp→∞ Mp = +∞ (this was the reason for using
the functions mp rather than the θp’s), and consequently E(α) 6∈ ⋃p∈ω Ap.

Case 2. Assume α ∈W. We have to show that E(α) ∈ Af .
Let p0 be the smallest integer such that αp 6∈ Q. For each p < p0, let as

usual Mp = limn→∞ mp(αdn) (which is well defined by Claim 1) and let

E1(α) =
⋃
p<p0

EMp(α),

E2(α) = {xα} ∪
⋃
{Em(α) : m 6= Mp for all p < p0}.

Since E(α) = E1(α) ∪ E2(α), it is enough to check that E1(α) ∈ Af and
E2(α) ∈ Gf .

(i) By the choice of p0, αp ∈ Q for each p < p0. Hence, by Claim 3 and
condition (1), E1(α) =

⋃
p<p0

EMp(αdMp+1) ∈ Af .
(ii) Let I(α) = {m ∈ ω : ∀p < p0 m 6= Mp}. It follows from (7)

that V (αdn+1) ∪ ⋃{V m(αdn+1) : m ∈ I(α), m < n + 1} ∈ Un for each
integer n > max{Mp : p < p0} such that (n)0 = p0 and α(n) = 1. Since
there are infinitely many such n’s (because αp0 6∈ Q) and each open set
Un is hereditary, this implies (by (2)) that for any finite set I ⊆ I(α),
{xα} ∪

⋃
m∈I E

m(α) ∈ G. Thus, from Lemma 2 we get E2(α) ∈ Gf .
The proof of Theorem B is now complete when X is assumed to be

compact.
When X is not compact, we may always view it as a dense Gδ subset

of some compact metric space X̃. Write X =
⋂
n∈ωWn, where the Wn’s

are open subsets of X̃. Then we can perform our construction in X̃ and
moreover, we can easily ensure at each step that the open sets V mj (s) and
V (s) are all contained in W|s|. Hence, in the end, E(α) ⊆ X for each α ∈ 2ω.
This concludes the whole proof.



How to recognize a true Σ0
3 set 189

3. Applications. In this section, G is a second-countable nondiscrete
locally compact abelian group, with dual group Γ. We denote by C0(G),
M(G), A(G) and PM(G) respectively: the space of continuous complex-
valued functions on G vanishing at infinity, the space of finite (complex)
measures on G, the Fourier transform of the convolution algebra L1(Γ),
and the space of pseudomeasures on G (the dual space of A(G)).

Let q(G) = sup{n ∈ ω : every neighbourhood of 0G contains elements
of order ≥ n}. We define Gq = {x ∈ G : x is of order ≤ q(G)}, and Tq =
{z ∈ T : zq(G) = 1} (with the convention that z∞ = 1 for any z ∈ T). Notice
that Gq is a clopen subgroup of G, by definition of q(G).

Definition 1. Let K be a compact subset of G.

1) K is said to be a Helson set if every continuous function on K can be
extended to a function in A(G).

2) K is said to be without true pseudomeasure (for short, WTP ) if every
pseudomeasure supported by K is actually a measure.

3) K is said to be independent if there is no nontrivial relation of the
form

∑n
i=1mixi = 0, where m1, . . . ,mn ∈ Z and x1, . . . , xn ∈ K (that is,∑

mi xi = 0 ⇒ ∀i mi, xi = 0; when G = T, this is not exactly the usual
definition).

4) K is said to be a Kq set if it is totally disconnected, all its elements
have order q(G), and the restrictions of characters of G are uniformly dense
in C(K,Tq), the space of continuous functions from K into Tq (when q(G) =
+∞, Kq sets are usually called Kronecker sets).

5) K is said to be a U ′0 set if there is some constant c such that

∀µ ∈M+(K) ‖µ‖PM ≤ c lim
γ→∞

|µ̂(γ)|.

It is clear that H (the family of Helson subsets of G), WTP , Kq and U ′0 are
hereditary subsets of K(G) (for Kq sets, this is because they are assumed
to be totally disconnected).

There are natural constants associated with a given Helson or U ′0 set.
Namely, for each K ∈ K(G), define

η0(K) = inf{ lim
γ→∞

|µ̂(γ)|/‖µ‖PM : µ ∈M+(K), µ 6= 0},
α(K) = inf{‖µ‖PM/‖µ‖M : µ ∈M(K), µ 6= 0}.

Then (by definition) K ∈ U ′0 ⇔ η0(K) > 0 and (by standard functional-
analytic arguments) K ∈ H ⇔ α(K) > 0. The number α(K) is the Helson
constant of K. There is also a “WTP constant”, whose definition should be
reasonably clear.

Lemma 1. Kq is a Gδ subset of K(G), and H, WTP and U ′0 are Σ0
3.
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The proofs are standard complexity calculations. For Helson sets, for
example, the main point is that for each positive ε, the set Hε = {K ∈
K(X) : α(K) ≥ ε} is Gδ.

Definition 2. Let E be a closed subset of G.

(a) E is said to be a U0 set (or a set of extended uniqueness) if µ(E) = 0
for every positive measure on G whose Fourier transform vanishes at infinity.

(b) E is an M0 set if E 6∈ U0, and an Mp
0 set if E ∩ V ∈ M0 for each

open set V ⊆ G such that E ∩ V 6= ∅.
Definition 3. Let p be a positive integer. By a net of length p, we

mean any set of cardinality 2p of the form {a+
∑p
i=1 εi li : εi = 0, 1}, where

a, l1, . . . , lp are fixed elements of G.

We shall use the following results. Almost all the proofs can be found in
[GMG], and a lot of them in [KL] (see also [LP]).

1) WTP ⊆ H ⊆ U ′0 ⊆ U0.
2) H, WTP and U ′0 are translation-invariant ideals of K(G); U0 is a

translation-invariant σ-ideal of closed sets.
3) Finite sets are WTP . A finite set is a Kq set if and only if it is

independent and all its elements have order q(G).
4) Kq sets are Helson; in fact , αq = inf{α(K) : K ∈ Kq} is > 0.
5) If F ⊆ G is a p-net , then α(F ) ≤ (

√
2)−p. Hence, if a compact set K

contains arbitrarily long nets, then K is not Helson.

Before applying the results of Section 2, we prove some general facts
about Kq sets.

For each integer m such that 0 < m < q(G), we let Nm = {x ∈ G :
mx = 0}. The Nm’s are closed subgroups of G and, by definition of q(G),
they are nowhere dense in G.

We denote by I the σ-ideal generated by all translates of the Nm’s, that
is, the family of all subsets of G which can be covered by countably many
translates of the Nm’s.

Finally, we say that a set E ⊆ G is I-perfect if no nonempty relatively
open subset of E belongs to I. By the Baire category theorem, every open
subset of G is I-perfect.

Lemma 2. Let F ⊆ G be a finite Kq set , and let A = {x ∈ G : x ∈
Gq and F ∪ {x} 6∈ Kq}. Then A ∈ I.

P r o o f. We know that F ∪{x} is a Kq set if and only if x has order q(G)
and F ∪{x} is independent. Moreover, if x ∈ G has order ≤ q(G), it is easy
to check that for each m ∈ Z, there is an integer m′ such that |m′| < q(G)
and mx = m′x.
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Now, let Gp(F ) be the subgroup of G generated by F . From the two
preceding remarks, we easily deduce that A is contained in the set A′ de-
fined by

x ∈ A′ ⇔ ∃m (0 < |m| < q(G) and mx ∈ Gp(F )).

If 0 < |m| < q(G) and y ∈ G, the set Em,y = {x ∈ G : mx = y} belongs
to I. Since Gp(F ) is countable, it follows that A′ ∈ I. This concludes the
proof.

Theorem 1. Let E ⊆ G be a closed I-perfect set contained in Gq. Then
Kq ∩ K(E) is dense in K(E). In fact , for any finite Kq set F ⊆ G, the set
GF = {K ∈ K(E) : K ∪ F ∈ Kq} is a dense Gδ hereditary subset of K(E).

P r o o f. Since Kq is hereditary, the second statement implies the first.
So let us fix a finite Kq set F ⊆ G.

It is clear that GF is Gδ and hereditary.
Now, let V1, . . . , Vk be nonempty open subsets of E. Since each Vi is

I-perfect, we can apply Lemma 2 k times to get x1, . . . , xk ∈ G such that
xi ∈ Vi for all i and F ∪ {x1, . . . , xk} ∈ Kq. This shows that GF is dense in
K(E).

In the circle group, Theorem 1 simply says that the Kronecker sets are
dense in any perfect subset of T, which is a well known fact. When q(G) <
∞, simple examples show that even if P ⊆ G is perfect and all its elements
have order q(G), the Kq sets contained in P need not be dense in K(P ).

Corollary. Let E ⊆ G be an I-perfect set. Then WTP ∩ K(E) is a
big subset of K(E).

P r o o f. It is easy to check (using the Baire category theorem and the
separability of G) that, given any nonempty closed set F ⊆ G, there exist
a point a ∈ G and an open set V such that V ∩F 6= ∅ and a+F ∩ V ⊆ Gq.
Thus we may and do assume that E is contained in Gq (because WTP is
translation-invariant and every open subset of E is I-perfect).

Now, let αq be the constant introduced above, and let G be the family
of all compact sets K ⊆ E with the following property:

∀S ∈ B1(PM(K)) ∀f ∈ A(G) |〈S, f〉| ≤ αq sup{|f(x)| : x ∈ E}.
Since A(G) is dense in C0(G), G is contained in WTP . Moreover, using the
separability of A(G), one easily checks that G is a Gδ subset of K(E), which
is obviously hereditary.

Finally, since finite sets are WTP , G contains every finite Kq subset
of E; hence, by Theorem 1 (and the fact that Kq is hereditary), G is dense
in K(E). This concludes the proof.
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Now we turn to applications of the results of Section 2. We show first
that WTP , H and U ′0 are true Σ0

3 within any M0 set; then we prove that
H is true Σ0

3 inside the countable sets.

Lemma 3. Every closed set in I is a U0 set.

P r o o f. For each integer m such that 0 < m < q(G), Nm is a closed
but nonopen subgroup of G. By a result of V. Tardivel [T], this implies
that Nm ∈ U0. Since U0 is a translation-invariant σ-ideal of closed sets, the
lemma follows.

Lemma 4. Let E ⊆ G be a nonempty Mp
0 set and for p ∈ ω, define

Ap = {K ∈ K(E) : η0(K) ≥ 2−p}. Then the perfect WTP sets contained in
E are nowhere contained in any Ap.

P r o o f. By Lemma 3, E is I-perfect. Hence, by Theorem 1 (Corollary),
WTP ∩ K(E) is a big subset of K(E). Now, by a result of Kechris [Ke1],
if F is any Mp

0 set and G is any dense Gδ hereditary subset of K(F ), then,
for each integer N ≥ 1, there exist perfect sets K1, . . . ,KN ∈ G such that
η0(K1 ∪ . . . ∪KN ) < 4/N . This proves the lemma.

Let P be the family of perfect compact subsets of G.

Theorem 2. If E ⊆ G is an M0 set , then there is no Π0
3 set such that

P ∩WTP ∩ K(E) ⊆ M ⊆ U ′0. In particular , the families of perfect WTP
sets, perfect Helson sets and perfect U ′0 sets contained in E are true Σ0

3 in
K(E).

P r o o f. Since U0 is a σ-ideal of closed sets, every M0 set contains a
nonempty Mp

0 set. Hence, Theorem 2 follows from Lemma 4 and Theorem B.

Lemma 5. Let p be a positive integer , and let V be a nonempty open
subset of G contained in Gq. Then there is a finite set F ⊆ G such that

• F ⊆ V .
• F is a net of length p.
• Each element of F has order q(G).

P r o o f. By Theorem 1 applied to Gq, the set {(x0, . . . , xp) ∈ Gp+1
q :

{x0, . . . , xp} ∈ Kq} is dense in Gp+1
q . Now, for each x = (x0, . . . , xp) ∈ Gp+1

q ,
let F (x) = {x0 +

∑p
i=1 εi xi : εi = 0, 1}. The map F is clearly continuous,

so the set {x ∈ Gp+1
q : F (x) ⊆ V, xi 6= xj for all i 6= j} is a nonempty open

subset of Gp+1
q . It follows that there exist pairwise distinct a, l1, . . . , lp ∈ Gq

such that F (a, l1, . . . , lp) ⊆ V and {a, l1, . . . , lp} is a Kq set.
It is then easy to see that F = F (a, l1, . . . , lp) has cardinality 2p and

that each element of F has order q(G). This proves the lemma.
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Theorem 3. There exists a continuous map α 7→ E(α) from 2ω into
K(G) such that

• For each α ∈ 2ω, E(α) is a convergent sequence.
• If α ∈W, then E(α) is the union of finitely many Kq sets.
• If α 6∈W, then E(α) contains arbitrarily long nets.

In particular , the countable Helson sets form a true Σ0
3 subset of Kω(G).

P r o o f. By Theorem 1 and Lemma 5, we can apply Theorem B with
X = Gq, G = Kq ∩K(X), B = {∅} ∪ {{x} : x ∈ X} and Ap = {K ∈ K(X) :
K does not contain any p-net}.

Notice thatH∩Kω(G) is not Σ0
3 in K(G). In fact, it is not even Borel. To

see this, take an independent M0 set E ⊆ G (a Rudin set, see [LP]). Then
Kω(E) is not Borel in K(G), since E is uncountable. But every countable
independent compact set is Helson (see [KL]). Hence H ∩ Kω(E) = Kω(E)
is not Borel in K(G). The same example shows that we cannot “localize”
Theorem 3 within an arbitrary M0 set.

To conclude this paper, we briefly discuss other examples of natural Σ0
3

in harmonic analysis.
Very close to the U ′0 sets are the U ′ sets (see [KL]) and the U ′2 sets of

R. Lyons [Ly], which also form Σ0
3 subsets of K(T). In fact, one has the

inclusions WTP ⊆ U ′ ⊆ U ′2 ⊆ U ′0, so (by Theorem 2) U ′ and U ′2 are true
Σ0

3. For U ′ sets, there is a more precise “local” result: if E is any closed set
of multiplicity, then U ′ ∩ K(E) is a true Σ0

3 of K(E). This can be deduced
from our criteria, using the family of Dirichlet sets rather than the family
of Kq sets.

Other examples in the circle group are the p-Helson sets introduced by
M. Gregory [G]. A compact set K ⊆ T is p-Helson (say K ∈ H(p)) if every
continuous function on K is the restriction of a continuous function on T
whose Fourier series belongs to lp(Z). Obviously, H(1) = H, H(p) ⊆ H(p′) if
p ≤ p′, and H(2) = K(T).

It is shown in [G] that for p > 1, H(p) is a σ-ideal of K(T), and that
a compact set K is p-Helson if and only if for all µ ∈ M(K), ‖µ‖M =
inf{‖µ−λ‖M +‖λ̂‖lq : λ ∈Mq(T)}, where Mq(T) = {λ ∈M(T) : λ̂ ∈ lq(Z)}
(and q = p/(p − 1)). Using this, it is not hard to check that H(p) is Gδ in
K(T).

Now, let H̃ be the family of compact subsets of T which are p-Helson for
some p ∈ ]1, 2[. It follows from the preceding remarks that H̃ is a big Σ0

3
ideal of K(T). Moreover, it is also shown in [G] that for any p < 2, H(p) is a
proper subset of H̃; and it is not difficult to deduce from the proof that this
is true in any open subset of T. Thus Theorem A applies, and we conclude
that H̃ is a true Σ0

3 subset of K(T).
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On the other hand, our criteria do not apply to the family of H-sets of
the circle group, which is also a true Σ0

3 (see [Li]), because H is not an ideal
of K(T).
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