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Mapping class group of a handlebody
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Bronis law W a j n r y b (Haifa)

Abstract. Let B be a 3-dimensional handlebody of genus g. Let M be the group
of the isotopy classes of orientation preserving homeomorphisms of B. We construct a
2-dimensional simplicial complex X, connected and simply-connected, on which M acts
by simplicial transformations and has only a finite number of orbits. From this action we
derive an explicit finite presentation ofM.

We consider a 3-dimensional handlebody B = Bg of genus g > 0. We
may think of B as a solid 3-ball with g solid handles attached to it (see
Figure 1). Our goal is to determine an explicit presentation of the map-
ping class group of B, the group Mg of the isotopy classes of orientation
preserving homeomorphisms of B. Every homeomorphism h of B induces a
homeomorphism of the boundary S = ∂B of B and we get an embedding of
Mg into the mapping class group MCG(S) of the surface S.
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Fig. 1. Handlebody

An explicit and quite simple presentation of MCG(S) is now known, but
it took a lot of time and effort of many people to reach it (see [1], [3], [12],
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[9], [7], [11], [6], [14]). The main step towards an explicit presentation of
MCG(S) was done by Hatcher and Thurston in [7] where they constructed a
connected and simply-connected cellular complex—a cut-system complex of
S—on which MCG(S) acts by cellular transformations with a finite number
of orbits and well understood stabilizers. A presentation of MCG(S) was ob-
tained from this action by methods described more explicitly by Laudenbach
[11]. The presentation was simplified by Harer [6], and further simplified by
Wajnryb [14].

No presentation of Mg has been known until now. A finite set of genera-
tors for Mg was first obtained by Suzuki [13]. It was quite similar to the set
of generators in our Theorem 18, the main result of this paper. The group
Mg has an infinite index in MCG(S) so the knowledge of MCG(S) does not
help directly in the investigation of Mg. However, we apply the main idea of
Hatcher and Thurston and construct a simplicial, 2-dimensional cut-system
complex X of B, similar to the cut-system complex of S, on which Mg acts
by simplicial transformations. We prove by a direct method, quite differ-
ent from the method of Hatcher and Thurston, that X is connected and
simply-connected. We describe the orbits of the action of Mg on vertices,
edges and faces of X. Mg acts transitively on vertices and has only a fi-
nite number of edge-orbits and face-orbits. We describe the stabilizer of
a vertex and the stabilizer of each edge and then apply the ideas from [7]
and [11] to obtain an explicit presentation of Mg (Theorem 18). We follow
the Master dissertation of Michael Heusner [8] in which the method of [7]
and [11] was very clearly and precisely explained. Unfortunately, an explicit
presentation of Mg (Theorem 18) obtained in this way is still rather long
and complicated.

1. Cut-system complex. In this section we construct the complex X
and prove that it is connected and simply-connected.

Let B be a handlebody of genus g and let S be the boundary of B. By a
curve on S we always mean a simple closed curve. A curve α is a meridian

curve if it bounds a disk D in B such that D ∩ S = ∂D = α. Then D is
called a meridian disk. If α is a meridian curve, non-separating on S, and
if we cut B along a corresponding meridian disk D, we get a handlebody
B′ of genus g − 1. On the boundary of B′ we have two copies of D—two
distinguished disks. For the purpose of induction on genus we shall consider
a handlebody B with a finite number of disjoint distinguished disks on its
boundary S and we shall assume that all homeomorphisms and all isotopies
of S are fixed on the distinguished disks. If we have disjoint meridian curves
on S we can construct pairwise disjoint meridian disks.

We start with disks D1 and D2 and put D2 into general position with
respect to D1. Then they intersect along disjoint circles. Consider an inner-
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most circle C on D1. It bounds a disk A1 in D1. It also bounds a disk A2

in D2. Since C is innermost on D1 the disk A1 does not meet D2 outside C.
In particular A1 and A2 meet only at their common boundary C. Their
union forms a sphere. Since B is irreducible the sphere bounds a 3-ball. We
can push A2 across the 3-ball off A1. By induction we can get rid of all the
intersection of D1 and D2. Now we keep D1 and D2 fixed and deform D3

to make it disjoint from the other two disks, and so on.

A cut-system on S is an isotopy class of an unordered collection of g
disjoint meridian curves α1, . . . , αg which are linearly independent in the
homology group H1(B) and are disjoint from the distinguished disks. When
we cut B open along the corresponding disjoint meridian disks we get a 3-
ball. We denote a cut-system by 〈α1, . . . , αg〉. We say that two cut-systems
are related by a simple move if they have g − 1 curves in common and the
other two curves are disjoint. To simplify notation we drop the symbols for
unchanging circles, e.g. 〈αi〉 → 〈α′

i〉 means that the curve αi of a cut-system
is replaced by a meridian curve α′

i and the other g−1 curves of the cut-system
do not change. It also means that α′

i is disjoint from all the curves of the
cut-system and that the new collection of curves forms a new cut-system.

We construct a 2-dimensional complex X. The vertices of X are the cut-
systems on S. Two cut-systems are connected by an edge if they are related
by a simple move. If three vertices of X have g − 1 curves in common and
the three remaining curves, one from each cut-system, are pairwise disjoint,
then each pair of the vertices is connected by an edge in X and the vertices
form a triangle, a closed edge-path with three edges. We glue a face to every
triangle and get a 2-dimensional simplicial complex X. The complex X is
called the cut-system complex of the handlebody B.

The main result of this section is the following

Theorem 1. The cut-system complex X is connected and simply-con-

nected.

A homeomorphism h of B onto itself takes a meridian disk to a meridian
disk. It takes a cut-system to a cut-system. If we let h〈α1, . . . , αg〉 =
〈h(α1), . . . , h(αg)〉 we get an action of the mapping class group Mg on the
vertices of X. The action also takes vertices connected by an edge to vertices
connected by an edge, so it is a simplicial action.

Every curve on S is ambient-isotopic to a PL-curve (piecewise-linear).
We may assume that all curves in this paper are PL and that in the given,
finite collection of curves different curves intersect only in a finite number
of points, transversely, and no point belongs to three or more curves. We
denote the number of intersection points of α and β by |α∩ β|. We want to
prove that X is simply-connected. We start with a fixed closed edge-path
and want to prove that it is null-homotopic in X, i.e. it decomposes into a
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sum of triangles. We fix a particular collection of curves representing each
vertex and assume that all curves of all these collections intersect trans-
versely at a finite number of points and no point belongs to more than two
curves. We may later introduce new curves subject to the same conditions.

We first consider the case of genus g = 1.
If B is a solid torus than all non-trivial (not contractible on S) meridian

curves on the boundary S of B are isotopic. A cut-system is an isotopy
class of a single meridian curve and thus X consists of a single point. But if
there are distinguished disks on S, which we need for the induction purpose,
then different meridian curves may be non-isotopic in the complement of
the distinguished disks and they may intersect essentially. In that case the
complex X may be quite complicated.

We say that two meridian curves α and β on S form a 2-gon if there
is a disk (a 2-gon) in S bounded by an arc of α and an arc of β. A 2-gon
may contain distinguished disks inside. A collection of curves forms a 2-gon
if a pair of curves of this collection form a 2-gon. In that case a minimal

2-gon is one which does not contain another 2-gon inside. If α and β form a
minimal 2-gon then any other curve of the collection crosses the 2-gon along
arcs which meet each of the curves α and β once. If two curves on S are
homotopic and not disjoint then they form a 2-gon (see [5]).

Lemma 2. If g = 1 then X is connected.

P r o o f. Let α and β be two meridian curves on S. They are homotopic,
so if they are not disjoint they form a 2-gon. Consider a minimal 2-gon, say
bounded by arcs a and b of α and β respectively. If we replace the arc a of
α by the arc b we get a new curve α′ homotopic to α on S (see Figure 2).
Then α′ is a meridian curve, |α ∩ α′| = 0 and |β ∩ α′| < |β ∩ α|. It follows
by induction on |α ∩ β| that α and β can be connected by a sequence of
curves such that the consecutive curves are disjoint, and thus connected by
an edge in X.

Fig. 2. The curves α and β form a 2-gon

Lemma 3. Let g = 1 and let p = {α1, . . . , αk} be a closed edge-path in

X, i.e. α1 = αk. There exists another closed edge-path p′ = {α′
1, . . . , α

′
k}

homotopic to p in X and such that the collection of curves α′
1, . . . , α

′
k forms

no 2-gons.
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P r o o f. Consider a minimal 2-gon. Suppose it is formed by arcs a and
b of curves αi and αj respectively. If we replace b by a (as in Figure 2) we
get a new curve α′

j , homotopic to αj on S and disjoint from αj . So it is
a meridian curve and represents a vertex in X. Also |α′

j ∩ αi| < |αj ∩ αi|.
By a previous remark, α′

j does not form any new intersections with other
curves so it is also disjoint from αj−1 and αj+1 and is connected by edges to
αj−1, αj , and αj+1. When we replace αj by α′

j we get a new edge-path and
the difference between it and the old path is a sum of two triangles. Thus
the new path is homotopic to p in X and its curves intersect in a smaller
number of points. Lemma 3 follows by induction.

Lemma 4. If g = 1 then X is simply-connected.

P r o o f. Consider a closed edge-path in X. We want to prove that it
can be decomposed into a sum of triangles. By the previous lemma we
may assume that it has no 2-gons. But meridian curves on a solid torus are
homotopic. If there are no 2-gons then all curves are disjoint, and every pair
is connected by an edge. In particular the edge-path is a sum of triangles
as required.

From now on we assume that B has genus g greater than 1.

Induction Hypothesis 1. The cut-system complex of a handlebody
of genus less than g is connected and simply-connected.

Our next task is to prove that X is connected. We start with a lemma
which will also be used later, in the proof that X is simply-connected, so it
may seem unnecessarily complicated at this stage.

Lemma 5. Let α, β, γ1, γ2 be non-separating meridian curves on S such

that |γ1 ∩ γ2| = k > 0, |γ1 ∩ α| < n, and |γ2 ∩ α| ≤ n. Then there exists

a non-separating meridian curve δ such that |δ ∩ γ1| < k, |δ ∩ γ2| < k, and

|δ ∩ α| < n. If also |γ1 ∩ β| = |γ2 ∩ β| = 0, then |δ ∩ β| = 0.

P r o o f. We may put the meridian disks D1 and D2, bounded by γ1 and
γ2 respectively, into general position. Then they intersect along disjoint
arcs and circles. We can get rid of the circles of intersection by moving
disks across 3-balls corresponding to innermost circles. Consider now an
innermost arc d of the intersection (closest to the boundary) on D1. The
arc splits D1 into two disks. One of them, say D′

1, does not meet D2 (see
Figure 3). The disk D′

1 is bounded by d and by an arc c1 of γ1. The arc c1

contains m points of the curve α. Consider also a corresponding construction
for an innermost arc on D2. Among all innermost arcs choose a “minimal”
arc d, one for which the number m is minimal. If there are several such
“minimal” arcs and one of them is innermost on D2 we choose that one.
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Fig. 3. Meridian disks of γ1 and γ2

Suppose first that the minimal arc d is innermost on D1 (see Figure 3).
Let p and q be the end points of d. The arc d also splits D2 into two disks D′

2

and D′′
2 bounded by d and by arcs c′2 and c′′2 of γ2 respectively. These disks

may intersect D1 but not inside D′
1. When we replace the arc c′2 (or c′′2) of

γ2 by c1 we get a meridian curve δ′ (respectively δ′′) on S which bounds
a meridian disk D′

1 ∪ D′′
2 (respectively D′

1 ∪ D′
2). We can push δ′ (or δ′′)

off itself on S, away from the intersections p and q, making it disjoint from
γ2. We get rid of the intersection points p and q at least, so |δ′ ∩ γ1| < k
and |δ′′ ∩ γ1| < k. In the first homology group of S we have δ′′ + δ′ = γ2.
Since γ2 is non-separating, i.e. non-trivial in the homology group, one of
the curves must be non-separating and we choose this curve for δ. The
disks D′

2 and D′′
2 must contain innermost arcs (possibly d is innermost on

one or both disks), therefore both c′2 and c′′2 meet α more than m times, by
the minimality condition on d. We traded such an arc of γ2 for the arc c1,
therefore |δ ∩ α| < n.

Suppose now that the minimal arc d is innermost on D2. We switch
the roles of D1 and D2 (also in Figure 3) and repeat the construction of δ.
There may be some innermost arcs on D1 for which the corresponding arc
of γ1 also meets α only m times, but not less. In order to construct δ we
replace an arc of γ1 which meets α at least m times by an arc of γ2 which
meets α exactly m times. So δ meets α at most as many times as γ1 and
again |δ ∩ α| < n and the other properties of δ are as in the first case. The
assertion about the curve β follows from the construction.

Lemma 6. If v1 and v2 are vertices in X which have one or more curves

in common then they can be connected by an edge-path of vertices in X all

of which contain the common curves of v1 and v2.

P r o o f. When we cut B open along the disjoint meridian disks bounded
by the common curves of v1 and v2 we get a handlebody B′ of a smaller genus
and the remaining curves of v1 and v2 form two vertices of the cut-system
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complex of B′. By Induction Hypothesis 1 there exists an edge-path p′ in
this complex which connects the two vertices. When we add the common
curves of v1 and v2 to curves of each vertex of the edge-path p′ we get
cut-systems on B which form an edge-path in X connecting v1 and v2.

Lemma 7. If α and β are non-separating meridian curves then there

exist vertices v1 and v2 of X which are connected by an edge-path in X
(possibly v1 = v2) and contain the curves α and β respectively.

P r o o f. We prove the lemma by induction on n = |α ∩ β|. Assume first
that the curves are disjoint. If α ∪ β does not separate the surface S then
the pair α, β can be completed to a cut-system on B representing a vertex
v1 = v2. Suppose now that α∪β separates S. When we cut B along disjoint
meridian disks bounded by α and β respectively we get two handlebodies
B1 and B2. We choose a cut-system on each of the handlebodies. We get
together g − 1 meridian curves. When we add α or β to these g − 1 curves
we get two cut-systems on B which are related by a simple move.

Assume now that n > 0. By Lemma 5 we can find a non-separating
meridian curve γ with |γ ∩ α| < n and |γ ∩ β| < n. By the induction
hypothesis there exists a vertex v1 of X containing α and connected by
an edge-path to a vertex v3 containing γ. There also exists a vertex v4

containing γ and connected by an edge-path to a vertex v2 containing β.
Finally, v3 and v4 are connected by an edge-path by Lemma 6.

As an easy corollary we get

Proposition 8. X is connected.

P r o o f. If v1 is a vertex of X containing some curve α and v2 is a vertex
of X containing some curve β then, by Lemma 7, there exist other vertices
v3 and v4 connected by an edge-path and containing α and β respectively.
By Lemma 6 we can connect v1 to v3 and v4 to v2 by edge-paths in X.

We now proceed to prove that X is simply-connected.
We define the distance between two curves α and β as their intersection

number |α∩β|. The distance between a curve γ and a vertex 〈α1, . . . , αg〉 is
equal to the minimum of the distances |γ ∩αi|. The radius of an edge-path
around a curve α is equal to the maximum of the distances from α to the
vertices of the edge-path.

A segment is a sequence of consecutive vertices of an edge-path which
have a curve in common. We say it is an (α, β, . . . , γ)-segment if all vertices
of the segment contain the curves (α, β, . . . , γ).

The general idea of the proof is to start with a closed edge-path in X
and reduce it to a sum of simpler edge-paths, and eventually to a sum of
triangles, by induction on the radius of the edge-path around a fixed curve
α and induction on the number of segments of maximal distance from α.
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Lemma 9. A closed segment is null-homotopic.

P r o o f. We cut B open along the meridian disk bounded by the common
curve α of the segment, getting a handlebody B′ of a smaller genus. The
remaining curves of each vertex form a vertex of a closed path in the cut-
system complex of B′. This path decomposes into a sum of triangles by
Induction Hypothesis 1. When we add back the curve α to every vertex we
get a decomposition of the initial closed segment into a sum of triangles.

Lemma 10. A closed path p = 〈α, γ〉 → 〈β, γ〉 → 〈β, δ〉 → 〈α, δ〉 →
〈α, γ〉 is null-homotopic in X.

P r o o f. If g > 2 then the path is a closed segment, all vertices of p have
at least one additional common curve, so we may assume g = 2. All the
curves are disjoint. If α ∪ β (or γ ∪ δ) does not separate S there is a vertex
〈α, β〉 (respectively 〈γ, δ〉) which is connected by an edge to every vertex of
the path and splits the path into a sum of four triangles. In the other case
let us split B open along the meridian disks of α, β, γ, and δ. Since α ∪ γ
does not separate S we get three connected components and eight boundary
components.

There is a connected component with at least three boundary compo-
nents. By the separation properties of α, β, γ and δ this connected compo-
nent has three boundary components corresponding to three different curves
out of α, β, γ and δ. Two of them belong to one vertex, say α and γ. We
can form a connected sum α+γ of the two curves inside the connected com-
ponent. We get a new meridian curve ε disjoint from all four curves. The
curve ε forms a vertex with each of the four curves. The path p decomposes
into a sum of ten triangles (see Figure 4).

h�; �iZZZZZ} �����>JJ] 

�

�����= ZZZZZ~

� JĴ
h�; "i h�; "i--h�; �i h�; ih�; "i h; "i

h�; i
Pq�1 �)Pi6 6���1

Fig. 4. Reduction of a square path

Lemma 11. Let α and β be disjoint , non-separating meridian curves.

Let v1 and v2 be vertices of X connected by an edge and containing α and

β respectively (or v1 = v2 contains both curves α and β). Let v3 and v4

be another pair of vertices connected by an edge and containing α and β
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respectively. Then there exist an α-segment connecting v1 and v3 and a

β-segment connecting v2 and v4 such that the union of the two segments,
together with edges connecting v1 to v2 and v3 to v4, forms a closed edge-path

null-homotopic in X.

P r o o f. Suppose first that α ∪ β does not separate S. When we cut B
along meridian disks bounded by α and β we get a handlebody B1 of genus
g − 2. We can choose g − 2 curves out of the common curves of v1 and v2

which form a cut-system u1 on B1. We can also choose g − 2 curves out of
the common curves of v3 and v4 which form a cut-system w1 on B1.

We connect u1 to w1 by an edge-path in the cut-system complex of B1.
We add α and β to all vertices of this edge-path. We get an (α, β)-segment.
The first vertex of this segment is connected by edges to v1 and v2 and
forms a triangle (or is equal to v1 if v1 = v2). The last vertex is connected
by edges to v3 and v4 and forms another triangle (see Figure 5, right side).
We can extend the (α, β)-segment to an α-segment from v1 to v3 and to a
β-segment from v2 to v4. The union of the segments and the edges is equal
to a sum of two triangles and a trivial path.

hw1; w2; �i = v3 - hw1; w2; �i = v4 hw1; �; �i = v3 - hw1; �; �i = v4
hw1; �; �i��	 @@R......

hw1; u02; �i - hw1; u02; �i? ?hw1; u2; �i - hw1; u2; �i......
hu01; u2; �i - hu01; u2; �i? ?hu1; u2; �i = v1 - hu1; u2; �i = v2 hu1; ; �i = v1 - hu1; ; �i = v2

hu1; �; �i@@R ��	
?
?
...

Fig. 5. Parallel segments

Suppose now that α ∪ β separates S. When we cut B along meridian
disks bounded by α and β we get two handlebodies B1 and B2 and the sum
of the genera of B1 and B2 equals g − 1. The remaining curves, common to
v1 and v2, split into two families; one forms a cut-system u1 on B1 and the
other forms a cut-system u2 on B2. Also the remaining curves in v3 and v4
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form a cut-system w1 on B1 and a cut-system w2 on B2. We connect u1 to
w1 by an edge-path in the cut-system complex of B1. We add α and the
curves of u2 to all vertices of the edge-path getting an edge-path in X (see
Figure 5, left side).

Now we connect u2 to w2 by an edge-path in the cut-system complex
of B2 and add α and all curves of w1 to all vertices of this edge-path. We
get a new edge-path in X which extends the first edge-path. Together we
get an α-segment connecting v1 to v3 in X. Now we replace α by β in
all vertices of this segment and get a β-segment connecting v2 to v4 in X.
Corresponding vertices in the two segments are joined by an edge. The
union of the segments together with the edges connecting v1 to v2 and v3

to v4 splits into squares which are null-homotopic by Lemma 10.

Lemma 12. A closed edge-path p of radius zero around a curve α of

some vertex of p is null-homotopic in X.

P r o o f. We prove the lemma by induction on the number of segments
having a common curve disjoint from α. If all vertices contain α then we have
a closed segment. In the other case consider a maximal segment containing
α. Let u1 be its first vertex and let v1 be its last vertex. Let u2 be the
next vertex of p. The vertex u2 contains a curve β disjoint from α, the
common curve of the second segment. Let v2 be the last vertex of the
second segment. Suppose that there are only two segments. We are in the
situation of Lemma 11. We can connect the two pairs of vertices v1, u2 and
v2, u1 by parallel segments and p splits into a sum of two closed segments
and a path null-homotopic by Lemma 11. So we may assume that there
exists a third segment with a common curve γ disjoint from α and β. Let
u3 be the vertex of p following v2. It contains γ. We cut B along meridian
disks bounded by α, β, γ.

If we get three components then the genus goes down by one. We choose
a cut-system on each component, add them up and get g−1 curves. When we
also add the curve α (respectively β, γ) we get a cut-system w1 (respectively
w2, w3) on B and the cut-systems form a triangle. By Lemma 11 we can
connect w1 to v1 by an α-segment, w2 to u2 and v2 by β-segments and w3

to u3 by a γ-segment. Figure 6 shows that p can be replaced by an edge-
path which does not have a β-segment and the difference of the edge-paths
decomposes into a sum of null-homotopic paths by Lemmas 9 and 11. If
α∪β does not separate S we can find a vertex w1 = w2 which contains both
curves α and β and is connected by an edge to a vertex w3 containing γ.
The case of α ∪ γ or β ∪ γ non-separating is similar. If α ∪ β ∪ γ does not
separate we can find a vertex w1 = w2 = w3 containing all three curves. The
argument using Figure 6 works in all cases. Lemma 12 follows by induction
on the number of segments.
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u1 -� v1 - u2 -� v2 - u3 - v3

w1 - w3
w2

6 6� 
����1 PPPPq

AAAAK� ������

Fig. 6. Reduction of a path of radius 0

The next lemma will be used to make a short-cut from a vertex u1 to u2

in the situation of Figure 7.

Lemma 13. Let α, β, γ1, γ2 be non-separating curves on S such that

|γ1 ∩ γ2| = k, |γ1 ∩ α| < m, |γ2 ∩ α| ≤ m and |γ1 ∩ β| = |γ2 ∩ β| = 0.
Let u1 and u2 be vertices of X containing γ1 and γ2 respectively. Then

there exists a path q connecting u1 and u2 such that all vertices of q have

distance zero from β and have distance less than m from α, except possibly

for a final γ2-segment of q which ends at u2.

P r o o f. If |γ1 ∩ γ2| = 0 then we can find vertices w1 and w2 connected
by an edge in X and containing γ1 and γ2 respectively (possibly one vertex
contains both). We can connect u1 to w1 by a γ1-segment and w2 to u2 by
a γ2-segment, by Lemma 6, getting the required edge-path q.

If |γ1 ∩ γ2| = k > 0 then, by Lemma 5, we can find a non-separating
meridian curve δ such that |δ ∩ β| = 0, |δ ∩ α| < m, |δ ∩ γ1| < k, and
|δ ∩ γ2| < k. Let w be a vertex containing δ. By induction on k we can find
an edge-path q1 between u1 and w and an edge-path q2 between w and u2

such that both have radius zero around β, all vertices of q1 have distance
less than m from α and all vertices of q2 have distance less than m from
α, except possibly for the final γ2-segment which ends at u2. Together they
form the required edge-path q.

Proof of Theorem 1. X is connected by Proposition 8. We want to prove
that every closed edge-path in X is null-homotopic. Suppose that a closed
path p has radius m around some curve α. If m = 0 then p is null-homotpic
by Lemma 12. We continue by induction on m. For fixed m we prove the
result by induction on the number of segments of p which have a common
curve at distance m from α.

Let v0 be a vertex of p containing α. We say that p begins at v0.
Let v1 be the first vertex of p which has distance m from α. Let q0 be
the maximal segment of p which starts at v1, contains some fixed curve β
satisfying |β ∩ α| = m and such that no vertex of q0 contains a curve β′
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satisfying |β′∩α| < m. Let v2 be the last vertex of q0. Let u1 be the vertex
of p preceding v1 and let u2 be the vertex of p following v2 (see Figure 7).
The vertex u1 contains a curve γ1 such that |γ1 ∩ α| < m. The vertex u2

contains a curve γ2 such that |γ2 ∩ α| < m or |γ2 ∩ α| = m and γ2 is the
common curve of the next segment. Since the curves in the neighbouring
vertices are disjoint we have |β ∩ γ1| = |β ∩ γ2| = 0.- - - - -

? 6
-

� 2
q

u1 v1 v2 u2
Fig. 7. Reduction of a path of radius m

We can now replace the part of p from u1 to u2 by a path q from Lemma
13 (see Figure 7). The new path p1 differs from p by a closed path of radius
zero around β, so p1 is homotopic to p, and it has no β-segment (although
its γ2-segment may be longer than in p). The number of segments in p1 at
distance m from α is smaller than in p. Theorem 1 follows by induction.

2. A presentation of Mg. In this section we establish a presentation
of the mapping class group of a handlebody. We denote by B = Bg a han-
dlebody of genus g represented in Figure 1. We denote by S the boundary
of B, by M the mapping class group of B and by X the cut-system complex
of B.

For g = 1 one can compute the mapping class group directly:

Theorem 14. The mapping class group M1 of a solid torus B is iso-

morphic to Z ⊕ Z2.

P r o o f. If g = 1 then the curve α1 in Figure 1 is the only meridian
curve on the boundary S of B, up to isotopy. A homeomorphism h of B
either leaves the isotopy class of α1 invariant or, up to isotopy, h fixes α1

setwise and reverses its orientation, so that h2 leaves the isotopy class of
α1 invariant. The z-axis in Figure 1 is shown for g even. For odd genus
the z-axis passes through the middle handle. In the case of genus one the
rotation z through 180 degrees around the z-axis reverses the orientation of
α1, and z2 = 1. So for every h ∈ M1 either h or zh preserves the isotopy
class of α1. If a homeomorphism h preserves the isotopy class of α1 then it
is isotopic to a homeomorphism fixed on α1. It induces a homeomorphism
of the annulus S − α1 and thus it is a power of the Dehn twist a1 with
respect to the curve α1 (see Definition 1 below). The elements a1 and z of
M1 commute. The theorem follows.
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From now on we assume that g > 1.

To shorten some formulas we adopt the following notation for conjuga-
tion: a ∗ b = aba−1. As usual, [a, b] = aba−1b−1.

Remark 1. Some proofs of relations between homeomorphisms of a sur-
face are left to the reader. The general idea of the proof is as follows. We
split the surface into a union of disks by a finite number of curves (and arcs
with the end-points on the boundary if the surface has a boundary). We
prove that the given product of homeomorphisms takes each curve (respec-
tively arc) onto an isotopic curve (arc), preserving some fixed orientation of
the curve (arc). Then the product is isotopic to a homeomorphism point-
wise fixed on each curve and arc. But a homeomorphism of a disk fixed
on its boundary is isotopic to the identity homeomorphism, relative to the
boundary, by the Lemma of Alexander. Thus the given product of homeo-
morphisms is isotopic to the identity.

We start with some properties of homeomorphisms of the surface S.
Dehn proved in [4] that every homeomorphism of S is isotopic to a product
of twists of the following type.

Definition 1. A (positive) Dehn twist with respect to a simple closed
curve α on an oriented surface S is the isotopy class of a homeomorphism h
of S, supported in a regular neighbourhood N of α (an annulus), obtained as
follows: we cut S open along α, rotate one side of the cut by 360 degrees to
the right (this makes sense on an oriented surface) and then glue the surface
back together, damping out the rotation to the identity at the boundary
of N . The Dehn twist (or simply twist) with respect to α will be denoted
by Tα.

Lemma 15. Let α be a curve on S, let h be a homeomorphism and let

α′ = h(α). Then Tα′ = hTαh−1.

P r o o f. Since h maps α to α′ we may assume that (up to isotopy)
it also maps a neighbourhood N of α to a neighbourhood N ′ of α′. The
homeomorphism h−1 takes N ′ to N , then Tα maps N to N , twisting along
α, and h takes N back to N ′. Since Tα is supported in N , the composite
map is supported in N ′ and it is a Dehn twist about α′.

Lemma 16. Let γ1, . . . , γk be a chain of curves, i.e. the consecutive

curves intersect once and non-consecutive curves are disjoint. Let N denote

a regular neighbourhood of the union of these curves. Let ci denote the twist

along γi. Then the following relations hold :

(i) The “commutativity relation”: c1c3 = c3c1.

(ii) The “braid relation”: c1c2(γ1) = γ2, c1c2c1 = c2c1c2.
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(iii) The “chain relation”: If k is odd then N has two boundary compo-

nents, ∂1 and ∂2, and (c1 . . . ck)k+1 = T∂1
T∂2

. If k is even then N has one

boundary component ∂1 and (c1 . . . ck)2k+2 = T∂1
.

(iv) (c2c1c3c2)(c4c3c5c4)(c2c1c3c2) = (c4c5c3c4)(c2c1c3c2)(c4c3c5c4).

P r o o f. Relation (i) is obvious. It follows immediately from the defi-
nition of Dehn twist that c2(γ1) = c−1

1 (γ2). Both statements of (ii) follow
from this and from Lemma 15. Relation (iii) is a little more complicated,
but we shall only use it for k = 2, 3, for which it is well known (see [14]).

We prove (iv). The proof involves a long sequence of braid transforma-
tions (relations (i) and (ii)):

(c2c1c3c2)(c4c3c5c4)(c2c1c3c2) = c2c3c1c2c4c5c3c4c2c3c1c2

= c2c3c4c1c5c2c3c2c4c3c1c2 = c2c3c4c3c1c5c2c3c4c3c1c2

= c4c2c3c4c1c5c2c4c3c1c2c4 = c4c2c3c1c4c5c4c2c3c1c2c4

= c4c5c2c3c1c4c2c3c1c2c5c4 = c4c5c2c3c1c2c1c4c3c2c5c4

= c4c5c3c2c3c4c1c2c3c2c5c4 = c4c5c3c2c3c4c3c1c2c3c5c4

= c4c5c3c4c2c3c4c1c2c3c5c4 = (c4c5c3c4)(c2c1c3c2)(c4c3c5c4).

Lemma 17. Let U be a disk with outer boundary ∂ and with n inner

holes bounded by curves ∂1, . . . , ∂n. For 1 ≤ i < j ≤ n let αi,j be the simple

closed curve in U shown in Figure 8, separating two holes ∂i and ∂j from

the other holes. Let d be the twist along ∂, let di be the twist along ∂i, and

let ai,j be the twist along αi,j. Then

d = (a1,2a1,3 . . . a1,na2,3 . . . a2,na3,4 . . . an−2,n−1an−2,nan−1,n)(d1 . . . dn)2−n.

α i,j

1 2 i j n

Fig. 8. Disk with holes and the curves αi,j

P r o o f. If we allow isotopies which rotate the curves ∂i then the group
of the isotopy classes of homeomorphisms of U is isomorphic to the group of
the isotopy classes of homeomorphisms which preserve punctures of a disk
with n punctures. This is the classical pure braid group on n strings. The
elements ai,j represent the standard generators of the pure braid group and
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d is equal to the generator ∆2 of the centre. Therefore, modulo the twists di,

d = (a1,2a1,3 . . . a1,na2,3 . . . a2,na3,4 . . . an−2,n−1an−2,nan−1,n).

The factor corresponding to the twists di can be checked by induction (by
drawing many pictures).

The special case of the above lemma, for n = 3, was observed by Dennis
Johnson [10] and called a lantern relation.

We now fix some curves on S. The handlebody B consists of g handles
attached to a 3-ball. For i = 1, . . . , g and j = 1, . . . , g − 1 we fix curves αi,
βi, εj (see Figure 1). The curve αi is a meridian curve across the ith handle,
βi is a curve along the ith handle and εi runs along the ith handle and the
(i + 1)st handle. The curves α1, . . . , αg form a cut-system.

We denote by I0 the set of indices {−g, 1 − g, . . . ,−1, 1, 2, . . . , g}.
When we cut S open along the curves α1, . . . , αg we get a sphere S0

with 2g holes bounded by curves ∂i, i ∈ I0, where ∂i and ∂−i correspond to
the same curve αi on S (see Figure 10). The glueing back map identifies ∂i

with ∂−i according to the reflection with respect to the x-axis. Curves on
S can be represented on S0. If a curve on S meets some curves αi then it
is represented on S0 by a disjoint union of several arcs. In particular εi is
represented by two arcs joining ∂−i to ∂−i−1 and ∂i to ∂i+1. We denote by
δi,j , i < j ∈ I0, the curves represented in Figures 1 and 10. The curve δi,j

separates the holes ∂i and ∂j from the other holes on S0.

Definition 2. For each subset I = {i1, . . . , in} of I0 with i1 < . . . < in
we define a standard curve δI in S0 (see Figure 9), which separates the holes
∂i1 , . . . , ∂in

from the other holes in S0. We see that if i, j ∈ I then δi,j is
contained inside δI . If I contains just two indices i, j then δI = δi,j , as in
Figure 10. For i ≤ j ∈ I0 and I = {k ∈ I0 | i ≤ k ≤ j} we define a curve
γi,j = δI .

i i

i i1

−1

k n

12  -g

g

.  .  .

.  .  . .  .  .

x-axis

δ I 

Fig. 9. Standard curve δI on S0 for I = {i1, . . . , in}

We now fix some elements of M. A homeomorphism h of S represents
an element in M if it takes curves of some cut-system 〈γ1, . . . , γg〉 to curves
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1 2 3 i-1 i

-1 -2 -3 1-i -i

δ

δ

 .  .  .

.  .  . .  .  .

.  .  .
-g

g

.P
β β

λ

1 1-i

-2,

2, 3

i

 -i

x-axis

Fig. 10. Curves δi,j and λk on S0

of a cut-system. Indeed, we can extend h to disjoint meridian disks bounded
by γ1, . . . , γg. When we cut B open along the meridian disks we get a ball
and h can be extended from the boundary of the ball to its interior. A twist
with respect to a curve α belongs to M if and only if α is a meridian curve.
A curve which is disjoint from all curves of some cut-system is a meridian
curve.

Definition 3. We denote by ai, bi, ej the Dehn twists along the curves
αi, βi, εj respectively and we denote by d1,2 the Dehn twist with respect to
δ1,2. For i ∈ I0 we denote by di the twist of S0 along the curve ∂i. It can
be identified with the twist a|i| of S. We fix the following elements of M:

s = b1a1a1b1,

ti = eiaiai+1ei for i = 1, . . . , g − 1.

For i < j ∈ I0 we let

di,j = (ti−1ti−2 . . . t1tj−1tj−2 . . . t2) ∗ d1,2 if i > 0,

di,j = (t−1

−i−1t
−1

−i−2 . . . t−1

1 s−1tj−1tj−2 . . . t2) ∗ d1,2 if i < 0 and i + j > 0,

di,j = (t−1

−i−1t
−1

−i−2 . . . t−1
1 s−1tjtj−1 . . . t2) ∗ d1,2

if i < 0, j > 0 and i + j < 0,

di,j = (t−1

−j−1t
−1

−j−2 . . . t−1
1 t−1

−i−1t
−1

−i−2 . . . t−1
2 s−1t−1

1 s−1) ∗ d1,2 if j < 0,

di,j = (t−1

j−1dj−1,jt
−1

j−2dj−2,j−1 . . . t−1
1 d1,2) ∗ (s2a4) if i + j = 0,

dI = (di1,i2di1,i3 . . . di1,in
di2,i3 . . . di2,in

di3,i4 . . . din−1,in
)(ai1 . . . ain

)2−n

where I = {i1, . . . , in} ⊂ I0, i1 < . . . < in,

ci,j = dI , where i ≤ j ∈ I0 and I = {k ∈ I0 | i ≤ k ≤ j},

ri,j = bjajci,jbj , where i ≤ j ∈ I0 and I = {k ∈ I0 | i ≤ k ≤ j},

kj = ajaj+1tjd
−1

j,j+1
for j = 1, . . . , g − 1,

s1 = s, and sj = (kj−1kj−2 . . . k1) ∗ s1 for j = 2, . . . , g,
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z = a1a2 . . . agst1t2 . . . tg−1st1 . . . tg−2s . . . st1sdI where I = {1, . . . , g},

zj = (kj−1kj−2 . . . kg+1−j) ∗ z if j > g/2.

Most of the products in the above definition represent very simple el-
ements of M and we now explain their meaning. We first define special
homeomorphisms of S0.

Definition 4. A half-twist hi,j along a curve δi,j is the isotopy class (on
S0 relative to its boundary) of a homeomorphism of S0 which is fixed outside
δi,j and is equal to a counterclockwise “rotation” through 180 degrees inside
δi,j . In particular hi,j switches the two holes ∂i and ∂j inside δi,j so it is not
fixed on the boundary of S0, but h2

i,j is fixed on the boundary of S0 and is
isotopic to the full Dehn twist along δi,j .

One can check that ti = hi,i+1h−i−1,−ia
−1

i a−1

i+1
and s = h−1,1a

−2

1 . So ti
switches the holes ∂i and ∂i+1 rotating the interior of δi,i+1 counterclockwise
and it switches the holes ∂−i−1 and ∂−i rotating the interior of δ−i−1,−i

counterclockwise, and s switches the holes ∂1 and ∂−1 rotating the interior
of δ−1,1 counterclockwise. This interpretation of ti and s is very useful in
the investigation of their action on curves in S0.

It follows from Lemma 16 that s(αi) = αi for i = 1, . . . , g, ti(αi) = αi+1,
ti(αi+1) = αi, and ti(αj) = αj for j 6= i, i + 1. Thus the elements ai, s, and
ti belong to M.

We now consider the products di,j . For i 6= −j we start with δ1,2 and
apply consecutive factors ti and s, one at a time. We check that the result
is δi,j so di,j is the twist along δi,j , by Lemma 15. For d−1,1 we use Lemma
16(iii). The curve δ−1,1 is the boundary of a regular neighbourhood of α1∪β1

and (a1b1)
6 = s2a4

1 by Lemma 16(i), (ii), therefore d−1,1 = (a1b1)
6 is the

twist along δ−1,1 by Lemma 16(iii). Now we apply a suitable product of ti’s
and di,i+1’s to δ−1,1 and get δ−i,i. Thus di,j is the twist along δi,j for all i, j.

It follows from Lemma 17 that dI is equal to the twist along δI . In
particular ci,j is the twist along the curve γi,j .

Now it follows from Lemma 16 that ri,j(αj)=γi,j . Also the curves α1,. . .
. . . , αj−1, γi,j , αj+1, . . . , αg form a cut-system. Thus ri,j belongs to M.

One can check, by drawing pictures, that kj(αj) = αj+1 and kj(βj) =
βj+1, hence sj = bja

2
jbj is essentially the half-twist along a curve surround-

ing the holes ∂j and ∂−j (see Definition 4 and the interpretation of s).

We may assume that the handlebody B has a rotational symmetry with
respect to the z-axis (the vertical axis in Figure 1), so the 180 degrees
rotation around the z-axis takes the B onto itself and takes the ith handle
onto the (g + 1 − i)th handle. This rotation induces the rotation of S0

through 180 degrees around the origin, which takes ∂i onto ∂i−g−1 and
∂−i onto ∂g+1−i for i = 1, . . . , g. We now check that the element z from
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Definition 3 represents the rotation. Let z′ be the rotation. Consider loops
around the holes ∂i, i < 0, which descend from above, from the common
base point at ∞, and are disjoint outside ∞. Consider also loops around the
holes ∂i, i > 0, which ascend from below, from the common base point at ∞,
and are disjoint outside ∞. It is easy to check, using Definition 4, that z and
z′ act in the same way on these loops. Since the complement of these loops
is a union of a disk and of annuli around ∂i’s, it follows that z and z′ may
only differ by a product of ai’s. It is easy to check that z(β1) = z′(β1) = βg.
Since ag(βg) 6= βg the power of ag in z must be correct. Drawing some more
pictures one can check that z(βj) = z′(βj) = βg+1−j , therefore the power
of ag+1−j in z must be correct for j = 1, . . . , g. So z = z′ is the rotation.
From this one can check that zj leaves the curves αj and γj−g,j invariant.

We can now state our main result, a finite presentation for M:

Theorem 18. The mapping class group Mg of a handlebody of genus g
admits the following presentation:

The set of generators consists of a1, . . . , ag, d1,2, s, t1, . . . , tg−1 and ri,j

for i < j ∈ I0 and i = 1 or (i < 0, i + j > 0, j − i ≤ g).
The set of defining relations is:

(P1) [ai, aj ] = 1 and [ai, dj,k] = 1 for all i, j, k ∈ I0.

(P2) Pure braid relations

(a) d−1
r,s ∗ di,j = di,j if r < s < i < j ∈ I0 or i < r < s < j ∈ I0,

(b) d−1

r,i ∗ di,j = dr,j ∗ di,j if r < i < j ∈ I0,

(c) d−1

i,s ∗ di,j = (di,jds,j) ∗ di,j if i < s < j ∈ I0,

(d) d−1
r,s ∗ di,j = [dr,j , ds,j ] ∗ di,j if r < i < s < j ∈ I0.

(P3) dI0 = 1.
(P4) dIk

= a|k| for every k ∈ I0 where Ik = I0 − {k}.
(P5) titi+1ti = ti+1titi+1 for i = 1, . . . , g − 2 and [ti, tj ] = 1 if 1 ≤ i <

j − 1 < g − 1.
(P6) s2 = d−1,1a

−4 and t2i = di,i+1d−i−1,−ia
−2

i a−2

i+1 for i = 1, . . . , g−1.
(P7) [s, ai] = 1 for i = 1, . . . , g, ti ∗ ai = ai+1 for i = 1, . . . , g − 1,

[ai, tj ] = 1 for j 6= i, i − 1 and [ti, s] = 1 for i = 2, . . . , g − 1.
(P8) [s, d2,3] = 1, [s, d−2,2] = 1, st1st1 = t1st1s, and [ti, d1,2] = 1 for

i 6= 2.
(P9) If i < j ∈ I0 and i = 1 or (i < 0, i + j > 0, j − i ≤ g) then

r2
i,j = sjci,jsjc

−1

i,j .

(P10) If i < j ∈ I0 and i = 1 or (i < 0, i + j > 0, j − i ≤ g) then

(a) ri,j ∗ aj = ci,j and [ri,j, ak] = 1 for k 6= j,
(b) [ri,j , tk] = 1 if k < |i| or |i| < k < j − 1 or k > j or k = i =

1 < j − 1,
(c) [ri,j , sk] = 1 if k < |i| or k > j or k = −i,
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(d) [ri,j , dk,m] = 1 if k,m ∈ {i, . . . , j − 1} or k,m 6∈ {−j, i, i +
1, . . . , j},

(e) [ri,j , zj ] = 1 if j = g or j − i = g,
(f) ri,j ∗ di,j = dJ where J = {k ∈ I0 : i < k ≤ j},
(g) r1,j ∗ d−j,1−j = (tj−2tj−3 . . . t1) ∗ c−1,j ,
(h) if i < 0 and j + i > 1 then ri,j ∗ d−j,1−j = (tj−2tj−3 . . . t1−i) ∗

ci−1,j ,

(k) if j < g then r−1

i,j ∗ d−j−1,−j = s−1

j+1 ∗ ci,j+1.

(P11) If i < j ∈ I0 and i = 1 or (i < 0, i + j > 0, j − i ≤ g) then

ri,j ∗ tj−1 = t−1

j−1
∗ ri,j.

(P12) For g ≥ j > 2 and i = 1 or (i < 0, i + j > 0, j − i ≤ g)

r1,j = sjc1,jsjc
−1

1,jkj−1ajc1,j−2tj−1c
−1

1,j−1
t−1

j−1
r−1

1,j−1
sj−1h2r

−1
1,2h

−1
2 k−1

j−1
with

h2 = k−1

j−1t
−1

j−2t
−1

j−3 . . . t−1

1 kj−1kj−2 . . . k2,

r−1,j = h3r
−1
1,2h

−1
3 sjr

−1

1,j c
−1

−1,j−1c1,j−1a1sjc−1,jsjc
−1

−1,j with

h3 = s1kj−1kj−2 . . . k2,

ri,j = h3r
−1
1,2h

−1
3 sjr

−1

i+1,jc
−1

i,j−1ci+1,j−1a−isjci,jsjc
−1

i,j for i < −1 with

h3 = s−it
−1

−1−it
−1

−2−i . . . t−1
1 kj−1kj−2 . . . k3k2.

Although Theorem 18 is very long and complicated it has some simple
and interesting consequences.

Theorem 19. For g > 1 the mapping class group Mg of a handlebody B
of genus g is generated by five elements: a1, s1, r1,2, t1 and u = t1 . . . tg−1.

P r o o f. Let G be the subgroup of Mg generated by a1, s1, r1,2, t1, u.
We have to prove that G contains the generators ai, s, d1,2, tj and ri,j of M.
We have u ∗ ti = ti+1 by (P5), so tj ∈ G for all j. Now ti ∗ ai = ai+1 by
(P7), so ai ∈ G for all i. By (P10) we have r1,2 ∗ a2 = d1,2 ∈ G. Now all
elements di,j , sj , kj belong to G, by Definition 3. Finally, ri,j ∈ G by (P12)
and induction.

Theorem 20. The abelianized mapping class group A = Mg/[Mg,Mg]
is isomorphic to Z2 ⊕ Z2 for g = 2 and to Z2 for g > 2.

P r o o f. Elements conjugate in Mg become equal in A. By (P7) all
elements ai become equal in A to an element which we denote by a. We
have r1,2 ∗ a2 = d1,2 by (P10), and by Definition 3 all di,j with i 6= −j
become equal to a in A. By (P5) all elements ti become equal in A to an
element which we denote by t. Also all elements ri,j are equal to t in A by
(P11). All elements si become equal in A to an element which we denote
by s. So A is generated by t, s and a. Now t2 = s2 by (P9), and t2 = a−2
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by (P6). Consider the relation in (P12) defining r1,3. Reducing modulo the
commutator we get t = s3t−2a in A. Since t2 = s2 we get t = sa. Squaring
both sides we get t2 = s2a2, hence a2 = t2 = s2 = 1. So A is generated by
a and s and a2 = s2 = 1.

We now consider separately the cases g = 2 and g > 2. If g = 2 then all
edges of X are equivalent to e1,2. The relations (P12) become empty. We
have very few standard curves and very few corresponding elements dI : dI0 ,
dI , where I = I0 − k for k ∈ I0, and di,j with i < j. In A the elements d−1,1

and d−2,2 become trivial by the definition and by the previous relations.
We have seen that di,j becomes equal to a for i 6= −j so dI0 is equal to 1
in A and dI is equal to a in A for I = I0 − k. All relations (P1)–(P11)
become trivial modulo the commutator and the relations a2 = s2 = 1. Thus
A = Z2 ⊕ Z2.

Consider now the case g > 2. From the definition of c1,3 and from the
previous relations we get c1,3 = 1 in A. By (P10)(a) we get a = 1, so A is
generated by s and s2 = 1. Now all relations (P1)–(P12) become trivial so
A = Z2.

2.1. The stabilizer of a vertex. The main task of this subsection is to
establish a presentation of the stabilizer H of the vertex v0 of X.

Proposition 21. The group H admits a presentation with generators

ai, i = 1, . . . , g, d1,2, s and ti, i = 1, . . . , g− 1, and with relations (P1)–(P8)
of Theorem 18.

The group H can be defined by two exact sequences:

1 → Z
g
2 → ±Σg → Σg → 1,(1)

1 → H0 → H → ±Σg → 1.(2)

Before defining the objects and the homomorphisms in these sequences
we explain how from an exact sequence 1 → A → B → C → 1 and from
finite presentations of the groups A and C we can construct a finite presen-
tation of B.

• We write generators ai and relations Qj in A.

• We write generators ci and relations Wj in C.

• We lift generators ci to elements bi in B.

• We substitute bi for ci in Wj getting a word Rj in the letters bi, which
represents an element dj of A. We write dj as a product of ai’s.

• Finally, for every ai and bj the conjugate bj ∗ ai represents an element
ai,j of A, which we write as a product of the generators ai.

• B has a presentation with generators ai and bj and with relations
Qi = 1, Rj = dj , and bjaib

−1

j = ai,j .
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We now describe the sequence 1 and the group ±Σg. This is the group
of permutations of the set I0 = {−g, 1 − g, . . . ,−1, 1, 2, . . . , g} such that
σ(−i) = −σ(i). The homomorphism ±Σg → Σg forgets the signs. A
generator of the kernel changes the sign of one letter. The sequence splits, Σg

can be considered as the subgroup of the permutations which take positive
numbers to positive numbers. Let τi = (i, i + 1) be a transposition in Σg

for i = 1, . . . , g − 1. Then

(S1) [τi, τj ] = 1 for |i − j| > 1,
(S2) τi ∗ τi+1 = τ−1

i+1 ∗ τi for i = 1, . . . , g − 2,
(S3) τ2

i = 1 for i = 1, . . . , g − 1.

This defines a presentation of Σg. Further, let σi for i = 1, . . . , g denote
the change of sign of the ith letter in a signed permutation. Then σ2

i = 1 and
[σi, σj ] = 1 for all i, j. Finally, conjugation gives τi∗σi = σi+1, τi∗σi+1 = σi

and [σj , τi] = 1 for j 6= i and j 6= i+1. In fact, it suffices to use one generator
σ = σ1 and the relations σi = (τi−1τi−2 . . . τ1) ∗ σ. We get the relations

(S4) σ2 = 1,
(S5) [(τiτi−1 . . . τ1) ∗ σ, τj ] = 1 for j 6= i and j 6= i + 1,
(S6) [(τiτi−1 . . . τ1) ∗ σ, (τjτj−1 . . . τ1) ∗ σ] = 1 for all i, j.

The group ±Σg has a presentation with generators σ, τ1, . . . , τg−1 and
with defining relations (S1)–(S6).

We now describe the sequence (2). A homeomorphism in H may permute
the curves αi and may change their orientations. We fix an orientation of
each curve αi and define a homomorphism φ1 : H → ±Σg as follows: a
homeomorphism h is mapped to a permutation i 7→ ±j if h(αi) = αj and the
sign is “+” if the orientations of h(αi) and of αj agree, and “−” otherwise.
If h preserves the isotopy class of αi and preserves its orientation then it is
isotopic to a homeomorphism fixed on αi. The kernel of φ1 is the subgroup
H0 of the elements of H represented by the homeomorphisms which keep
the curves α1, . . . , αg pointwise fixed. Such a homeomorphism induces a
homeomorphism of the surface S0 obtained by cutting S open along the
curves αi.

We shall study the mapping class group of S0 and from it we shall deduce
a presentation of H0. We want to make the presentation symmetric with
respect to all holes so it is relatively complicated but it will simplify the
subsequent treatment of the mapping class group M. We use the notation
from Definition 3.

Lemma 22. The mapping class group of S0 has a presentation with

generators di, i ∈ I0, and di,j , i < j ∈ I0, and with relations

(Q1) [di, dj ] = 1 and [di, dj,k] = 1 for all i, j, k ∈ I0,
(Q2) pure braid relations
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(a) d−1
r,s ∗ di,j = di,j if r < s < i < j ∈ I0 or i < r < s < j ∈ I0,

(b) d−1

r,i ∗ di,j = dr,j ∗ di,j if r < i < j ∈ I0,

(c) d−1

i,s ∗ di,j = (di,jds,j) ∗ di,j if i < s < j ∈ I0,

(d) d−1
r,s ∗ di,j = [dr,j , ds,j ] ∗ di,j if r < i < s < j ∈ I0,

(Q3) dI0 = 1,

(Q4) dk = dIk
for every k ∈ I0 where Ik = I0 − {k}.

P r o o f. We start with a big disk D in S0 which contains all holes ∂i,
i ∈ I0. When we glue a disk with a distinguished centre to each curve
∂i we get a disk with 2g distinguished points. Its mapping class group
is isomorphic to the pure braid group P2g with generators di,j and with
relations (Q2). In the passage from the mapping class group of D to the
mapping class group of the punctured disk we kill exactly the twists di,
which commute with everything. One can check that the removal of the
disks does not affect the relations (Q2) so the mapping class group of D
has a presentation with relations (Q1) and (Q2). Now we glue a disk with
a distinguished centre P to the boundary ∂ of D. This kills the twist d
around the boundary ∂ and we get (Q3), by Lemma 17. Finally, we forget
the distinguished point p and get the sphere S0. By [2], Theorem 4.3, the
kernel of the homomorphism induced by this forgetful map is generated by
spin maps with respect to some set of generators of π1(S0, P ).

We can choose a base point P on the x-axis to the right of all the holes
and choose generators of π1(S0, P ) to be simple loops λk such that λk moves
parallel to the x-axis, turns around the hole ∂k and comes back to P parallel
to the x-axis (see Figure 10). A spin map with respect to λk is isotopic to a
quotient of twists with respect to the boundaries of a regular neighbourhood
of λk. We can homotope these boundaries into D, without passing over P .
Then one is isotopic to ∂k and the other is isotopic to the standard curve δI

with I = I0 − {k}. By Lemma 17 we get (Q4).

We now go back to the presentation of H0. When we glue back the
corresponding pairs of boundary components of S0 we get the surface S.
This glueing map induces a homomorphism from the mapping class group
of S0 into H0. In fact, it is onto H0—a homeomorphism fixed on α1, . . . , αg

induces a homeomorphism of S0. One can prove that the kernel is gen-
erated by the products did

−1

−i so both twists are identified with ai in H0.
Considering the presentation of the mapping class group of S0 established
in Lemma 22 we see that H0 has a presentation with generators a1, . . . , ag

and di,j for i < j ∈ I0 and with relations (P1)–(P4). In these relations di,j

is represented by a Dehn twist along δi,j .

We now lift the generators of ±Σg. Recall that ti(αi) = αi+1, and
ti(αi+1) = αi, and ti(αk) = αk for k 6= i, i+1. s(α1) is equal to α1 with the



Mapping class group of a handlebody 217

opposite orientation and s is fixed on the other αi’s. Thus we can lift τi to
ti and σ to s.

When we lift the relations in ±Σg and establish the conjugates of the
generators of H0 by the lifted generators of ±Σg we get a presentation of
H. In order to prove Proposition 21 we consider an abstract group defined
by the generators and relations in Proposition 21. We map this group onto
H where ai, d1,2, s and ti are mapped onto corresponding elements in H.
By the previous discussion the products di,j from Definition 3 are mapped
onto corresponding twists. Therefore relations (P1)–(P4) are mapped onto
true relations in H. Now we check that (P5)–(P8) are also mapped onto
true relations in H. We use Lemma 15 and relations (i)–(iv) of Lemma 16.

Relation (P5) follows from the definition of ti and from (i) and (iv).

We already know that d−1,1= s2a4
1. By (i) and (ii), t2i a

2
i+1a

2
i = (aieiai+1)

4

for i < g. The boundary of a regular neighbourhood of αi ∪ εi ∪ αi+1 is
equal to δi,i+1 ∪ δ−i−1,−i. Thus (P6) follows from (iii).

The relations in (P7) follow easily from Lemma 15 and (i).

Since t1(α1) = α2 and s(α2) = α2 we have [t1st1, a1] = 1 by Lemma 15.
Also t1st1 = e1a1b1a2e1a

2
1e1a2b1a1b1 by (i) and (ii), and the last expression

commutes with b1 by (i) and (ii), hence it commutes with s. d−2,2 is sup-
ported inside δ−2,2 and s is supported inside δ−1,1, so they commute. We
have further [s, d2,3] = 1 and [ti, d1,2] = 1 for i 6= 2 by (i). Thus (P8) is also
satisfied in H.

It remains to lift the relations of ±Σg to H, compute the conjugation
relations of the generators of H0 by the lifted generators of ±Σg, and prove
that all these relations follow from (P1)–(P8).

Relations (S1) and (S2) lift to (P5).

Relations (S3) and (S4) lift to (P6).

Relation (S5) lifts to [(titi−1 . . . t1)∗s, tj ] = 1 for j 6= i and j 6= i+1 and
this follows from (P5) and (P7).

We shall deal with (S6) a little later. We now pass to the conjugation by
s and tk. Since s2 ∈ H0 and t2k ∈ H0 by (P6), it suffices to know the result
of the conjugation of each generator of H0 by either s or s−1, and by either
tk or t−1

k (the other follows). We have s ∗ ai = ai by (P7). The result of the
conjugation tj ∗ ai is determined by (P7).

We now prove that the result of the conjugation of di,j , by either tk
or t−1

k , and by either s or s−1, is determined by (P5), (P7), (P8) and the
definitions of di,j . Consider first the conjugation by s.

If i > 1 then di,j = (ti−1 . . . t2tj−1 . . . t3) ∗ d2,3 by (P5), so s ∗ di,j = di,j

by (P7) and (P8).

If i = 1 then s−1 ∗ d1,j = d−1,j by (P7) and the definitions.
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If i < −1 and j + i > 0 then di,j = (t−1

−i−1 . . . t−1

2 tj−1 . . . t3t
−1

1 s−1t2)∗d1,2

by (P5) and (P7). Now

(s−1t−1
1 s−1t2) ∗ d1,2 = s−1t−1

1 s−1t−1
1 ) ∗ d2,3

= (t−1

1 s−1t−1

1 ) ∗ d2,3 (by (P7) and (P8))

= (t−1
1 s−1t2) ∗ d1,2.

Thus s−1 ∗ di,j = di,j.

The case of i < −1 and j > 1 and i + j < 0 is similar.

If j = −1 then di,j = (t−1

−i−1 . . . t−1

1 s−1t−1

1 s−1) ∗ d1,2. Now

(st−1
1 s−1t−1

1 s−1) ∗ d1,2 = (t−1
1 s−1) ∗ d1,2 (by (P7))

hence s ∗ di,−1 = di,1.

If j < −1 then di,j = (t−1

−j−1 . . . t−1
2 t−1

−i−1 . . . t−1
3 t−1

1 t−1
2 s−1t−1

1 s−1) ∗ d1,2.
Now

s−1 ∗ ((t−1

1 t−1

2 s−1t−1

1 s−1) ∗ d1,2)

= (s−1t−1
1 s−1t−1

1 t1t
−1
2 t−1

1 s−1) ∗ d1,2

= (t−1
1 s−1t−1

1 s−1t−1
2 t−1

1 t2s
−1) ∗ d1,2

= (t−1

1 s−1t−1

1 t−1

2 ) ∗ (s−1t−1

1 s−1t2) ∗ d1,2)

= (t−1

1 s−1t−1

1 t−1

2 t−1

1 s−1t2) ∗ d1,2 (as before)

= (t−1

1 s−1t−1

2 t−1

1 s−1) ∗ d1,2 (by (P7) and (P5)).

Hence s−1 ∗ di,j = di,j .

If i = −j then s ∗ dk,k+1 = dk,k+1 for k > 1, as above, hence s ∗ di,j =
(t−1

j−1
dj−1,j . . . t−1

2 d2,3s) ∗ d−2,2 = di,j by (P7).

We now check conjugation by tk. If i 6= −j then it follows easily from
(P5), (P7) and (P8) that di,j either remains invariant under the conjugation,
or is transformed into a “neighbouring” dp,q. In particular, tk commutes
with di,i+1 if k < i − 1 or k = i or k > i + 1. Now, by (P5) and the
definitions, tk ∗ d−j,j = d−j,j if k 6= j − 1, j, t−1

j ∗ d−j,j = d−1

j,j+1 ∗ d−j,j and
tj−1 ∗ d−j,j = dj−1,j ∗ d−j,j .

Finally, we lift (S6). We start with the case [τ1 ∗ ξ1, ξ1]. It lifts to

t1st
−1

1 st1s
−1t−1

1 s−1 = t1st
−1

1 ss−1t−1

1 s−1t1 (by (P7))

= t1st
−2
1 s−1t−1

1 t21.

We have t21 ∈ H0 by (P6), and the conjugation of an element of H0 by s and
ti is already determined by (P5)–(P8). So we know how to lift [τ1∗ξ1, ξ1] = 1.
In the general case we have a commutator [(titi−1 . . . t1)∗s, (tjtj−1 . . . t1)∗s].
If i > j then, by (P5) and (P7), this commutator is equal to the conjugate



Mapping class group of a handlebody 219

of [t1 ∗ s, s] by tjtj−1 . . . t1titi−1 . . . t2. This is a conjugation of an element
of H0 by tk’s so the result is determined by (P5)–(P8).

This concludes the proof of Proposition 21.

2.2. Proof of the main theorem. We now return to the action of M on
X. A homeomorphism h of B takes meridian curves to meridian curves and
cut-systems to cut-systems. If we let h(〈γ1, . . . , γg〉) = 〈h(γ1), . . . , h(γg)〉
we get an action of M on the vertices of X which extends to a simplicial
action on X. Conversely, if h is a homeomorphism of S which takes a
cut-system v = 〈γ1, . . . , γg〉 onto a cut-system w then h belongs to M (h
can be extended to the interior of B).

We now sketch the rest of the proof of Theorem 18. We prove that M
acts transitively on the vertices of X and that there are only a finite number
of edge-orbits of the action. We choose representatives ei,j of the edge-orbits
and prove that the chosen element ri,j of M switches the vertices of ei,j .
We prove that M is generated by ri,j ’s together with the generators of H.

Now to every word in the generators we assign an edge-path in X. To
a word representing the identity in M corresponds a closed edge-path. We
establish relations between words which induce the same edge-path or edge-
paths which differ by cancelling trivial “tails” and we prove that the relations
follow from (P9) and (P10). We show that there are only a finite number of
face-orbits of the action of M on X. We choose representatives of face-orbits
and for each of them we choose a word which represents the identity in M
and to which corresponds the boundary edge-path of the face. These words
correspond to (P11) and (P12). Now if a word w in the generators represents
the identity in M then it induces a closed edge-path. By Theorem 1 this
path is a sum of triangular paths (with tails). It follows easily that w is a
product of the relators (P1)–(P12).

We now prove that M acts transitively on the vertices of X. If v and
w are cut-systems and we cut S open along the curves of v (respectively
w) we get a sphere with 2g holes. We can construct a homeomorphism of
one sphere onto the other which respects the identification of the boundary
components corresponding to the same curve of v (respectively w). It induces
a homeomorphism of S which takes v onto w and thus belongs to M.

We want to classify the edges of X modulo the action of M. Let e =
(v,w) be an edge of X connecting the vertices v and w. When we cut S
open along the curves of v we get a sphere S1 with 2g holes. The vertex w
has one new curve γ disjoint from the curves of v. When we cut S1 along
γ we get two components D1 and D2 homeomorphic to spheres with holes.
We may assume that D1 has at most g + 1 holes. Some of its holes come
in pairs corresponding to the same curve of v and some are single holes,
with the corresponding holes in D2. Let now e′ = (v′, w′) be another edge
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and let D′
1 and D′

2 be the corresponding spheres with holes. There exists
a homeomorphism h of S which takes v onto v′ and w onto w′ (and thus
induces a homeomorphism of D1 onto D′

1) if and only if the numbers of
pairs of holes and of single holes in D1 are the same as in D′

1.
Consider the vertex v0 = 〈α1, . . . , αg〉 which was fixed in the previous

section. For any pair of natural numbers p, q such that 2p+q ≤ g there exists
a unique curve γi,j (see Definition 2) such that γi,j contains inside exactly p
pairs of holes of S0 and q single holes of S0 and i < j ∈ I0 and i = 1 or (i < 0,
i+j > 0, j− i ≤ g). Figure 12 shows a curve γi,j−1 for i < 0. If we replace a
curve αj of the cut-system v0 = 〈α1, . . . , αg〉 by the curve γi,j we get another
cut-system vi,j which is connected to v0 by an edge ei,j = (v0, vi,j) in X.
By the above argument every edge e of X can be mapped by an element of
M onto the unique edge ei,j . We say that e has type (i, j).

For each edge type (i, j) with i, j ∈ I0, i ≤ 1, i+j > 0, j−i ≤ g, we have
chosen an element ri,j = bjajci,jbj of M. By Lemma 16(ii), ri,j(αj) = γi,j ,
ri,j(γi,j) = αj and clearly ri,j(αk) = αk for k 6= j. Thus ri,j(v0) = vi,j ,
ri,j(vi,j) = v0 and r2

i,j ∈ H.
We now describe precisely a construction from [11] and [7] which will let

us determine a presentation of M.
To every edge-path p = (v0, v1, . . . , vk) which begins at v0 we assign

a product of elements of M of the form g = h1r1h2r2 . . . hkrkhk+1 such
that for m = 1, . . . , k we have h1r1 . . . hmrm(v0) = vm, where hm ∈ H and
rm = ri,j if the edge (vm−1, vm) has type (i, j). We call such a product
an h-product corresponding to p. We construct it as follows. If the edge
(v0, v1) has type (i, j) then there exists h1 ∈ M such that h1(v0) = v0 and
h1(vi,j) = v1. Then for r1 = ri,j we have h1r1(v0) = v1. Next we transport
the second edge to v0. We have (h1r1)

−1(v1) = v0 and (h1r1)
−1(v2) = v′1. If

the second edge has type (p, q) and we let r2 = rp,q then there exists h2 ∈ H
such that h2r2(v0) = v′1 and h1r1h2r2(v0) = v2, and so on. Observe that
the elements hi in the h-product corresponding to an edge-path p are not
uniquely determined. The construction implies

Lemma 23. The generators of H together with the elements ri,j generate

the group M.

P r o o f. Let g ∈ M. Then g(v0) is a vertex of X and it can be
connected to v0 by an edge-path p = (v0, v1, . . . , vk = g(v0)). Let g1 =
h1r1h2r2 . . . hkrk be an h-product corresponding to p. Then g1(v0) = vk =
g(v0), therefore g−1g1 leaves v0 fixed and belongs to the stabilizer H of v0.
It follows that g = h1r1h2r2 . . . hkrkhk+1.

By the inverse process we define an edge-path induced by the h-product
g = h1r1h2r2 . . . hkrkhk+1. The edge-path starts at v0, then v1 = h1r1(v0),
v2 = h1r1h2r2(v0) and so on. The last vertex of the path is vk = g(v0).
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Remark 2. An h-product g represents an element in H if and only if
vk = v0. This happens if and only if the corresponding edge-path is closed.
We can multiply such a g by a suitable element of H on the right and
get an h-product which represents the identity in M and induces the same
edge-path as g.

We now prove that relations (P9) are satisfied in M.

P r o o f. By Lemma 16(i), (ii),

ri,j = bjajci,jb
2
jajci,jbj = sjb

−1

j a−1

j ci,jb
2
jajci,jbj

= sjb
−1

j ci,ja
−1

j b2
jajci,jbj = sjb

−1

j ci,jbja
2
jb

−1

j ci,jbj

= sjci,jbjc
−1

i,j a2
jci,jbjc

−1

i,j = sjci,jsjc
−1

i,j .

We next prove that relations (P10) are satisfied in M. For a fixed edge
type (i, j) they are related to the stabilizer Hi,j of the edge ei,j in H. Every
element h ∈ Hi,j takes αj onto itself and takes γi,j onto itself, and permutes
the other αi’s. Since ri,j switches αj and γi,j and is fixed on the other αk’s
we have ri,jhr−1

i,j ∈ Hi,j . To make this statement into a finite set of relations
we must find a finite set of generators for Hi,j and find the corresponding
conjugate of each generator.

Lemma 24. The group Hi,j which stabilizes the edge ei,j is generated by

the following elements:

• a1, . . . , ag,

• tk where k < |i|, or k > j, or |i| < k < j − 1, or k = i = 1 < j − 1,
• sk where k < |i|, or k > j, or k = −i > 0,

• dk,m where k,m ∈ {p|i ≤ p ≤ j} or k,m ∈ {p | p < i or j < p},

• zj if i = 1 and j = g, or i < 0 and j − i = g.

P r o o f. A homeomorphism h in Hi,j takes γi,j onto itself. If γi,j contains
exactly g holes then h may switch the two components of S0−γi,j. This can
be done by the homeomorphism zj , which preserves γi,j and αj . Modulo zj

we may assume that h leaves each component of S0 −γi,j invariant. It must
leave ∂j fixed, and may switch ∂k and ∂−k if they are in the same component
of S0 − γi,j . This corresponds to the reversal of the orientation of αk and
can be done by sk. Also, h may permute single holes in a component of
S0−γi,j (and permute in the same way the corresponding holes in the other
component). It may also permute pairs of holes ∂k, ∂−k lying in the same
component of S0 − γi,j. All these permutations are induced by the suitable
tk’s (see Definition 4). Modulo these homeomorphisms we may assume that
h is fixed on all curves ∂k. The restriction of h to each component of S0−γi,j

belongs to the mapping class group of the component. As in Lemma 22 each
mapping class group is generated by the twists di for ∂i in the component
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and the twists dk,m for δk,m in the component. (The curves δk,m with k < i
and m > j can be pushed over the point at infinity and drawn around the
right hand side of Figure 10. Then they look more like the curves in Figure 8
containing two holes in the component outside γi,j .)

We now have to compute the result of the conjugation of the generators
of Hi,j by ri,j .

Lemma 25. Relations (P10) are satisfied in M and they determine the

result (in H ) of the conjugation of the generators of Hi,j by ri,j.

P r o o f. Relations (a)–(d) of (P10) follow immediately from the defini-
tions and from Lemma 16(i), (ii).

zj takes each of the curves αj , βj , and γi,j onto itself so it commutes
with ri,j by Lemma 15.

The last four relations follow by Lemma 15. One has to draw several
pictures to prove it. Since r2

i,j ∈ H (by (P9)) it suffices to know the result

of the conjugation of each generator of Hi,j by either ri,j or r−1

i,j . Not all
generators dk,m from Lemma 24 appear in the last four relations of (P10)
but the other generators are obtained from these by conjugation by suitable
products of s and tk’s which are already in Hi,j.

From (P9) and (P10) we get information about h-products.

Claim 1. If two h-products represent the same element in M and induce

the same edge-path then they are equivalent modulo (P1)–(P10).

P r o o f. If two h-products g1 = h1r1 . . . rkhk+1 and g2 = f1r
′
1 . . . r′kfk+1

induce the same edge-path p = (v0, v1, . . . , vk) then h1r1(v0) = f1r
′
1(v0).

Therefore h−1
1 f1r

′
1(v0) = r1(v0). Since h−1

1 f1 preserves the edge type of
the edge (v0, r

′
1(v0)), say (i, j), we have r1 = r′1 = ri,j and h−1

1 f1 ∈ Hi,j .
By (P10) we have f1r

′
1f2 = h1h

−1

1 f1r1f2 = h1r1h
′
1f2 = h1r1f

′
2. Therefore

g2 is equivalent to a new h-product h1r1f
′
2r

′
2f3r

′
3 . . . r′kfk+1 which induces

the same edge-path p. If we apply r−1

1 h−1

1 to the vertices (v1, . . . , vk) of p

we get a shorter edge-path which starts at v0 and is induced by two shorter
h-products h2r2 . . . rkhk+1 and f ′

2r
′
2 . . . r′kfk+1. Claim 1 follows by induction

on k.

Two different edge-paths may be homotopic in the 1-skeleton X1. This
means that there is a backtracking vi, vi+1, vi along the edge-path.

Claim 2. If two h-products represent the same element in M and in-

duce edge-paths which are equal modulo backtracking then the h-products are

equivalent modulo (P1)–(P10).

P r o o f. Consider an h-product g = gihi+1ri+1hi+2ri+2, where gi is
an h-product inducing a shorter edge-path p and the edge-path induced
by g has a backtracking at the end. Then gi(v0) = vi, gihi+1ri+1(v0) =
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vi+1, and gihi+1ri+1hi+2ri+2(v0) = vi. Since ri+1 and ri+2 correspond to
the same edge (vi, vi+1) of a fixed edge type, they must be equal. Clearly
the h-product gihi+1ri+1ri+1 induces the same edge-path. In particular
gihi+1r

2
i+1(v0) = vi, hence there exists h′ ∈ H such that gihi+1r

2
i+1h

′ =
gihi+1ri+1hi+2ri+2. Now by Claim 1 the h-products are equivalent modulo
(P10). But gihi+1r

2
i+1h

′ is equivalent modulo (P9) to a shorter h-product
which induces the edge-path p. Claim 2 follows by induction on the number
of backtrackings.

The final set of relations corresponds to the faces of X, the closed tri-
angular edge-paths. To every closed edge-path corresponds an h-product
which is equal in M to an element of H. This gives a relation in M. We
shall see that it suffices to consider the triangles modulo the action of M.

Up to an action of M we may assume that the path starts with v0 and
that the second vertex is vi,j . The third vertex has only one curve which
does not belong to 〈α1, . . . , αg〉, because the next vertex is again v0.

Case 1. Suppose first that γi,j remains fixed in the next simple move.
Then some αk is replaced by αj . ∂k must be a single hole inside γi,j with
∂−k outside γi,j . Applying the product tj−2tj−3 . . . tk we can map ∂k onto
∂j−1 leaving αj and γi,j fixed. Thus we may assume that our path, read
backwards, has the form

p1 = 〈αj−1, αj〉 → 〈γi,j , αj〉 → 〈γi,j , αj−1〉 → 〈αj , αj−1〉.

This path can be represented by the h-product (tj−1ri,j)
3. Indeed, for

g = tj−1ri,j we have g(αj) = γi,j , g(γi,j) = αj−1, g(αj−1) = αj and g leaves
other curves αk fixed.

Since g3 represents a closed edge-path it represents an element of H in
M. The relation ri,j ∗ tj−1 = t−1

j−1
∗ri,j of (P11) is satisfied in M by Lemma

16(iv). From (P11) we get g3 = tj−1r
2
i,jtj−1r

2
i,j. The last expression is

equivalent to an element f1 of H modulo (P9). We let V1 = (tj−1ri,j)
3f−1

1 .
Then V1 represents the edge-path p1 and is equal to the identity modulo
(P1)–(P11).

Case 2. Suppose now that γi,j changes in the second simple move of a
triangular path. Then g − 1 curves remain fixed at all three vertices of the
triangular path and only one curve changes. We call such a path a triangular

path of the second kind.

Lemma 26. Every triangle of the second kind is a sum of triangles of the

second kind with at least one edge of type (1,2).

P r o o f. By the length of an edge (u, v) we mean the minimal number of
holes (boundary components) in a component of S − (u ∪ v), where (u ∪ v)
denotes the union of the g + 1 curves appearing in the cut-systems u and v
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together. The length is an invariant of the edge type. An edge of type (1, 2)
has length 3 and an edge of any other type is longer.

Consider a triangle of the second kind with all edges of length greater
than 3. We start with a cut-system 〈α1, . . . , αg〉. We have a path of simple
moves 〈αi〉 → 〈β〉 → 〈γ〉 → 〈αi〉. We assume that the edge 〈αi〉 → 〈β〉 is
the shortest edge of the path. All curves are disjoint. The curve γ splits S0

into two components and β lies in one of them. One boundary component
corresponding to αi, say ∂i, lies inside β and the other lies outside γ, in the
other component of S0−γ. We want to split the triangle into smaller, simpler
triangles. Every curve disjoint from α1, . . . , αg is a meridian curve. We
choose β1 inside β such that β1 contains ∂i and exactly one more boundary
component ∂j inside β. Our triangle splits into three triangles 〈αi〉 → 〈β〉 →
〈β1〉 → 〈αi〉, 〈αi〉 → 〈β1〉 → 〈γ〉 → 〈αi〉, and 〈β1〉 → 〈β〉 → 〈γ〉 → 〈β1〉. The
first two have an edge of length 3 and the last one has an edge 〈β1〉 → 〈β〉
shorter than 〈αi〉 → 〈β〉. The required result follows by induction.

We further investigate the triangles of the second kind with one edge of
type (1, 2). Up to the action of M we may assume that the first edge of the
path is an edge ei,j , the second is of type (1, 2), and the third is the longest.
The path has the form 〈αj〉 → 〈γi,j〉 → 〈γ〉 → 〈αj〉.

The curve γ is disjoint from γi,j, it is separated from γi,j by a single hole
∂k, k 6= j, and the edge represented by the simple move 〈γ〉 → 〈αj〉 is the
longest edge of the path. It follows that γ must lie outside γi,j and up to
the action of Hi,j we may assume that γ = γi,j+1, or γ = γi−1,j (γ−1,j if
i = 1). For each of these triangles we have a relation in M. Some of these
relations are listed in (P12) and the other relations follow from these.

Consider first the case i = 1 and the path

p2 = 〈αj〉 → 〈γ1,j+1〉 → 〈γ1,j〉 → 〈αj〉.

Let

h2 = k−1

j t−1

j−1t
−1

j−2 . . . t−1

1 kjkj−1 . . . k2.

We want to prove that

g = k−1

j r1,j+1kjh2r1,2h
−1

2 s−1

j r1,j

represents the edge-path p2. Recall that r1,j(αj) = γ1,j , kj(αj) = tj(αj) =
αj+1 and kj(βj) = βj+1 for all j. It follows that h2(α2) = αj , h2(β2) = βj .
Also k−1

j ∗ r1,j+1 = bjajc1,j+1bj by Lemma 15. It is also easy to check
that h2(δ1,2) = δj,j+1. Therefore h2 ∗ r1,2 = bjajdj,j+1bj . We get g =
bjajc1,j+1bjbjdj,j+1c1,jbj . We have to check that

k−1

j r1,j+1(v0) = 〈α1, . . . , αj−1, γ1,j+1, αj+1, . . . , αg〉,

k−1

j r1,j+1kjbjajdj,j+1bj(v0) = 〈α1, . . . , αj−1, γ1,j , αj+1, . . . , αg〉, g(v0) = v0.
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Everything follows from what we already know with the exception of the
following two facts, which have to be checked by drawings:

k−1

j r1,j+1kjbjajdj,j+1bj(αj) = γ1,j and g(αj) = αj .

-1

1 j-1 j j+1

-j

x-axis

γ

γ
  1, j+1

    1, j-1

Fig. 11. The first lantern relation for triangles of type 2

We want to find an element of H which is equal to g in M. Consider the
domain in S0 bounded by the four curves γ1,j+1, γ1,j−1, ∂j and ∂j+1 (see
Figure 11). By the lantern relation (Lemma 17)

c1,j+1c1,j−1ajaj+1 = dj,j+1c1,j(tjc1,jt
−1

j )

(tjc1,jt
−1

j = dI with I = {1, 2, . . . , j − 1, j + 1}). Therefore dj,j+1c1,j =

ajc1,j+1c1,j−1aj+1tjc
−1

1,j t
−1

j . Also c1,j−1, aj+1 and tjc
−1

1,jt
−1

j commute with
bj , by Lemma 16. Hence

g = bjajc1,j+1bjbjdj,j+1c1,jbj

= (bjajc1,j+1bj)
2aj+1c1,j−1tjc

−1

1,j t
−1

j = k−1

j r2
1,j+1kjaj+1c1,j−1tjc

−1

1,j t
−1

j

= k−1

j sj+1c1,j+1sj+1c
−1

1,j+1kjaj+1c1,j−1tjc
−1

1,j t
−1

j = f2 ∈ H.

From this equation we can compute r1,j+1 in terms of r1,k, k < j + 1, and
the generators of H. We get a formula from (P12). The relation g = f2

becomes trivial modulo (P1)–(P12). If we let V2 = gf−1

2 then V2 is an
h-product which represents the path p2 and is equal to the identity modulo
(P1)–(P12).

Consider now the edge-path

p3 = 〈αj〉 → 〈γi,j〉 → γi−1,j〉 → 〈αj〉

(or p3 = 〈αj〉 → 〈γ1,j〉 → 〈γ−1,j〉 → 〈αj〉 if i = 1). We let

h3 = s1−it
−1

−i t
−1

−1−i . . . t−1

2 t−1

1 kj−1kj−2 . . . k2

(h3 = s1kj−1kj−2 . . . k2 if i = 1).
We consider in detail the case i < 0. The case i = 1 requires only a

suitable change of indices. We want to prove that

g = ri,js
−1

j h3r1,2h
−1
3 ri−1,j
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is an h-product representing p3. It is easy to check that h3(β2) = βj ,
h3(α2) = αj and h3(δ1,2) = γ, where γ is the curve in Figure 12. By
Lemma 15, h3r1,2h

−1

3 = bjajcbj , where c is the twist around γ. Thus g is
equal in M to g = bjci,jcbjbjajci−1,jbj . We have to check that

ri,j(v0) = 〈α1, . . . , αj−1, γi,j , αj+1, . . . , αg〉,

bjci,jcbj(v0) = 〈α1, . . . , αj−1, γi−1,j , αj+1, . . . , αg〉,

and g(v0) = v0. Everything follows from relations which we already know
with the exception of the following two facts, which have to be checked by
drawings:

bjci,jcbj(αj) = γi−1,j and g(αj) = αj .

-1

1

i

j-1 j  j+1

i-1 i-2

1-i

γ

γ

i-1 , j

i , j-1
γ

x-axis

Fig. 12. The second lantern relation for triangles of type 2

We now want to find an element of H which is equal to g in M. Consider
the domain in S0 bounded by the four curves γi−1,j , γi,j−1, ∂i−1 and ∂j (see
Figure 12). By the lantern relation (Lemma 17)

ci−1,jci,j−1ai−1aj = ci−1,j−1ci,jc.

Therefore ci,jc = c−1

i−1,j−1ci,j−1ai−1ci−1,jaj . Moreover ci−1,j−1, ci,j−1 and
ai−1 commute with bj by Lemma 16. Therefore

g = bjci,jcbjbjajci−1,jbj = c−1

i−1,j−1
ci,j−1ai−1r

2
i−1,j

= c−1

i−1,j−1
ci,j−1ai−1sjci−1,jsjc

−1

i−1,j = f3 ∈ H.

From this equation we can compute ri−1,j in terms of rk,j, j − k < j +1− i,
and the generators of H. We get a relation from (P12). The relation g = f3

becomes trivial modulo (P1)–(P12). If we let V3 = gf−1

3 then V3 is an
h-product which represents the path p3 and is equal to the identity modulo
(P1)–(P12).

Consider now the diagram in Figure 13. Every triangle in this diagram
has at least one edge of type (1, 2). (In the case of i = −1 we should
replace i + 1 by 1.) By the previous discussion every triangle with an edge
of type (1, 2) is equivalent modulo the action of M to the outside triangle
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vi+1;j - vi;j����3 vi+1;j�1 - vi;j�1XXXXXXXXXz QQQQk

v0

����
����

��







�
JJJJ

J]
@@@@

@@@@
@I

Fig. 13. Reduction for triangular paths

on the diagram or to the triangle on the right hand side of the diagram.
The outside triangle and the right hand side triangle have the longest edge
of length j − i + 2 (j + 2 if i = −1) and the other triangles have the longest
edge of a smaller length.

If i 6= 1 then the outer triangle is represented by an h-product V3 which
is trivial modulo (P1)–(P12), by the definition of ri,j . The triangle on the
right hand side is a sum of the remaining triangles. If i = 1 then the
triangle on the right hand side is represented by an h-product V2 which is
trivial modulo (P1)–(P12), by the definition of ri,j. The outside triangle is
a sum of the remaining triangles.

We can now complete the proof of Theorem 18. Let W be a word in the
generators of M which represents the identity in M. It has the form of an
h-product g which represents a closed edge-path p. We want to prove that
g is equivalent to the identity modulo (P1)–(P12). By Proposition 1 and
the above discussion, p is equal modulo backtracking to a sum of paths of
the form q1q2q

−1

1 , where q1 starts at v0 and q2 is equivalent modulo the
action of M to one of the special paths p1, p2, p3 or their inverses. By
Claims 1 and 2 it suffices to assume that g itself represents the edge-path
q1q2q

−1
1 .

Let g1 be an h-product representing q1 and let f be an element of M
such that q2 = f(pi). Then g1(v0) = f(v0) is the first vertex of q2, hence
g−1
1 f = h ∈ H. If Vi is the h-product representing pi then the h-product

g1hVi represents q1q2 and there exists an h-product g1hVig3 which repre-
sents the identity in M and represents the edge-path q1q2q

−1

1 . Clearly
g1hg3 represents the edge-path q1q

−1

1 null-homotopic by backtracking. By
Claim 1, g is equivalent to g1hVig3, which is equivalent to g1hg3, which is
equivalent to the identity modulo (P1)–(P12).

A path inverse to pi is represented by some other h-product V ′
i but then

ViV
′
i represents a path contractible by backtracking. Thus ViV

′
i is equivalent

to the identity modulo (P1)–(P10) and Vi is equivalent to the identity so V ′
i

is also equivalent to the identity. This concludes the proof of Theorem 18.
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