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From Newton’s method to exotic basins
Part I: The parameter space

by

Krzysztof B a r a ń s k i (Warszawa)

Abstract. This is the first part of the work studying the family F of all rational maps
of degree three with two superattracting fixed points. We determine the topological type
of the moduli space of F and give a detailed study of the subfamily F2 consisting of maps
with a critical point which is periodic of period 2. In particular, we describe a parabolic
bifurcation in F2 from Newton maps to maps with so-called exotic basins.

1. Introduction. In this paper we study the family F of all rational
mappings f of degree three with two superattracting fixed points c1, c2. Up
to conformal conjugation, it can be written as the following two-parameter
family F = {fa,b}:

fa,b(z) = az2 bz + 1− 2b
(2− b)z − 1

, a ∈ C \ {0}, b ∈ C \ {0, 1},

where 0 and ∞ are supersinks and 1 is a critical point. In particular, F
contains the families of cubic Newton maps and cubic polynomials with a
supersink.

The study of the spaces of rational maps of degree d is far from being
developed. Except some works describing general topological properties of
these spaces (e.g. [Mi2] in the case of d = 2 and [Se]), the greatest progress
was made in the quadratic case, due to the works by M. Rees, which aim at
a complete description of the space of quadratic rational maps (see [Re1],
[Re2]). However, this encounters serious difficulties and requires a compli-
cated combinatorial description. The usual procedure is to study complex
slices in the parameter space obtained by fixing the behaviour of some crit-
ical points. A well-known example is the family of Newton maps, studied in
e.g. [HP], [P1], [Sh].
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This work contributes to the study of the space of cubic rational maps.
We examine the two-parameter family F consisting of cubic rational maps
with two supersinks. The work was motivated by the paper [P1] by Feliks
Przytycki. He introduced the notion of “exotic” basins for rational maps as
non-simply connected completely invariant basins of attraction containing
k critical points with k less than the degree of the map. He also described
a one-parameter family of maps joining a cubic Newton map to maps with
exotic basins and asked if Mandelbrot-like sets in the parameter plane of
cubic Newton maps (see [CGS], [DH2]) move continuously under the change
of parameters to “exotic” Mandelbrot-like sets.

In this work we answer this question in the affirmative. We also give a
description of the space F and a detailed study of a one-parameter subfamily
F2 ⊂ F consisting of maps with a periodic critical point of period two. The
work is divided into two papers. In the first one we describe the parameter
space of F and F2 and prove the existence of a parabolic bifurcation in F2

from a Newton map via a parabolic map to maps with exotic or non-exotic
basins. The second paper generalizes this result to the case of a parabolic
bifurcation of Mandelbrot-like sets in F .

Let us summarize the content of the paper. Section 2 presents preliminary
facts about the families F and F . In Section 3 we determine the topology of
the moduli space M(F) (i.e. the space of holomorphic conjugacy classes of
maps from F). M(F) is an orbifold which is the quotient space of F under
the action of the Möbius group. We prove that M(F) is an algebraic set
in C3 of complex dimension two, with singularities at points corresponding
to Newton maps. In particular, M(F) is not a manifold. This is a differ-
ence compared to the case of the moduli space of quadratic rational maps
and of cubic polynomials. (Both these spaces are homeomorphic to C2—see
[Mi2].)

Since maps from F have two “free” critical points, by fixing the behaviour
of one of them, one can obtain various one-parameter subfamilies of maps
of degree three. One of the simplest cases is when we require that one of
the two critical points is double-critical. This gives (up to conformal con-
jugation) the family of cubic polynomials with a critical fixed point. (For
the description of the space of cubic polynomials we refer to [BH].) Another
condition is making one of the “free” critical points fixed. This leads to
the well-known family of cubic Newton maps (see [CGS], [He], [Ta], [Ro]).
In Section 4 we study a one-parameter family F2 ⊂ F defined by another
simple condition. We require that the critical point 1 is periodic with pe-
riod two. F2 is parameterized by a parameter λ ∈ Λ, with Λ equal to Ĉ
without a finite number of singular parameters where fλ degenerates to a
map of lower degree. We study the behaviour of the fourth “free” critical
point uλ.
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Subsection 4.1 contains basic definitions and describes the general prop-
erties of F2. Subsection 4.2 is devoted to the study of the plane Λ near
singular parameters. We describe some similarities between neighbourhoods
of some singular parameters and neighbourhoods of some points of the Julia
sets of quadratic polynomials.

In Subsection 4.3 we prove a classification theorem for the hyperbolic
components in Λ (Theorem 4.9). We study here the components of the set
of parameters for which uλ is in the immediate basin of the supersinks 0 or
∞. Such components can be “exotic” (when the immediate basin is exotic)
or “regular” (in the other case). We show that the regular components are
topological discs, and the exotic ones are punctured discs with a singular
parameter in the “centre”.

Subsection 4.4 presents some facts about the combinatorics of cubic New-
ton maps, most of them coming from [He] and [Ta].

Subsection 4.5 describes a parabolic bifurcation from a Newton map
in F2 to maps with exotic or non-exotic immediate basins of a supersink
(Theorem 4.20). There exists a curve on the plane Λ joining a Newton map
N ∈ F2 to a parabolic map P with a fixed point of multiplier 1. Then using
results from [DH1] we prove the existence of two curves starting at P , one
contained in an exotic component and the other in a regular one. In fact
these curves are internal rays in these components.

In the second part of the work we will prove the existence of a parabolic
bifurcation of Mandelbrot-like sets in F . Starting from a Mandelbrot-like set
in cubic Newton maps (see [DH2]) and continuously changing parameters
(a, b) we obtain a parabolic Mandelbrot-like set contained in the family of
maps with a fixed point of multiplier 1. Then it bifurcates to two paths of
Mandelbrot-like sets, an exotic and a regular one. The regular path ends at
the Mandelbrot-like set in the space of cubic polynomials (cf. [BH]). Note
that Theorem 4.20 describes the bifurcation of the “centre” of the main
cardioid in such Mandelbrot-like sets.

Acknowledgments. This work is a part of the author’s Ph.D. the-
sis, written at Warsaw University. The author wishes to express his special
thanks to Prof. Feliks Przytycki, his thesis advisor, for his kind help and a
great number of comments and suggestions he provided during the prepa-
ration of the paper.

Notation. We denote by Ĉ the Riemann sphere C ∪ {∞}. D denotes the
open unit disc {z ∈ C : |z| < 1}, Dr = {z ∈ C : |z| < r} and Dr(x) = {z ∈
C : |z − x| < r}. By a topological disc we mean a set homeomorphic to D.
The closure, interior and boundary of a set A are denoted respectively by
clA, intA and ∂A. We write J(f) for the Julia set of a rational map f . If
s is an attracting periodic point for a map f , then we write B(s) for the
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immediate basin of attraction to s, i.e. the component of the entire basin of
s containing s. We use the symbols f(z) = O(g(z)), f(z) = o(g(z)) in the
usual sense.

2. Preliminaries. Recall that F denotes the family of all cubic rational
maps with two superattracting fixed points c1, c2. First we find a suitable
parameterization of F. Take a map from F and apply a conformal change of
coordinates such that c1 = 0, c2 =∞. Then f has the following form:

(1) f(z) = z2 z + α

βz + γ
, α, β, γ ∈ C, γ 6= 0, γ − αβ 6= 0.

Consider first the case when f has no critical points except 0 and ∞.
This condition is equivalent to α = β = 0. Then f(z) = z3/γ and the map
is conformally conjugate to z3. (Thus, the maps with exactly two critical
points are represented by one point in the moduli space.) Neglecting this
trivial case, we assume from now on that f has at least three critical points.
Applying a suitable conformal change of coordinates to a map of the form
(1) we can assume f has two supersinks 0, ∞, and the third critical point
is c3 = 1. This means β(α+ 2) + γ(2α+ 3) = 0. Note that since γ 6= 0, this
implies α+ 2 6= 0. Hence, we can write f in the form

f(z) = −α+ 2
γ

z2 z + α

(2α+ 3)z − α− 2
.

Introducing new parameters a = −(α+ 2)/γ and b = 1/(α+ 2) we obtain

(2) fa,b(z) = az2 bz + 1− 2b
(2− b)z − 1

, a ∈ C \ {0}, b ∈ C \ {0, 1}.

Definition 2.1. Let F = {fa,b}a,b be the family of all the maps of the
form (2).

This family will be studied throughout the paper. One can easily check
that:

(3)
the critical points of fa,b are 0,∞, 1, u =

2b− 1
b(2− b) ;

fa,b(0) = 0, fa,b(∞) =∞, fa,b(1) = a, fa,b(u) =
a(2b− 1)3

b(2− b)3 .

Consider singular values of the parameters a, b. When a = 0 (resp. ∞),
the map fa,b degenerates to the constant 0 (resp. ∞). Assume a 6= 0,∞.
For b =∞, fa,b is the quadratic polynomial az(2− z) and 0 is not a critical
point. Similarly, for b = 0, fa,b becomes the quadratic rational map a z2

2z−1
and ∞ is not a critical point. Finally, for b = 1, fa,b(z) = az2, where 1 is
not a critical point. Moreover, we have



From Newton’s method to exotic basins 253

Lemma 2.2. Let a0 6= 0,∞. Then:

• If (a, b)→ (a0,∞), then fa,b(z)→ a0z(2−z) uniformly in the spherical
metric on every set U ⊂ Ĉ such that 0 6∈ clU .
• If (a, b) → (a0, 0), then fa,b(z) → a0

z2

2z−1 uniformly in the spherical

metric on every set U ⊂ Ĉ such that ∞ 6∈ clU .
• If (a, b) → (a0, 1), then fa,b(z) → a0z

2 uniformly in the spherical
metric on every set U ⊂ Ĉ such that 1 6∈ clU .

P r o o f. Let (a, b)→ (a0,∞). Since az(2− z)→ a0z(2− z) uniformly in
the spherical metric on Ĉ, it is sufficient to estimate the spherical distance
between fa,b(z) and az(2− z). By (2),

fa,b(z)− az(2− z) = 2a
z(z − 1)2

(2− b)z − 1
.

By assumption, there exists δ > 0 such that |z| > δ for every z ∈ U . Suppose
|z| < R for a large fixed R > 0. Then there exists a constant c independent
of z ∈ U and of a near a0 such that

|fa,b(z)− az(2− z)| < c
R3

δb
,

which tends to 0 as b→∞. Suppose now |z| ≥ R. Then

1
fa,b(z)

− 1
az(2− z) =

2(z − 1)2

az2(z − 2)(b(z − 2) + 1)
<

c′

R2b

for a constant c′ independent of z ∈ U and of a near a0. This implies that
fa,b(z) tends to a0z(2−z) uniformly in the spherical metric on U . The other
cases can be proved in the same way.

Remark. Note that for b = 2, fa,b is the polynomial az2(3− 2z).

3. Orbifold structure ofM(F). In this section we describe the moduli
space of F, which we denote byM(F). By “moduli space” we mean the space
of all holomorphic conjugacy classes of maps from F. As shown in Section 2,
M(F) is the union of the moduli space M(F) and one point corresponding
to the maps conjugate to z 7→ z3. Hence we now study the space M(F).

We identify M(F) with the quotient space of

F ' {(a, b) : a ∈ C \ {0}, b ∈ C \ {0, 1}}
under the action of a suitable group of Möbius maps. We will determine
the orbifold structure of M(F), i.e. we will find a holomorphic mapping
H = H(a, b) with values in C3 such that H(a1, b1) = H(a2, b2) if and only
if (a1, b1) and (a2, b2) are in the same orbit of the action of the group.
In particular, this gives a homeomorphism between M(F) (with the usual
quotient topology) and X \{v}, where X ⊂ C3 is an algebraic set of complex
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dimension two. The point v corresponds to the unique point ofM(F)\M(F).
The set X is not a manifold, since it has singularities at points corresponding
to Newton maps in F .

Definition 3.1. For ζ = 0, 1,∞ denote by Dζ the family of all maps from
F for which ζ is a double critical point. Let D = D0∪D1∪D∞. Denote also
by N(0,1,∞) (resp. N(0,u,∞)) the family of all Newton maps in F with three
supersinks 0, 1,∞ (resp. 0, u,∞). By a Newton map we mean here a map
of degree three with three supersinks. Such a map is conformally conjugate
to Newton’s method for a cubic polynomial with three simple roots. Recall
that Newton’s method for a polynomial p is defined by

Np(z) = z − p(z)
p′(z)

.

Set also N = N(0,1,∞) ∪N(0,u,∞). Note that in the definition of N(0,u,∞) we
exclude the case u = 0,∞. Note also that N ∩D 6= ∅, because a simple root
of a polynomial can be a root of its second derivative and then the Newton
method has a double critical point.

By (3), we have

D0 ' {(a, b) : a ∈ C \ {0}, b = 1/2},
D∞ ' {(a, b) : a ∈ C \ {0}, b = 2},
D1 ' {(a, b) : a ∈ C \ {0}, b = −1},
N(0,1,∞) ' {(a, b) : a = 1, b ∈ C \ {0, 1}},

N(0,u,∞) '
{

(a, b) : a =
(
b− 2
2b− 1

)2

, b ∈ C \ {0, 1/2, 1, 2}
}
.

The following lemma describes the action of Möbius maps on F .

Lemma 3.2. F splits into three disjoint sets invariant under the action
of Möbius maps:

F = F (1) ∪ F (2) ∪ F (3),

where F (1) = F \ (D0 ∪ D∞ ∪ N ) is composed of maps with exactly two
simple supersinks, F (2) = (D0 ∪D∞) \ N consists of maps with exactly two
supersinks, a simple one and a double one, and F (3) = N is the family of
maps with three supersinks (Newton maps). Moreover ,

M(F (1)) ' F (1)/〈g1, g2〉,
M(F (2)) ' F (2)/〈g1〉,
M(N(0,1,∞)) ' N(0,1,∞)/〈g1, g3〉,
N(0,u,∞) 'g2 N(0,1,∞) \ (D0 ∪ D∞),
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where

g1(a, b) =
(

1
a
,

1
b

)
, fg1(a,b)= h−1

1 ◦ fa,b ◦ h1, h1(z) =
1
z
,

g2(a, b) =
(

1
a

(
b− 2
2b− 1

)2

, b

)
, fg2(a,b)= h−1

2 ◦ fa,b ◦ h2, h2(z) =
2b− 1
b(2− b) ·

1
z
,

g3(1, b) =
(

1,
b

b− 1

)
, fg3(1,b)= h−1

3 ◦ f1,b ◦ h3, h3(z) = 1− z.

P r o o f. Let h be a Möbius map conjugating two maps from F (1). Then
h({0,∞}) = {0,∞} and h({1, u}) = {1, u}. Composing (if necessary) h with
h2 we get h(1) = 1. If h(0) 6= 0, compose h with h1. Then h fixes 0, 1,∞ so
it is the identity.

If h conjugates two maps from F (2), then h(1) = 1 and h({0,∞}) =
{0,∞} so after composing h (if necessary) with h1 we have h = id.

Similarly, if h conjugates two maps with supersinks 0, 1,∞, then by
composing it (if necessary) with h1 and h3 we get the identity.

Finally, it is clear that g2 identifies N(0,u,∞) with N(0,1,∞) \(D0∪D∞).

Note that g1 acts on the entire space F , g2 acts on F \ (D0 ∪ D∞) and
g3 acts on N(0,1,∞). With this convention, we obtain

Corollary 3.3. M(F) ' F/〈g1, g2, g3〉.
Remark. Note that on F \ (D0 ∪ D∞) we have g2

1 = g2
2 = id and

〈g1, g2〉 ∼= Z2 ⊗ Z2.

In fact, after the change of parameters µ = a 2b−1
b−2 , ν = b we get

g1(µ, ν) =
(

1
µ
,

1
ν

)
, g2(µ, ν) =

(
1
µ
, ν

)
.

Furthermore, on N(0,1,∞) we have g2
3 = id and

〈g1, g3〉 ∼= S3.

(S3 denotes the group of permutations of a three-element set.) If we consider
b as a parameter in N(0,1,∞), then g1 is the symmetry with respect to the
unit circle composed with the symmetry with respect to the real line and g3

is the symmetry with respect to the circle {z : |z − 1| = 1} composed with
the symmetry with respect to the real line. See Fig. 1a.

Now we describe the orbifold structure of F/〈g1, g2〉. Let

H1(a, b) = (x(a, b), y(b)),

where

(4) x(a, b) = a
(2b− 1)2

b
+

1
a
· (b− 2)2

b
, y(b) =

(b− 1)2

b
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b = -1 b = 0 b = 1/2 b = 2

b = (1+i√3)/2

b = 1

∆

∆’

g3(∆)
g1(∆) g1(∆’)

g3(∆’)

g3g1(∆)

g1g3(∆)g1g3(∆’)

g3g1g3(∆’)

g3g1g3(∆)

g3g1(∆’)
(a)

The action of 〈g1, g3〉 on the plane {(1, b) : b ∈ C \ {0, 1}}

x = -4 x = 1/2

∆

g3(∆’)g3(g1g3∆)

g3(g1∆’)

~ ~ ~
~

(b)

g3(∆)
∆’ x = 0

x =  -1

The action of g3 on the plane
{(x̃, 0) : x̃ ∈ C \ {0}} (the quotient space
of the plane (a) under the action of g1)

x = -4 x = 1/2

∆ ∆’

g3(∆)g3(∆’)g3(g1g3∆)

g3(g1∆’)

~ ~ ~~

(c)

x = 0x = ∞

A schematic view of the plane (b)
with x̃ = −1 moved to infinity

Fig. 1. The action of the Möbius group on Newton maps

for a ∈ C \ {0}, b ∈ C \ {0, 1}. Using Lemma 3.2, it is easy to check that
H1(a1, b1) = H1(a2, b2) if and only if (a1, b1) and (a2, b2) are in the same
orbit of the action of 〈g1, g2〉. Note that H1((C \ {0})× (C \ {0, 1})) = X1,
where

X1 = (C× (C \ {0})) \ {(0, 1/2)}.



From Newton’s method to exotic basins 257

(Here C× {0} corresponds to {(a, b) : (b− 1)2/b = 0} = {(a, b) : b = 1} and
the point (0, 1/2) corresponds to b = 2, a → 0 and b = 1/2, a → ∞.) By
general topology, F/〈g1, g2〉 is homeomorphic to X1.

This together with Lemma 3.2 implies that M(F) is the quotient space
of X1 under the action of g3 on maps with three supersinks (Newton maps).
Note that Newton maps in X1 correspond to the set
{(

(2b− 1)2 + (b− 2)2

b
, b+

(b− 1)2

b

)}

b∈C\{0,1}
={(5y(b)+2, y(b))}b∈C\{0,1}.

Apply an affine change of coordinates in C × C putting x̃ = y, ỹ = x −
5y−2. In the coordinates (x̃, ỹ) the Newton maps in X1 form the punctured
complex plane

{ỹ = 0} = {(x̃, 0) : x̃ ∈ C \ {0}}.
Recall that the action of 〈g1, g3〉 on N(0,1,∞) is isomorphic to the action of
S3 (see Fig. 1a). Using Lemma 3.2, it is easy to check that if we define

G(b) =
(2b− 1)2(b− 2)2(b+ 1)2

b2(b− 1)2

for b ∈ C \ {0, 1}, then G(b1) = G(b2) if and only if b1 and b2 are in the
same orbit of the action of 〈g1, g3〉 on N(0,1,∞). Moreover, G(C\{0, 1}) = C.
Now we can determine the orbifold structure ofM(F) ' F/〈g1, g2, g3〉. For
a ∈ C \ {0}, b ∈ C \ {0, 1} define

H(a, b) = (G(b), ỹ(a, b), y(b)ỹ(a, b)),

where ỹ(a, b) = x(a, b)− 5y(b)− 2 and x(a, b), y(b) are defined in (4). Note
that if ỹ(a, b) 6= 0, then H(a1, b1) = H(a2, b2) if and only if H1(a1, b1) =
H1(a2, b2). Moreover, ỹ(a, b) = 0 means that fa,b is a Newton map and then
H(a1, b1) = H(a2, b2) if and only if G(b1) = G(b2). By Lemma 3.2, this
implies that H(a1, b1) = H(a2, b2) if and only if (a1, b1) and (a2, b2) are in
the same orbit of the action of 〈g1, g2, g3〉.

Let

(5) X = H((C \ {0})× (C \ {0, 1})) ∪ {v},
where v = (0,−9/2,−9/4) corresponds to the point (x, y) = (0, 1/2) (see
the definition of X1). By general topology and Corollary 3.3, we obtain

Corollary 3.4. M(F) ' F/〈g1, g2, g3〉 is homeomorphic to X \ {v}.
Using the definition of H, by an easy calculation one can find a polyno-

mial F : C3 → C such that all points (z1, z2, z3) ∈ C3 from X satisfy the
equation

(6) F (z1, z2, z3) = 0.
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On the other hand, one can easily check that for any given point (z1, z2, z3) ∈
C3 such that (6) holds, either (z1, z2, z3) = v or we can find a ∈ C \ {0} and
b ∈ C \ {0, 1} such that H(a, b) = (z1, z2, z3). Therefore, we obtain

Corollary 3.5. The set X is an algebraic set in C3 of complex dimen-
sion two.

Recall that the point v corresponds to (x, y) = (0, 1/2) (in the coor-
dinates (x̃, ỹ) it is equal to (1/2,−9/2)). Hence v represents the values
b = 2, a → 0 and b = 1/2, a → ∞. Note that if in (1) we let α → 0,
β → 0, then b → 1/2, a → ∞. Hence v corresponds to α = β = 0, which is
the unique point of M(F) \M(F). Therefore, we can identify M(F) with
the set X. Note that the Newton maps in X correspond to the set

{H(a, b) : ỹ(a, b) = 0} = {(G(b), 0, 0) : b ∈ C \ {0, 1}} = C× {0} × {0}.
Take a closer look at the action of g3 on Newton maps in X1 ' F/〈g1, g2〉

(it is presented in Fig. 1b,c). It is easy to compute that on the plane {(x̃, 0)},
g3 identifies the points x̃ = (b− 1)2/b, x̃ = 1/(b(b− 1)) and x̃ = b2/(1− b).
A generic orbit consists of three points. The exceptional points are x̃ = 1/2,
which is identified only with x̃ = −4 (here b = −1, 1/2, 2 and the map has a
double supersink) and x̃ = −1, which is not identified with any other point
(here b = (1± i√3)/2). g3 acts like rotation through 2π/3 near x̃ = −1 and
like rotation through π near x̃ = 1/2,∞ (see Fig. 1b,c).

For z ∈ C let

Xz = {(z1, z2, z3) ∈ X : z1 = z}.
Note that Xz = {H(a, b) : G(b) = z, a ∈ C\{0}} (for z = 0 we must add the
point v). Hence Xz corresponds to maps with fixed location of all critical
points; moving the parameter a we change the location of the critical values
(see (3)).

Definition 3.6. Let C(k) be the union of k complex planes with exactly
one common point. For instance, we can take

C(k) =
{

(z1, z2) ∈ C× C :
k∏

j=1

(z1 − jz2) = 0
}
.

The above description of the action of g3 on Newton maps implies that
if z 6= 0,−27 (i.e. b 6= −1, 1/2, 2, (1± i√3)/2, which means x̃ 6= −4,−1, 1/2),
then Xz is homeomorphic to C(3). In particular, this implies that X is not
a manifold. For z = 0 (i.e. b = −1, 1/2, 2, x̃ = −4, 1/2), the set X0 is hom-
eomorphic to C(2). Moreover, X0 corresponds to the maps with a double
critical point, where one of the planes from C(2) (for x̃ = 1/2) represents
the maps with a double supersink, hence conformally conjugate to poly-
nomials. Finally, for z = −27 (b = (1 ± i√3)/2, x̃ = −1), the set X−27 is
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homeomorphic to C. It is easy to check that the point (−27, 0, 0) corresponds
to Newton’s method for the polynomial z3 − 1.

In this way we have proved

Theorem 3.7. M(F) can be identified with the set X ⊂ C3 defined in
(5). The set X is an algebraic set of complex dimension two. Moreover ,

(a) C × {0} × {0} forms a set of singular points in X and corresponds
to the Newton maps in M(F).

(b) For every z ∈ C \ {0,−27}, Xz is homeomorphic to C(3).
(c) X0 is homeomorphic to C(2) and corresponds to the maps with a

double critical point (one of the planes from C(2) represents the polynomials).
(d) X−27 is homeomorphic to C and (−27, 0, 0) corresponds to Newton’s

method for the polynomial z3 − 1.

Remark. Note that apart from holomorphic conjugacy, fa,b is conjugate
to fā,b̄ by z 7→ z.

4. The family F2

4.1. Definitions and basic properties. In this section we study the family
of maps fa,b ∈ F for which the critical point 1 is periodic with period two.
By (3), this condition is equivalent to

b = − a2 + a− 1
a(a2 − a− 1)

.

This defines a one-parameter family F2 ⊂ F . Recall that fa,b is conjugate
to f1/a,1/b by z 7→ 1/z. To make this symmetry easier to notice (especially
in figures), we replace a by another parameter λ, so that for fλ ∈ F2, fλ is
conjugate to f−λ. Let λ = (a− 1)/(a+ 1). Then

(7) a =
1 + λ

1− λ, b =
(1− λ)(λ2 − 4λ− 1)
(1 + λ)(λ2 + 4λ− 1)

.

Let fλ = fa,b for a, b as in (7). Substituting (7) in (2) we obtain

(8) fλ(z) =
λ+ 1
λ− 1

z2 (λ− 1)(λ2 − 4λ− 1)z − (3λ3 − 5λ2 + 9λ+ 1)
(3λ3 + 5λ2 + 9λ− 1)z − (λ+ 1)(λ2 + 4λ− 1)

.

Since fa,b is conjugate to f1/a,1/b by z 7→ 1/z, and λ = (a− 1)/(a+ 1), fλ is
conjugate to f−λ by z 7→ 1/z. These are all conformal conjugations between
maps from F2 except the case when u is periodic with period two (which
holds for a finite number of parameters λ). Moreover, fλ is conjugate to fλ̄
by z 7→ z.

In Section 3 we described singular parameters a, b in the family F . Using
this together with (7) one can characterize singular parameters λ.
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For λ1 = −1, fλ degenerates to the constant 0, and analogously for
λ = −λ1, fλ is the constant ∞. Assume λ 6= ±λ1. The condition b = ∞ is
equivalent to λ2 + 4λ−1 = 0, which gives λ2 = −2−√5 and λ3 = −2 +

√
5.

Recall that for these parameters, fλ is the quadratic polynomial 1+λ
1−λz(2−z)

and 0 is not a critical point. Similarly, b = 0 is equivalent to λ2−4λ−1 = 0,
i.e. λ = −λ2,−λ3. Here fλ becomes the map 1+λ

1−λ · z2

2z−1 of degree two and∞
is not a critical point. Finally, the condition b = 1 means that λ = λ4,±λ5,
where λ4 = 0, λ5 =

√
3 i and fλ is the quadratic polynomial 1+λ

1−λz
2, where

1 is not a critical point. By (7), if λ tends to ±λ2, . . . ,±λ5, then a tends to
some finite non-zero number. Hence Lemma 2.2 gives

Corollary 4.1. • If λ → λ̃ for λ̃ = λ2, λ3, then fλ(z) → 1+λ̃
1−λ̃z(2 − z)

uniformly in the spherical metric on every set U ⊂ Ĉ such that 0 6∈ clU .

• If λ→ λ̃ for λ̃ = −λ2,−λ3, then fλ(z)→ 1+λ̃
1−λ̃ ·

z2

2z−1 uniformly in the

spherical metric on every set U ⊂ Ĉ such that ∞ 6∈ clU .

• If λ → λ̃ for λ̃ = λ4,±λ5, then fa,b(z) → 1+λ̃
1−λ̃z

2 uniformly in the

spherical metric on every set U ⊂ Ĉ such that 1 6∈ clU .

Note also that λ =∞ is not a singular parameter and f∞(z) = z2 z−3
3z−1 .

From the above considerations we conclude that the family

F2 = {fλ : λ ∈ Λ}, Λ = Ĉ \ {±λ1, . . . ,±λ5},
is the family of all rational maps of degree three with superattracting fixed
points 0,∞ and critical point 1 of period two.

We study the behaviour of the critical point u of fλ with respect to the
parameter λ ∈ Λ. We write u = uλ. By (3) and (7),

(9)
uλ =

(λ+ 1)(λ2 + 4λ− 1)(3λ3 − 5λ2 + 9λ+ 1)
(λ− 1)(λ2 − 4λ− 1)(3λ3 + 5λ2 + 9λ− 1)

,

fλ(uλ) = − (λ+ 1)2(λ2 + 4λ− 1)(3λ3 − 5λ2 + 9λ+ 1)3

(λ− 1)2(λ2 − 4λ− 1)(3λ3 + 5λ2 + 9λ− 1)3 .

Definition 4.2. For ζ = 0,∞, 1, fλ(1) let B(ζ) be the immediate basin
of attraction to ζ and let

Λζ = {λ ∈ Λ : uλ ∈ B(ζ)}.
Recall that fλ̄ is conjugate to fλ by z 7→ z and f−λ is conjugate to fλ

by z 7→ 1/z. This means that symmetry with respect to the real axis in the
parameter plane does not change the behaviour of uλ. Similarly, symmetry
with respect to the origin of the parameter plane only changes the role of 0
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λ6 ≈ −0.10 λ7 ≈ 0.89 + 1.55i λ8 =
√

5/5 λ9 =
√

5 λ10 = (
√

3/3)i

Fig. 2. Parameter plane for F2

and ∞. In particular, this implies

(10)
Λ0 = Λ0, Λ∞ = Λ∞, Λ0 = −Λ∞,

−Λ1 = Λ1 = Λ1, −Λfλ(1) = Λfλ(1) = Λfλ(1),

where −A = {−z : z ∈ A} and A = {z : z ∈ A} (see Fig. 2).
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We are going to describe all components of Λ0, Λ∞, Λ1 and Λfλ(1). We
will show that there are a finite number of them, and each has a “centre
point”, which can be either a singular parameter or a point from Λ. We
will also determine which component is “exotic” and which is “regular”. To
explain what we mean, we need to state some definitions.

In [P1] Feliks Przytycki introduced the following notion of exotic basins:

Definition 4.3. Let f be a rational map of degree d ≥ 3. Suppose that
f has an attracting fixed point s and let B(s) be the immediate basin of
attraction of s. Then we call B(s) an exotic basin if the following hold:

(i) B(s) is completely invariant, i.e. f−1(B(s)) = B(s),
(ii) B(s) is non-simply connected,

(iii) B(s) contains less than d critical points counted with multiplicity.

Remark. An equivalent formulation of the condition (i) is to say that
the entire basin of s is connected or that f has degree d on B(s).

Note that if B(s) is simply connected, then it contains exactly deg f |B(s)
− 1 critical points counted with multiplicity because then f |B(s) is conju-
gate to a Blaschke product on the unit disc. In [P1] it is proved that if f
is expanding on the Julia set and B(s) contains all but one critical points
or values counted without multiplicity, then f has degree d on B(s), and
moreover, the component of the set of rational maps of degree d expand-
ing on the Julia set which contains f , also contains a polynomial. On the
other hand, in [P1] examples are given of basins containing k critical points
counted with multiplicity for an arbitrary k = 2, . . . , 2d − 2. Note that the
basin of ∞ for a polynomial of degree d cannot be exotic. This follows from
the observation that∞ is the critical point of degree d−1 and a well-known
fact that if B(s) is non-simply connected, then there are at least two critical
points in it (counted without multiplicity).

The following fact was proved in [Ba]:

Theorem 4.4. Let f be a rational map of degree d ≥ 3 and let s be an
attracting fixed point. Suppose that the immediate basin of attraction B(s)
contains at least 2d − 4 critical points or values counted with multiplicity.
Then f has degree d on B(s). Moreover , for arbitrary d ≥ 3 and k =
1, . . . , 2d − 5 there exists a rational map f with an attracting fixed point s
such that B(s) contains exactly k critical points counted with multiplicity
and the degree of f on B(s) is strictly less than d.

Let us now return to our situation and consider a map fλ ∈ F2. Only one
critical point uλ is “free” and can lie in the immediate basin of attraction
of a sink. If uλ ∈ B(ξ) for an attracting fixed point ξ 6= 0,∞, then B(ξ)
contains only one critical point, so it is simply connected and deg fλ|B(ξ) = 2.
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−λ1λ1

λ6 −λ6

λ8−λ8

λ10

−λ10

λ3−λ3 λ4

Fig. 3. A magnification of the parameter plane around 0. The four light-gray sets similar
to the Mandelbrot set are the regions where uλ is in the basin of an attracting periodic
orbit disjoint from 0, 1, ∞.

Topologically this is the situation of a Newton map (i.e. fλ(uλ) = uλ) (see
Subsection 4.4).

For B(0) and B(∞), Theorem 4.4 implies the following:

Corollary 4.5. Let ζ = 0,∞.

• If uλ 6∈ B(ζ), then B(ζ) is simply connected and fλ has degree two on
B(ζ).
• If uλ ∈ B(ζ), then fλ has degree three on B(ζ). In this case B(ζ) is

exotic if and only if B(ζ) is non-simply connected.

Moreover , uλ ∈ B(ζ) if and only if fλ(uλ) ∈ B(ζ).

Let C be a component of Λζ for ζ = 0,∞. Then fλ is hyperbolic and
structurally stable for small perturbations (see [MSS]). Therefore eitherB(ζ)
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is exotic for all λ ∈ C, or it is non-exotic for all λ ∈ C. Hence we can state
the following definition:

Definition 4.6. If B(ζ) is exotic for λ ∈ C, then we call C an exotic
component. Otherwise we call it a regular component.

By Corollary 4.5, C is exotic if and only if B(ζ) is non-simply connected
for λ ∈ C. Moreover, the following holds:

Lemma 4.7. Let C be a component of Λζ for ζ = 0,∞. If there exists
λ ∈ C such that ζ is a double critical point for fλ (i.e. uλ = ζ), then C is
regular.

P r o o f. For the map fλ, ζ is the unique critical point in B(ζ). Hence
B(ζ) is simply connected.

This fact will imply that every exotic component has a singular param-
eter as an isolated point in its boundary (see Theorem 4.15).

Using (3) and (7), it is easy to check that the following holds:

Proposition 4.8. If λ ∈ Λ, then:

• uλ = 0 ⇔ b = 1/2 ⇔ 3λ3 − 5λ2 + 9λ + 1 = 0. This holds when
λ = λ6, λ7, λ7, where λ6 ≈ −0.1046, λ7 ≈ 0.8856 + 1.5495 i. Moreover ,
λ6, λ7, λ7 lie in regular components of Λ0.
• uλ = ∞ ⇔ b = 2 ⇔ λ = −λ6,−λ7,−λ7. Moreover , −λ6,−λ7,−λ7 lie

in regular components of Λ∞.
• uλ = 1⇔ b = −1⇔ λ =∞, 5λ2−1 = 0. This holds when λ =∞,±λ8,

where λ8 =
√

5/5.
• uλ = fλ(1)⇔ (λ2 − 5)(3λ2 + 1) = 0. This holds when λ = ±λ9,±λ10,

where λ9 =
√

5, λ10 = (
√

3/3) i.

We are going to prove the following theorem, which classifies all compo-
nents of Λζ :

Theorem 4.9. There are exactly four components of Λ0: three regular ,
CR1, CR1, CR2, and one exotic, CE. Analogously , Λ∞ consists of three
regular components, −CR1, −CR1, −CR2, and one exotic, −CE. There are
three components of Λ1: C1, C2, and −C2, and four components of Λfλ(1):
C3, −C3, C4 and −C4. All regular components are topological discs and all
exotic components are punctured discs. Moreover ,

• λ1 is an isolated point in ∂CE ,
• λ2 ∈ ∂(−CR1) ∩ ∂(−CR1) ∩ ∂C1 ∩ ∂(−C3) ∩ (Ĉ \ clΛ0),
• λ3 ∈ ∂(−CR2) ∩ (Ĉ \ clΛ0),
• λ4 ∈ ∂CR2 ∩ ∂(−CR2),
• λ5 ∈ ∂CR1 ∩ ∂(−CR1),
• λ6 ∈ CR2, λ7 ∈ CR1, λ8 ∈ C2, λ9 ∈ C3, λ10 ∈ C4, ∞ ∈ C1.
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By symmetry , −λ1, . . . ,−λ10, λ7,−λ7 have analogous properties. See Figs. 2
and 3.

First we describe the behaviour of uλ for λ in the neighbourhoods of the
singular parameters ±λ1, . . . ,±λ5.

4.2. Singular parameters

Proposition 4.10. λ1 (resp.−λ1) is an isolated point of ∂CE (resp.
∂(−CE)), where CE is an exotic component of Λ0 and −CE is an exotic
component of Λ∞.

P r o o f. Consider parameters λ in a small neighbourhood of λ1 = −1.
By (9), we have |fλ(uλ)| < c|λ− λ1|2 for some constant c independent of λ.
On the other hand, (8) implies that if |z| < c|λ− λ1|2, then |fλ(z)| < c1|z|2
for c1 independent of λ. Hence for λ close to λ1, fλ(uλ) is in B(0). By
Corollary 4.5, uλ ∈ B(0). Hence λ1 is an isolated point of ∂C for some
component C of Λ0.

To see that C is exotic consider real parameters λ slightly less than
λ1. Then fλ(1) = (λ + 1)/(λ − 1) is a small positive real number. Let
x = f−1

λ (0) \ {0}. By (2), x = 2− 1/b, so by (7), x is a real number close to
2. Hence fλ(1) lies between 0 and x. Moreover, 0, x ∈ B(0), fλ(1),∞ 6∈ B(0)
and B(0) is symmetric with respect to the real axis. This implies that B(0)
is not simply connected, so C is exotic (we denote it by CE).

The second part follows from (10).

0λ 3

Fig. 4. A fragment of the λ-parameter plane near λ3 (left) and a fragment of the filled-in

Julia set of 1+
√

5
2 z(2− z) near 0 (right)

Recall that near the singular values ±λ2, . . . ,±λ5 the map fλ tends to
some map of degree two with a supersink (hence conformally conjugate to
a polynomial). Moreover, Corollary 4.1 implies that the convergence is uni-
form outside small neighbourhoods of resp. 0, 1 or ∞. This is the reason
the λ-parameter plane near the singular values ±λ2, . . . ,±λ5 looks like the
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dynamical plane in the neighbourhoods of some points in the Julia sets of
appropriate polynomials of degree two. In particular, λ2 corresponds to 0 for
the polynomial 1−√5

2 z(2− z) and λ3 corresponds to 0 for 1+
√

5
2 z(2− z) (see

Fig. 4). Both these polynomials are conformally conjugate to z2 − 1. Fur-
thermore, λ4 corresponds to 1 for z2, and λ5 corresponds to 1 for −1+

√
3 i

2 z2

(the latter polynomial is conjugate to z2). By this similarity, we are able to
describe the plane Λ near the singular parameters.

Proposition 4.11. λ2 ∈ ∂(−CR1)∩∂(−CR1)∩∂C1∩∂(−C3)∩(Ĉ\clΛ0),
where −CR1,−CR1 are regular components of Λ∞, C1 is a component of
Λ1 and −C3 is a component of Λfλ(1). Moreover , there exist r0 > 0 and
0 < α < π/2 such that for λ = λ2 + reiθ and 0 < r < r0:

• if π/2− α < θ < π/2 + α, then λ ∈ −CR1,
• if −π/2− α < θ < −π/2 + α, then λ ∈ −CR1,
• if −α < θ < α, then λ ∈ −C3,
• if π − α < θ < π + α, then λ ∈ C1.

By symmetry , −λ2 has analogous properties.

P r o o f. Since (7) implies

1
b

=
−15 + 7

√
5

8
(λ− λ2) +O((λ− λ2)2)

as λ → λ2, we will make estimates replacing λ − λ2 for λ → λ2 by 1/b
for b → ∞ (this will simplify the calculations). Using (2) and (7), one can
compute that for any fixed x ∈ C,

(11) if z = x/b+O(1/b2), then fλ(z) =
(1−√5) x2

x+ 1
· 1
b

+O(1/b2).

Since for |x| > 2 +
√

5 + ε (ε > 0) we have
∣∣∣∣
(1−√5)x2

x+ 1

∣∣∣∣ > q|x|,

where q > 1, this implies that for λ sufficiently close to λ2,

(12) if z = x/b+O(1/b2) for |x| > 2 +
√

5 + ε, then |fλ(z)| > q|z|,
where q > 1 is a constant independent of x, z, b. By (3) and (7), for λ close
to λ2,

(13) fλ(uλ) = 4(
√

5− 1)/b+O(1/b2).

Since 4(
√

5−1) > 2+
√

5, the assumption of (12) is satisfied for z = fλ(uλ).
Moreover, (11) implies that f3

λ(uλ) = A/b+O(1/b2) for A real and greater
than 4(

√
5 − 1). Hence if we connect fλ(uλ) with f3

λ(uλ) by a straight line
segment I, then the assumption of (12) is satisfied for every point in I.
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Proceeding by induction, we show that for every large M > 0 and small
δ > 0 there exists n0 such that for z ∈ I,

fn0
λ (z) = C(z)/b+O(1/b2),

where |C(z)| > M and |Im(C(z))| < δ. By the compactness of I, there exists
a neighbourhood U of λ2 such that for every λ ∈ U ∩Λ and for every z ∈ I,

(14) |fn0
λ (z)| > M/|b| and |Arg(fn0

λ (z))−Arg(1/b)| < δ.

Let g(z) = 1+λ2
1−λ2

z(2− z) = 1−√5
2 z(2− z). Recall that fλ → g as λ→ λ2

and g is conformally conjugate to z2 − 1.
We now deal with the case λ ∈ Λ∞ (the cases λ ∈ Λ1 and λ ∈ Λfλ(1)

can be proved analogously). Denote by Bg(∞) the basin of attraction to
∞ for g. Note that 0 is the landing point of external rays in Bg(∞) with
arguments 1/3 and 2/3. Let

Sα = {z ∈ C \ {0} : π/2− α < |Arg(z)| < π/2 + α}.
It is known that there exists 0 < α < π/2 such that Sα ⊂ Bg(∞) (this follows
e.g. from the fact that 0 is a repelling fixed point for g). Assume that this α
is maximal. We show that for each 0 < β < α there exists a neighbourhood
U of λ2 such that uλ ∈ Bfλ(∞) for λ ∈ U ∩ Sβ . Note that by Corollary 4.5,
it suffices to show fλ(uλ) ∈ Bfλ(∞). Fix 0 < β < α. Take a small number
a > 0. Then for every z, if z ∈ Sβ and |z| > a, then dist(z, J(g)) > d(a). Let
Φ∞ : Bg(∞)→ D be the Böttcher coordinates on Bg(∞) and for 0 < r < 1
let Pr be equipotential curves in Bg(∞), i.e. Pr = Φ−1

∞ ({z : |z| = r}). Recall
that g(Pr) = Pr2 . Since dist(Pr, J(g)) → 0 as r → 1, there exists r0 < 1
such that {z : dist(z, J(g)) > d(a)} ⊂ ⋃r≤r0 Pr. Let

d0 = inf
r≤r0

dist(Pr, Pr2).

By definition, d0 > 0. Now we prove that for λ sufficiently close to λ2,

(15) if z ∈ Sβ and |z| > a, then z ∈ Bfλ(∞).

The idea is that z is in Bg(∞) and fλ is so close to g that the “error”
will be too small to compensate for the attraction to ∞. Define Errλ(z) =
fλ(z)− g(z). Then by (2) and (7),

|Errλ(z)| < c
∣∣∣ z

(2− b)z − 1

∣∣∣

for some constant c independent of λ and z provided |z| < R for some
large fixed R (this assumption does not cause any problems because if |z| is
large, then obviously z ∈ Bfλ(∞)). Therefore there exist constants c1, c2,
independent of λ close to λ2, such that

(16) if c1/|b| < |z| < R, then |Errλ(z)| < c2/|b|.
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Take λ so close to λ2 that c1/|b| < a and c2/|b| < d0. Then (16) and the
definition of d0 give

cl fλ
( ⋃

r≤r0
Pr

)
⊂
⋃

r≤r0
Pr.

Therefore
⋃
r≤r0 Pr is contained in Bfλ(∞). In this way we have proved

(15).
Now we show that for any fixed 0 < β′ < β, there exists a small a > 0

and a large M such that for every λ sufficiently close to λ2,

(17) if z ∈ Sβ′ and M/|b| < |z| < a, then fn1
λ (z) ∈ Sβ and |fn1

λ (z)| > a

for some n1.
Since 0 is a repelling fixed point for g, there exist a > 0 and q > 1 such

that for every z, if |z| < a, then

(18) |g(z)| > q|z|.
Moreover, if |z| < a, then

(19) ||Arg(g(z))| − |Arg(z)|| = |Arg(2− z)| ≤ c3|z|.
Take a large fixed number M . By (16), (18) and trigonometry, if M/|b| <
|z| < a, then

(20) ||Arg(fλ(z))| − |Arg(g(z))|| ≤ c4
|b| · |z| .

Take an arbitrary z such that M/|b| < |z| < a. By (16) and (18), there
exists a minimal n1 such that |fn1

λ | > a. Moreover, if M is sufficiently large,
then for every k = 0, . . . , n1 − 1,

(21) qk
M

|b| < |f
k
λ (z)| < a

qn1−1−k .

Therefore, using (19) and (20), we obtain

||Arg(fn1
λ (z))| − |Arg(z)|| ≤

n1−1∑

k=0

||Arg(fk+1
λ (z))| − |Arg(fkλ (z))||

≤ c3
n1−1∑

k=0

|fk+1
λ (z)|+ c4

|b|
n1−1∑

k=0

1

|fk+1
λ (z)| = I + II.

By (21),

I < c3a

n1−1∑

k=0

1
qn1−1−k < c3a

q

q − 1
,

II <
c4
M

n1−1∑

k=0

1
qk

<
c4
M
· q

q − 1
.
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Hence for sufficiently small a and large M , ||Arg(fn1
λ (z))| − |Arg(z)|| is less

than β − β′, so fn1
λ (z) ∈ Sβ . In this way we have proved (17).

By (14), if λ is close to λ2 and λ ∈ Sβ′′ for β′′ slightly less than β′, then
the assumption of (17) is satisfied for all points from fn0(I). Hence (17) and
(15) give fn0+n1(I) ⊂ Bfλ(∞), so fλ(uλ) can be connected to points from
Bfλ(∞) by a curve contained in the basin of∞. This gives fλ(uλ) ∈ Bfλ(∞)
so λ ∈ Λ∞.

It remains to show that λ is in a regular component of Λ∞, i.e. Bfλ(∞)
is simply connected. This will be done in Corollary 4.16.

We have proved the case λ ∈ Λ∞. As one can easily see, the proofs of
the cases λ ∈ Λ1 and λ ∈ Λfλ(1) can be done in a similar way. We omit the
details.

It remains to prove that λ2 ∈ Ĉ \ clΛ0. This means that for λ near λ2,
uλ cannot be in Bfλ(0). To prove this, suppose that uλ ∈ Bfλ(0). Connect
fλ(uλ) to f2

λ(uλ) by a simple curve γ0 ⊂ Bfλ(0) parameterized by t ∈ [0, 1]
and define a curve γ : [0,∞) → Bfλ(0) setting γ(t) = f

[t]
λ (γ(t − [t])). By

definition, γ connects fλ(uλ) and 0. Fix a small ε > 0 and let

T = {t ≥ 0 : |γ(t)| = (2 +
√

5 + ε)/|b|}, t0 = sup T .
By (13), if λ is sufficiently close to λ2, then t = 0 belongs to T so T 6= ∅. By
the definition of γ, t0 cannot be infinite. But (12) implies that t0 + 1 also
belongs to T , which is a contradiction.

Proposition 4.12. λ3 ∈ ∂(−CR2)∩ (Ĉ \ clΛ0), where −CR2 is a regular
component of Λ∞. Moreover , there exist r0 > 0 and 0 < α < π/2 such that
for λ = λ3 + reiθ and 0 < r < r0,

• if α < θ < 2π − α, then λ ∈ −CR2.

By symmetry , −λ3 has analogous properties.

P r o o f. We only sketch the proof, since it proceeds as the previous one.
If λ→ λ3, then fλ → g, g(z) = 1+

√
5

2 z(2−z) and g is conformally conjugate
to z2−1. The point 0 is the landing point of the external ray in Bg(∞) with
argument 0. Moreover, there exists 0 < α < π/2 such that

Bg(∞) ⊃ {z ∈ C \ {0} : α < Arg(z) < 2π − α}.
By (2) and (7), for λ close to λ3, we have

1
b

=
−15− 7

√
5

8
(λ− λ3) +O((λ− λ3)2),

if z = x · 1
b

+O(1/b2), then fλ(z) =
(1 +

√
5) x2

x+ 1
· 1
b

+O(1/b2)
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and

if z = x · 1
b

+O(1/b2) for |x| >
√

5
5

+ ε, then |fλ(z)| > q |z|.

Furthermore, by (3) and (7),

uλ = −2 · 1
b

+O(1/b2), fλ(uλ) = −4(1 +
√

5)
1
b

+O(1/b2).

The rest of the proof is the same as for Proposition 4.11.

Proposition 4.13. λ4 ∈ ∂CR2 ∩ ∂(−CR2) and λ5 ∈ ∂CR1 ∩ ∂(−CR1),
where CR1, CR2 are regular components of Λ0 and −CR1,−CR2 are regular
components of Λ∞. Moreover , for every π/2 < θ < 3π/2 (resp. −π/2 <
θ < π/2) there exists r0 > 0 such that :

• if λ = λ4 + reiθ and 0 < r < r0, then λ ∈ CR2 (resp. λ ∈ −CR2),
• if λ = λ5 + reiθ and 0 < r < r0, then λ ∈ −CR1 (resp. λ ∈ CR1).

By symmetry , −λ5 has analogous properties.

P r o o f. Consider λ close to λ4 = 0. Here fλ → g, where g(z) = z2.
Since by (7), b− 1 = 6λ+O(λ2), we replace λ close to 0 by b close to 1. As
previously, define Errλ(z) = fλ(z)− g(z). By (2) and (7), we have

|Errλ(z)| < c
|z − 1| · |b− 1|
|(2− b)z − 1|

provided |z| < R for some large fixed R. Hence,

(22) if c1|b− 1| < |z − 1| < R, then |Errλ(z)| < c2|b− 1|
for some constant c1 independent of λ and z. Furthermore, by (2) and (7),
for a fixed number x ∈ C and λ near λ4, if z = 1 + x(b − 1) +O((b − 1)2),
then

fλ(z) = 1 +
2x2

x− 1
(b− 1) +O((b− 1)2).

Therefore, if z = 1 + x(b− 1) +O((b− 1)2) for |x| > 1 + ε, then

|fλ(z)− 1| > q|z − 1|
for q > 1. Moreover, by (3) and (7),

uλ = 1 + 2(b− 1) +O((b− 1)2), fλ(uλ) = 1 + 8(b− 1) +O((b− 1)2).

Let π/2 < θ < 3π/2 and take λ close to λ4 such that Arg(λ) = θ.
Connect uλ to fλ(uλ) by a straight line segment I. Then there exists n0

such that for every z ∈ I,

fn0
λ (z) = 1 + C(z)(b− 1) +O((b− 1)2),
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where |C(z)| > M for a large M and |Im(C(z))| < δ for a small δ. Hence
for every z ∈ I,

θ − ε < Arg(fn0
λ (z)− 1) < θ + ε

for a small ε. Therefore, if we take λ sufficiently close to λ4, then for all
z ∈ I,

|fn0
λ (z)| < 1−M ′|b− 1|

for a large M ′. By (22),

cl fλ(D1−M ′|b−1|) ⊂ D1−M ′|b−1|,

so fn0
λ (I) ⊂ Bfλ(0). This implies uλ ∈ Bfλ(0).
We skip the proof of the remaining cases, since they are very similar to

the previous ones.

Note that in Propositions 4.11–4.13 we have not proved which compo-
nent is regular and which is exotic. Moreover, we have not proved that the
components denoted by CR1, CR2 etc. in different propositions are the same.
All these facts will be shown in Corollary 4.16.

4.3. Hyperbolic components in Λ. Now we prove that every regular com-
ponent of Λ0, Λ∞ is a topological disc and every exotic component is a
punctured topological disc with a singular parameter as the isolated point
of its boundary. Let ζ = 0,∞. Denote by Φλ the Böttcher coordinates in the
neighbourhood of ζ. Recall that Φλ is a biholomorphic map from a neigh-
bourhood U of ζ onto some neighbourhood V of 0 such that Φλ(ζ) = 0 and
the diagram

U U

V V

Φλ

²²

fλ //

Φλ

²²
z 7→z2 //

commutes (in the case when uλ = ζ, i.e. ζ is a double critical point, one
should replace z 7→ z2 by z 7→ z3). If ζ = 0, then Φλ can be defined as

Φλ(z) = lim
n→∞

2n
√
fnλ (z)

for suitable branches of the root (for ζ = ∞ one should take the inverse
of this limit). The sequence is uniformly convergent in the neighbourhood
of ζ. If ζ is a simple critical point, then Φλ is uniquely determined and if
ζ is a double critical point, then Φλ is determined uniquely up to multi-
plication by ±1. Moreover, Φλ depends holomorphically on the map fλ. If
uλ 6∈ B(ζ), then we can extend biholomorphically Φλ to B(ζ) by putting
Φλ(z) = 2n

√
Φλ(fnλ (z)) for the appropriate branch of the root. In this case

Φλ is a Riemann mapping from B(ζ) onto the unit disc. If uλ ∈ B(ζ), then
we can proceed with the extension without difficulties until we meet uλ.
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Strictly speaking, Φλ can be extended biholomorphically to some topologi-
cal disc Ωλ = Φ−1

λ (Dr) for some r < 1 such that uλ ∈ ∂Ωλ.
Let C be a component of Λζ , ζ = 0,∞. By symmetry, we can consider

only components of Λ0. Assume first that C is regular, i.e. for fλ, λ ∈ C,
the immediate basin B(0) is simply connected. The standard way to param-
eterize a hyperbolic component is to map a point λ ∈ C to Φλ(fλ(uλ)) ∈ D.
However, since C is regular, we can define Φλ(uλ) and parameterize C map-
ping λ to Φλ(uλ). In this way we obtain more information about the dy-
namics. This can be done since in this case the Böttcher coordinates Φλ
extend diffeomorphically to clΩλ (1). To see this it is enough to notice that
if we define Γ = Φ−1

λ ({|z| = r0}) for r0 such that fλ(uλ) ∈ Γ (i.e. Γ is the
equipotential curve in Ωλ containing fλ(uλ)), then ∂Ωλ = f−1

λ (Γ ) ∩ clΩλ
forms a Jordan curve (see Fig. 5).

f -1

λ (   )Γ

λu

λu(   )λf

Ωλ

ζ .

.

Γ

Fig. 5. The set Ωλ in the regular case

Therefore, for every regular component C of Λ0 we can define

Ψ : C → D, Ψ(λ) = Φλ(uλ).

Theorem 4.14. Every regular component C is a topological disc and
Ψ : C → D is a surjective holomorphic mapping of degree two with one
critical point λc ∈ C such that Ψ(λc) = 0.

P r o o f. The mapping (z, λ) 7→ Φλ(z) is holomorphic for z ∈ Ωλ. More-
over, Ψ(λ) = Φλ(uλ) can be defined as

√
Φλ(fλ(uλ)) for a branch of the

square root depending continuously on λ. Hence Ψ is holomorphic.
Now we show that Ψ is a proper map onto D. Take a sequence λn converg-

ing to some λ0 ∈ ∂C. We now show that Ψ(λn) converges to ∂D. Suppose the
converse. Taking a subsequence, we can assume Ψ(λn)→ z0 ∈ D. Note that
by Propositions 4.10–4.12, we have −λ1, λ2, λ3 6∈ clΛ0, so λ0 6= −λ1, λ2, λ3.
We also have λ0 6= λ1, because λ1 is an isolated point of the boundary of an
exotic component.

(1) This idea is due to Tan Lei.
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By (2), Lemma 2.2 and Corollary 4.1, the parameters ±λ1, λ2, λ3 are
the only parameters where the basin of 0 degenerates. Hence for every
λ ∈ Ĉ \ {±λ1, λ2, λ3}, the map Φλ is defined in some neighbourhood Uλ
of 0. Moreover, (λ, z) 7→ Φλ(z) is continuous and holomorphic for λ ∈
Ĉ \ {±λ1, λ2, λ3}, z ∈ Uλ.

Since λ0 6= ±λ1, λ2, λ3, there exists δ > 0 and a small neighbourhood U
of λ0 such that for λ ∈ U the map Φλ is defined on Dδ. Hence there exists
δ′ > 0 such that for λ ∈ U the map Φ−1

λ is defined on Dδ′ and Φ−1
λ (Dδ′) ⊂ Dδ.

Of course, λn ∈ U for large n. As Ψ(λn)→ z0 ∈ D, there exists a positive
integer k such that

|(Φλn(fλn(uλn)))2k | < δ′

for sufficiently large n. But (Φλn(z))2k = Φλn(fkλn(z)), so

|Φλn(fk+1
λn

(uλn))| < δ′.

Thus,

(23) |fk+1
λn

(uλn)| < δ.

Note that by repeating the proofs of Propositions 4.11–4.12, one can easily
show that if λn is close enough to −λ2 or −λ3, then fk+1

λn
(uλn) is close

to ∞ (cf. e.g. (11), (13)). Similarly, if λn is close enough to λ4 or ±λ5,
then fk+1

λn
(uλn) is close to 1 (proof of Proposition 4.13). This implies that

λ0 = −λ2,−λ3, λ4,±λ5 contradicts (23). As already mentioned, λ0 cannot
be equal to ±λ1, λ2, λ3. We are left with the case λ0 ∈ Λ. But then by (23)
and continuity, we have

|fk+1
λ0

(uλ0)| ≤ δ,
which means that for fλ0 , the critical point uλ0 is in the basin of 0. This
clearly contradicts λ0 ∈ ∂C. In this way we have proved that Ψ is a proper
map from C onto D.

Now we show that Ψ has no critical point at any λ0 ∈ C, provided
Ψ(λ0) 6= 0. Note that it is sufficient to show that λ 7→ (Ψ(λ))4 has no
critical point at λ0. For simplicity, define

%(λ) = (Ψ(λ))4 = Φλ(f2
λ(uλ)).

Set also %0 = %(λ0). The proof is similar to the Douady–Hubbard–Sullivan
proof of the fact that for z2 + c each hyperbolic island in the Mandelbrot
set corresponding to an attracting periodic orbit is biholomorphically pa-
rameterized by the multiplier of this orbit. To show that λ 7→ %(λ) has no
critical point at λ0, we construct an inverse continuous mapping % 7→ λ(%)
in the neighbourhood of %0.

Define

A = Φ−1
λ0

({z :
√
|%0| − ε < |z| <

√
|%0|+ ε})
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for a small ε > 0. Then A is a topological annulus in Ωλ0 , fλ0(uλ0) ∈ A,
uλ0 , f

2
λ0

(uλ0) 6∈ A and fλ0 |A is a cover of degree two. Take % in a small

neighbourhood of %0. It is easy to define a smooth cover F% : clA onto−→
cl fλ0(A) of degree two such that F% = fλ0 on ∂A and F%(fλ0(uλ0)) =
Φ−1
λ0

(%). We also require that F% depends continuously on % and F%0 =
fλ0 |clA. Now we define

g% =
{
fλ0 on Ĉ \A,
F% on A.

By construction, g% is a branched covering of Ĉ, holomorphic outside clA.
Moreover, g% depends continuously on % and g%0 = fλ0 . Let µ0 be the stan-
dard conformal structure on Ĉ. Define a continuous family of conformal
structures µ%:

µ% =





µ0 on Φ−1
λ0

(D√|%0|−ε),

(gn% )∗(µ%) on g−n% (Φ−1
λ0

(D√|%0|−ε)),
µ0 else.

Then g% preserves µ% almost everywhere on Ĉ. Moreover, for any point
in Ĉ its forward trajectory under g% hits at most once the annulus A,
where g% is not holomorphic. Since g% is smooth on clA, µ% is changed
on A only by a bounded factor. This implies that µ% is bounded. Using
the measurable Riemann theorem we can integrate µ% to obtain a contin-
uous family of quasiconformal homeomorphisms H% such that H%(0) = 0,
H%(1) = 1, H%(∞) = ∞ and H%g%H

−1
% is a rational map. By construction,

H%g%H
−1
% has supersinks at 0 and ∞ and 1 is a critical point of period two.

Hence H%g%H
−1
% = fλ(%) for some λ(%). Since % 7→ fλ(%) is continuous and

fλ(1) = (1 + λ)/(1− λ), the map % 7→ λ(%) is continuous. By construction,
λ(%0) = λ0 and λ(%) ∈ C.

To show that % 7→ λ(%) is the inverse mapping of λ 7→ %(λ), note that
since a conjugation maps critical points to critical points, we have uλ(%) =
H%(uλ0), so

(24) f2
λ(%)(uλ(%)) = H%(g2

%(uλ0)).

Moreover, the map Φλ0 ◦ H−1
% conformally conjugates fλ(%) to z 7→ z2 on

H%(Φ−1
λ0

(D√|%0|−ε)) and f2
λ(%)(uλ(%)) ∈ H%(Φ−1

λ0
(D√|%0|−ε)). Hence, by the

uniqueness of the Böttcher coordinates, we have

(25) Φλ(%)(f
2
λ(%)(uλ(%))) = Φλ0(H−1

% (f2
λ(%)(uλ(%)))).

By definition,

%(λ(%)) = Φλ(%)(f
2
λ(%)(uλ(%))),
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so by (25), (24) and the definition of g% we obtain

%(λ(%)) = Φλ0(g2
%(uλ0)) = %.

Hence % 7→ λ(%) is the inverse mapping of λ 7→ %(λ), which ends the proof
that Ψ has no critical point at λ0 provided Ψ(λ0) 6= 0.

By the Riemann–Hurwitz formula, this implies that C is a topological
disc and there exists a unique point λc ∈ C such that Ψ(λc) = 0. Now we
show that λc is a simple Ψ -critical point. By (8),

(26) fλ(z) = z2hλ(z)

for

hλ(z) =
λ+ 1
λ− 1

· (λ− 1)(λ2 − 4λ− 1)z − (3λ3 − 5λ2 + 9λ+ 1)
(3λ3 + 5λ2 + 9λ− 1)z − (λ+ 1)(λ2 + 4λ− 1)

.

The condition Ψ(λc) = 0 means that uλc = 0, so by Proposition 4.8, λc is a
simple root of the polynomial 3λ3 − 5λ2 + 9λ + 1. This together with (26)
implies that for every constant c > 0 there exists a neighbourhood U of λc
and constants c1, c2 > 0 such that for λ ∈ U and every z,

(27) if |z| < c|λ− λc|2, then c1|λ− λc| < |hλ(z)| < c2|λ− λc|.
Then by (26),

c1|λ− λc| · |z|2 < |fλ(z)| < c2|λ− λc| · |z|2
and induction gives

(c1|λ− λc|)2n−1|z|2n < |fnλ (z)| < (c2|λ− λc|)2n−1|z|2n .
By (9), there exist constants c3, c4 > 0 such that for λ close to λc,

c3|λ− λc|3 < |fλ(uλ)| < c4|λ− λc|3,
so the assumption of (27) holds for z = fλ(uλ). Therefore,

c−1
1 (c1c3)2n−1 |λ− λc|2

n+1−1 < |fnλ (uλ)| < c−1
2 (c2c4)2n−1 |λ− λc|2

n+1−1

for λ in some neighbourhood U of λc. Recall that in the regular case

Ψ(λ) = lim
n→∞

2n
√
fnλ (uλ).

Hence there exists a constant c5 > 0 such that for every λ ∈ U ,

c−1
5 |λ− λc|2 < |Ψ(λ)| < c5|λ− λc|2.

This implies that λc is a simple Ψ -critical point.

Consider now the case when C is an exotic component. Then the bound-
ary of Ωλ is not a Jordan curve and we cannot extend Φλ to clΩλ (the
situation is the same as for the basin of infinity for z2 + c, c 6∈ M). Hence,
for every exotic component C we define

Ψ : C → D, Ψ(λ) = Φλ(fλ(uλ)).
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Ψ is holomorphic, since (z, λ) 7→ Φλ(z) is holomorphic for z ∈ Ωλ. If C
is the exotic component for which λ1 is an isolated point of the boundary
(see Proposition 4.10), we extend Ψ holomorphically to C ∪ {λ1}. Write for
simplicity C̃ = C ∪{λ1} if λ1 ∈ ∂C and C̃ = C otherwise (in fact, the proof
will show that the second case does not occur, but a priori we do not know
this).

Theorem 4.15. For every exotic component C, Ψ : C̃ → D is a surjective
holomorphic mapping of degree two with one simple critical point λc such
that Ψ(λc) = 0.

P r o o f. The proof that Ψ is a proper holomorphic map onto D is the
same as for the regular case. The surjectivity of Ψ implies that there exists
exactly one exotic component CE of Λ0, λc = λ1 is an isolated point of ∂CE
and Ψ(λ1) = 0. The same proof as for the regular case shows that Ψ has no
critical points in CE = C̃ \ {λ1}. Therefore, CE is a punctured topological
disc.

To show that λc = λ1 = −1 is a simple Ψ -critical point, consider the
behaviour of Ψ in the neighbourhood of −1. We proceed as previously. By
(26), one can easily compute that for every constant c > 0 there exists a
neighbourhood U of −1 such that for λ ∈ U ,

if |z| < c|λ+ 1|2, then 1 < |hλ(z)| < 3.

This gives
|z|2 < |fλ(z)| < 3|z|2

and by induction,
|z|2n < |fnλ (z)| < 32n−1|z|2n .

Using (9), we check that fλ(uλ) = 2(λ + 1)2 + O((λ + 1)3) for λ → −1.
Therefore for λ near −1,

|λ+ 1|2 < |fλ(uλ)| < 3|λ+ 1|2,
so

|λ+ 1|2n < |fnλ (uλ)| < 32n−1|λ+ 1|2n .
Recall that in the exotic case

Ψ(λ) = lim
n→∞

2n
√
fnλ (fλ(uλ)) = lim

n→∞
2n−1
√
fnλ (uλ).

Hence, for every λ ∈ U ,

|λ+ 1|2 < |Ψ(λ)| < 9|λ+ 1|2.
This implies that λ1 = −1 is a simple critical point for Ψ .

Corollary 4.16. Λ0 consists of three regular components: CR1, CR1,
CR2, and one exotic, CE. Moreover ,
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• CR1 is a topological disc in the right upper quarter of the plane,
• λ7 ∈ CR1 and −λ2, λ5 ∈ ∂CR1,
• CR1 is a topological disc in the right lower quarter of the plane,
• λ7 ∈ CR1 and −λ2,−λ5 ∈ ∂CR1,
• CR2 is a topological disc in the left half plane, and −λ3, λ4 ∈ ∂CR2,
• CE ∪ {λ1} is a topological disc in the left half plane.

By symmetry , Λ∞ has analogous properties.

P r o o f. By Proposition 4.8, for Λ0 there are exactly four parameters λ
such that Ψ(λ) = 0: λ1, λ6, λ7 and λ7. In Theorems 4.14 and 4.15 we have
shown that each of these points is a “centre point” of a component of Λ0.
Hence there are exactly four components of Λ0: three regular and one ex-
otic; moreover, the regular ones are topological discs and the exotic one is a
punctured topological disc. By Proposition 4.8, λ6, λ7, λ7 lie in regular com-
ponents. Let CR1 be the component containing λ7, CR1 be the component
containing λ7 and CR2 be the component containing λ6. Note that by (10),
the imaginary axis is disjoint from Λ0. Moreover, Re(λ1),Re(λ6) < 0 and
Re(λ7), Im(λ7) > 0. Hence (10) implies that the right half of the real axis is
disjoint from Λ0. Thus CR1 lies in the right upper quarter of the plane, CR1

in the lower right quarter and CR2 in the left half plane. Denote by CE the
unique exotic component. Then by Proposition 4.10, λ1 is an isolated point
in the boundary of CE so CE lies in the left half plane.

By Propositions 4.11 and 4.13, −λ2 and λ5 are in the boundaries of
components of Λ0 which are contained in the right upper quarter of the
plane, hence they must be in ∂CR1. Similarly, −λ2, λ5 ∈ ∂CR1.

Consider now the components of Λ0 in the left half plane. By Proposi-
tions 4.12 and 4.13, −λ3 and λ4 are in the boundaries of components of Λ0

in the left half plane, and the points from the real axis slightly greater than
−λ3 or slightly less than λ4 do not belong to Λ0. Knowing that CR2 and
CE ∪ {λ1} are topological discs symmetric with respect to the real axis and
λ1 < −λ3 < λ6 < λ4 one can easily conclude that −λ3, λ4 ∈ ∂CR2.

The above corollary ends the proof of the classification of the components
of Λ0 and Λ∞ stated in Theorem 4.9. In the same way one can deal with
the components of Λ1, Λfλ(1). We omit the details.

Definition 4.17. Let C be a component of Λζ for ζ = 0,∞. By the
previous theorems, we can define internal rays in C setting

RC(θ) = Ψ−1({reiθ : 0 ≤ r < 1}).
Note that for given θ there are two internal rays in C corresponding to

θ. In particular, we will prove that two 0-rays in CR1 end at parabolic maps
connected with Newton’s method (see Fig. 2). The same holds for CE .



278 K. Barański

4.4. Combinatorics of Newton maps. Let N be a cubic Newton map.
By a conformal change of coordinates, we can assume that N ∈ F and N
has supersinks at 0, u,∞. First we consider the general case, i.e. we do not
assume that N ∈ F2. Denote by B(ζ) the immediate basin of attraction of
ζ for ζ = 0, u,∞. In the entire subsection we assume that the “free” critical
point 1 is not in B(0) ∪ B(u) ∪ B(∞). Then B(ζ) is simply connected and
N on B(ζ) is conformally conjugate to z 7→ z2. (Recall that the Julia set
for any Newton map is connected—see [Sh].)

Definition 4.18. Let Rζ(θ) be the internal ray in B(ζ) with angle θ ∈
[0, 1], i.e. Rζ(θ) = Φ−1

ζ ({re2πiθ : r < 1}), where Φζ : B(ζ) → D are the
Böttcher coordinates in B(ζ).

As N has degree two on B(ζ), there exists exactly one component of
N−1(B(ζ)) different from B(ζ). Denote this component by B̃(ζ). Note that
N : B̃(ζ)→ B(ζ) is biholomorphic. Let R̃ζ(θ) = N−1(Rζ(θ)) ∩ B̃(ζ).

Finally, for ζ = 0, 1, u,∞ define lζ(θ) (resp. l̃ζ(θ)) to be the landing point
of Rζ(θ) (resp. R̃ζ(θ)).

Remark. In general, the rays have well-defined landing points only when
the boundary is locally connected. However, according to the result proved
in [Ro], for all cubic Newton maps the boundaries of the immediate basins
of attractions to supersinks are locally connected.

Now we look at the combinatorics of N . We use the results proved in
[He] and [Ta].

The map N has four fixed points, so there exists exactly one fixed point
p which is not critical. Therefore, we have p = l∞(0) = l0(0) = lu(0).
Permuting 0, u,∞ we can assume that R0(0), Ru(0), R∞(0) are situated
around p in counter-clockwise order. Consider N−1(p)\{p}. It consists of two
points: p1 and p2. On the other hand, it must contain the landing points of
R0(1/2), Ru(1/2), R∞(1/2) and the landing points of R̃∞(0), R̃0(0), R̃u(0).
Hence two of the points l0(1/2), lu(1/2), l∞(1/2) must coincide. Moreover,
the third one cannot coincide with them because in that case N would
change the cyclic order of the internal rays passing from l0(1/2) to p. Per-
muting 0, u,∞ once more, we can assume that lu(1/2) = l∞(1/2) = p1. This
implies lu(1/2) = l∞(1/2) = l̃0(0) = p1 and l0(1/2) = l̃u(0) = l̃∞(0) = p2.
See [He] for details. According to [Ta] and [Ro], any two different internal
rays in B(ζ) have distinct landing points (the boundary of B(ζ) is a Jordan
curve). Moreover,

∂B(u) ∩ ∂B(∞) = {z : z = lu(θ) = l∞(1− θ) for some θ ∈ [0, 1]}
is a Cantor set, forward invariant under N . It contains the sequence an → p,
where an = lu(1 − 1/2n) = l∞(1/2n) for all positive integers n. On the
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other hand, there exists an angle 0 < α ≤ 1/2 (Head’s angle) such that
α = inf{θ > 0 : lu(θ) = l∞(1− θ)}. Moreover,

∂B(u) ∩ ∂B(∞) = {lu(θ) : θ ∈ TN},
where

TN = {θ : 2nθ mod 1 ∈ [α, 1] for every n ≥ 0}
and

∂B(u) ∩ ∂B̃(∞) = {z : z = lu(θ) = l̃∞(1− 2θ) for some θ ∈ [0, 1]}
= {lu(θ/2) : θ ∈ TN ∩ [α, 2α]}.

The set ∂B(∞) ∩ ∂B̃(u) can be described in a similar way. Moreover,

∂B̃(u) ∩ ∂B̃(∞) = {z : z = l̃u(θ) = l̃∞(1− θ) for some θ ∈ [0, 1]}
= {l̃u(θ) : θ ∈ TN ∩ [2α, 1]}.

Furthermore, ∂B(0) ∩ (∂B(u) ∪ ∂B(∞)) = {p}.
Let

β = inf{θ ∈ [0, 1] : lu(ω) 6∈ ∂B̃(∞) for every ω ∈ [θ, 1]}.
The following facts were proved in [He] (see also [Ta]):

Lemma 4.19. For N as above, the critical point 1 is not equal to lu(α)
if and only if α is periodic mod 1. Moreover , if α = m/(2k − 1) for some
positive integers m, k, then β = m/2k and there exists a topological disc U
such that clU ⊂ Nk(U) and

Nk|U : U → Nk(U)

is a polynomial-like mapping of degree two. Furthermore, U contains a set
X bounded by the following four simple curves: {lu(θ) : θ ∈ [β, α]}, {l∞(θ) :
θ ∈ [1−α, 1−β]}, {l̃u(θ) : θ ∈ [2β, 2α]}, {l̃∞(θ) : θ ∈ [1−2α, 1−2β]} and the
critical point 1 lies in clX. In particular , the landing point lu(α) = l∞(α)
is a fixed point for Nk|U .

The set U can be constructed as a domain with boundary consisting of
parts of rays and equipotentials in B(u), B̃(u), B(∞) and B̃(∞).

Note that since 2β > α, we have 2β ∈ TN , so lu(2β) = l∞(1 − 2β).
Moreover, the definition of α easily implies that for j = 0, . . . , k − 1, 2jβ 6=
0 mod 1, so 2k−1β = 1/2 mod 1 and 2jβ 6= 1/2 mod 1 for j = 0, . . . , k − 2.

Assume now that N is in F2. As mentioned in Section 3, this condition is
equivalent to a = ((b−2)/(2b−1))2, which gives 9λ6 +49λ4−13λ2 +19 = 0.
Hence there are six such maps in F2: ±N1, ±N1 and ±N2, where N1 = fλ
for λ ≈ 0.6175 + 0.4734 i and N2 = fλ for λ ≈ 2.3998 i (see Fig. 2). Note
that for N ∈ F2, Head’s angle α is equal to 1/3.
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Fig. 6. The combinatorics of a Newton map of degree three with supersinks 0, u,∞ and
the fourth critical point 1 of period two

Let B(1) be the immediate basin of attraction of the periodic point 1
and define R1(θ) = Φ−1

1 ({re2πiθ : r < 1}), where Φ1 : B(1)→ D conjugates
N2 to z 7→ z2. As previously, denote by l1(θ) the landing point of R1(θ).

Consider periodic orbits of N of length two. There are three such orbits
(there are 10 fixed points of N2 and 4 fixed points of N). The first orbit
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consists of 1 and N(1), and the second of l0(1/3) and l0(2/3). Note that
both these orbits are disjoint from ∂B(u) ∪ ∂B(∞). Hence the third orbit
consists of lu(1/3) = l∞(2/3) = s1 and lu(2/3) = l∞(1/3) = s2 for some
s1, s2. The landing point of R1(0) is periodic with period two, so it must
be equal to one of the points s1, s2. Consider Ĉ \ (clR∞(0) ∪ clRu(0) ∪
clRu(1/2)∪clR∞(1/2)). It has two components: C1 containing B(0) and s1,
and C2 containing B̃(0) and s2. We have N(C2) = Ĉ \ (clR∞(0)∪ clRu(0))
and N has degree 1 on C2. Hence there are no critical points in C2, so
1 ∈ C1 and the landing point of R1(0) is equal to s1. Note that N−1(s2) =
{s1, l1(1/2), l∞(1/6)} and only the second point lies outside ∂B(u)∩∂B(∞).
Therefore l1(1/2) = l̃u(2/3) = l̃∞(1/3). See Fig. 6.

4.5. Parabolic bifurcation in F2. Now we prove the existence of a para-
bolic bifurcation in F2. Starting from a Newton map and changing con-
tinuously the parameter λ, we arrive at a parabolic map which lies in the
intersection of the boundary of an exotic and a non-exotic component of Λζ ,
ζ = 0,∞.

Theorem 4.20. Let N be a Newton map in F2 such that ∂B(u)∩∂B(∞)
is infinite. Then there exist simple open curves γ, γ0, γ∞ : [0, 1] → Λ such
that :

(a) fγ(0) = N and for every t ∈ (0, 1), the map fγ(t) has an attracting
fixed point ξt 6= 0,∞ with multiplier t.

(b) γ(1) = γ0(0) = γ∞(0) and the map P = fγ(1) has a parabolic fixed
point with multiplier 1.

(c) For every t ∈ (0, 1], for the map fγ0(t) the critical point u is in the
immediate basin B(0), and B(0) is not exotic.

(d) For every t ∈ (0, 1], for the map fγ∞(t) the critical point u is in the
immediate basin B(∞), and B(∞) is exotic.

See Figs. 7 and 8.

P r o o f. 1. The existence of γ. Take λN such that N = fλN . It is obvious
that after a small perturbation of λN we obtain a map with an attracting
fixed point ξλ close to uλ such that uλ ∈ B(ξλ). Consider the component
U 3 λN of the set of parameters λ ∈ Ĉ such that for the map fλ there
exists an attracting fixed point ξλ 6= 0,∞ and uλ ∈ B(ξλ). We claim that
there are no singular parameters in U . To see this, suppose that λ0 ∈ U
is a singular parameter. By uniform convergence (see Corollary 4.1), there
exists an open neighbourhood of λ0 contained in U . But this is impossible,
by the characteristics of the singular parameters (see Subsection 4.2). If
λ ∈ ∂U ∩ Λ, then fλ has an indifferent fixed point (i.e. the multiplier has
absolute value 1). Thus ∂U ∩ Λ is piecewise analytic, with cusps at points
where fλ has a fixed point with multiplier 1.
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Fig. 7. Bifurcation at the parabolic map

To complete the proof of the existence of γ we need to show that there
are no singular parameters in ∂U . This will be done in the general case in
the second part of the work. Here we show (for example) that λ2 6∈ ∂U .
Recall that λ2 = −2 − √5 and Corollary 4.1 implies that if λ → λ2 then
fλ → g uniformly outside a small neighbourhood of 0, where g(z) = ((1 −√

5)/2)z(2 − z). The fixed points of g are 0 (with multiplier 1 − √5) and
(5 +

√
5)/2 (with multiplier 1 +

√
5). The fixed points of fλ are 0, ∞ and

two others—denote them by ξλ, ξ̃λ. By the implicit function theorem and
uniform convergence, if λ → λ2 then one of these points (say ξλ) tends to
(5+
√

5)/2 and f ′λ(ξλ) tends to 1+
√

5 > 1, so ξλ is not attracting. Moreover,
by the holomorphic fixed point formula (see e.g. [Mi1]), we have

1
1− f ′λ(ξλ)

+
1

1− f ′λ(ξ̃λ)
= −1.

Hence f ′λ(ξ̃λ) tends to (9 +
√

5)/4 > 1, so ξ̃λ cannot be attracting either.
Therefore, λ2 6∈ clU .

2. The existence of γ0 and γ∞. We use the results concerning parabolic
bifurcation proved in [DH1]. The following theorem (Theorem 1 from Lec-
ture XI.2) was shown with the use of the “tour de valse” method.
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Fig. 8. Bifurcation of the Julia sets

Theorem 4.21 (Douady–Sentenac). Let Λ and V be some neighbour-
hoods of 0 in C and let (λ, z) 7→ gλ(z) be a holomorphic map of Λ×V into
C. Suppose that gλ(0) = 0 for all λ ∈ Λ, g′0(0) = %0 = e2iπp/q, p/q ∈ Q
and the map λ 7→ %(λ) = g′λ(0) is not constant. Suppose also that gq0 has the
form z 7→ z + b0z

q+1 +O(zq+2) with b0 6= 0. Let L+ and L− be consecutive
repelling and attracting axes for gq at 0 (i.e. the angle between L+ and L− is
equal to 2π/(2q)). Denote by S+ (resp. S−) the open angle sector symmetric
with respect to L+ (resp. L−) and forming an angle of measure 2π/(4q).
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Then there exists a disc ∆ centred at 0 such that for every compact set Q+

in ∆∩S+, every compact set Q− in ∆∩S− and every neighbourhood W of
0 in Λ there exists N0 such that for any continuous functions δ+ : W → Q+

and δ− : W → Q− and for every n ≥ N0 there exists λ ∈W such that

gnqλ (δ−(λ)) = δ+(λ).

Remark. The proof of the above theorem also gives:

(a) For every j ≤ [n/2] we have gjqλ (Q−), g−jqλ (Q+) ⊂ V .
(b) The parameter λ which exists according to the theorem tends to 0

as n tends to infinity (uniformly with respect to δ+, δ−).

In our situation q = 1 and gλ = fλ. Take λP such that P = fλP and
let p be a fixed point of fλP with multiplier 1. Consider z ∈ V for a small
neighbourhood V of p and λ ∈ W for a small neighbourhood W of λP .
By the square root of a holomorphic change of coordinates, we can assume
fλ(p) = p for λ ∈ W . (It is obvious that in Theorem 4.21 we can replace
the fixed point 0 by p and the parameter λ = 0 by λ = λP .) Moreover,
fλP (z) = z+ b0(z− p)2 +O((z− p)3) with b0 6= 0, because there is only one
attracting petal since there is only one “free” critical point uλP . Note that
the parabolic map P has the same combinatorics of internal rays in B(0),
B(∞) and B(1) as N (see Fig. 6).

Take ζ = 0,∞ and S+, S−, ∆ from the above theorem (here ∆ is centred
at p). By the local study of the parabolic map fλP , the forward trajectory
of any point eventually approaching p is contained in a cusp containing L−
with asymptotic behaviour like 1/n. Since fnλP (uλP )→ p, we can take n1 so
large that

|fn1+1
λP

(uλP )− fn1
λP

(uλP )|
dist(fn1

λP
(uλP ), ∂S−)

< ε1

for a small ε1. Connect fn1
λP

(uλP ) to fn1+1
λP

(uλP ) by a straight line segment
I and let U = {z : dist(z, I) < adiam I} for a small fixed a such that
fn1−1
λP

(uλP ) 6∈ clU . Then there exists an inverse branch FλP of f−(n1−1)
λP

defined on U such that FλP (U) 3 fλP (uλP ), f2
λP

(uλP ). To construct such a
branch, it is sufficient to take the branch of f−1

λP
defined on the immediate

basin of attraction B(p) near p and fixing p, and iterate this branch until
we meet fλP (uλP ).

Hence for a sufficiently small neighbourhood W of λP , for every λ ∈ W
there exists a branch Fλ of f−(n1−1)

λ on U such that Fλ(U) 3 fλ(uλ), f2
λ(uλ).

Take a closed geometric disc Q− centred at fn1
λP

(uλP ) of radius slightly less
than dist(fn1

λP
(uλP ), ∂S−). Then Q− ⊂ S− ∩ ∆ and U is contained in a

disc with the same centre as Q− and diameter less than ε2 diamQ− for a
small ε2.
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Let Φλ be the Böttcher coordinates on the maximal subset of B(ζ).
Note that for the map fλP , ΦλP is defined on the entire B(ζ) and the curve
Φ−1
λP

([0, 1]) is tangent to L+. Therefore, for a fixed r0 < 1 close to 1, we
can take a closed geometric disc Q+ ⊂ S+ ∩∆ such that for every λ ∈ W ,
the curve γλ = Φ−1

λ ([r4
0, r0]) is contained in a disc with the same centre as

Q+ and diameter less than ε3 diamQ+ for a small ε3. Take r ∈ [r2
0, r0] and

define

δ−(λ) = fn1
λ (uλ), δ+(λ) = Φ−1

λ (r).

By definition, δ−(W ) ⊂ U ⊂ Q− and δ+(W ) ⊂ ⋃λ∈W γλ ⊂ Q−. By Theo-
rem 4.21, there exists N0 = N0(W,n1, r0) such that for every n greater than
N0 there exists λ ∈W such that

fn1+n
λ (uλ) = Φ−1

λ (r).

Consider fn−[n/2]
λ on Q− and Gλ on Q+ for the inverse branch Gλ of f−[n/2]

λ

specified by the forward trajectory of uλ. Note that by Remark (a) after
Theorem 4.21, f jλ(Q−), f jλ(Gλ(Q+)) ⊂ V for j = 0, . . . , [n/2]. Therefore, the
distortion of fn−[n/2]

λ on U is bounded by c(ε2) and the distortion of Gλ on
γλ is bounded by c(ε3), where c(εi)→ 1 as εi → 0. Let z1 = f

n1+n−[n/2]
λ (uλ).

By construction,

z1 ∈ fn−[n/2]
λ (U) ∩Gλ(γλ).

This implies that for sufficiently small εi, Gλ(γλ) ⊂ fn−[n/2]
λ (Q−), so

fλ(z1) = Gλ(Φ−1
λ (r2)) = Gλ(fλ(Φ−1

λ (r))).

Let J be the straight line segment connecting z1 to fλ(z1) and let K =
Φ−1
λ ([r, r2]). By bounded distortion,

f
n−[n/2]
λ (U) ⊃ {z : dist(z, J) < (a/2) diam J}.

Note that taking r0 sufficiently close to 1, we can assume that the length of
K is less than q diamK for a fixed q > 1 arbitrarily close to 1. When ε3 is
sufficiently small, the length of Gλ(K) is less than q̃ diamGλ(K) for q̃ > 1
arbitrarily close to 1. Since the ends of Gλ(K) are the ends of J ,

Gλ(K) ⊂ fn−[n/2]
λ (U).

Consider the inverse branch of f−(n1+n−1)
λ on K defined as

Fλ ◦ (fn−[n/2]
λ |U )−1 ◦Gλ|K .

By construction, this branch goes along the forward trajectory of fλ(uλ)
and along the ray Φ−1

λ ((r, 1)). Therefore, fλ(uλ) ∈ B(ζ) and

Φλ(fλ(uλ)) = 2n1+n−1√
r.
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By Corollary 4.5, uλ ∈ B(ζ). Moreover,

Ψ(λ) = 2n1+n−1√
r.

We have proved that there exist N0, r0 such that for every r ∈ [r2
0, r0] and

every n ≥ N0 there exists λ = λ(r) ∈ W such that Ψ(λ) = 2n1+n−1√
r.

Since 2k
√
r0 = 2k+1√

r2
0 for every k, there exists r1 < 1 such that for every

r ∈ [r1, 1) there exists λ(r) such that Ψ(λ) = r. Moreover, by Remark (b)
after Theorem 4.21, λ(r)→ λP as r → 1−. Thus λP is the landing point of
the internal ray in the parameters RC(0) for some component C of Λζ . In
this way we have proved the existence of the curves γ0, γ∞.

3. B(∞) is exotic. By Corollary 4.5, it is sufficient to check that B(∞)
is not simply connected. As was proved in Subsection 4.4, for λ = λN the
set

clR∞(0) ∪ clRu(0) ∪ clRu(1/2) ∪ clR∞(1/2)

is a Jordan curve separating 1 and N(1) (see Fig. 6). We now show that for
λ near λP , if fλ(uλ) lies on the ray R∞(0), then there exists a Jordan curve
in B(∞) separating 1 and fλ(1).

Let A be a small open neighbourhood of clR∞(0) for the map fλP . Define

E = A ∪∆ ∪
n1−1⋃

i=0

f iλP (FλP (U))

for ∆, n1, FλP and U from Part 2 of the proof. By definition, E is an
open connected set containing ∞, R∞(0), the parabolic fixed point p and
the critical value fλP (uλP ). Consider f−1

λP
(E). It consists of two compo-

nents: E1 containing R∞(0), R∞(1/2), uλP , and E2 containing R̃∞(0),
f−1
λP

(fλP (uλP )) \ {uλP }. Moreover, clE1 ∩ clE2 = ∅. Take λ close to λP
such that fλ(uλ) ∈ R∞(0) and let Γ be the part of R∞(0) between ∞ and
fλ(uλ). By Part 2 of the proof, if λ is sufficiently close to λP , then Γ ⊂ E.
Hence f−1

λ (Γ ) has two components: Γ1 ⊂ E1 and Γ2 ⊂ E2. By construction,
Γ1 is a Jordan curve in B(∞) separating 1 and fλ(1). Therefore B(∞) is
not simply connected.

4. B(0) is not exotic. To prove that B(0) is simply connected it suffices
to show that Ĉ \ B(0) is connected. As was proved in Subsection 4.4, for
λ = λN the set

Γ ′ = clR∞(1/3) ∪ clR∞(2/3) ∪ clR1(0)

∪ clR1(1/2) ∪ cl R̃∞(1/3) ∪ cl R̃∞(2/3)

is connected and joins B(∞), f−1
λN

(B(∞)), B(1) and f−1
λN

(B(1)) (see Fig. 6).
Note that Γ ′ consists of periodic rays and their preimages. It is easy to see
that the parabolic map fλP has the same combinatorics of the rays in B(∞)
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and B(1). Hence for λ = λP the curve Γ ′ is still connected. The same holds
after a small perturbation of λ near λP such that uλ ∈ B(0). Therefore the
set

B =
⋃

n≥0

f−nλ (B(∞) ∪B(1) ∪ Γ ′)

is connected, so clB is connected. But clB = Ĉ\B(0). Hence B(0) is simply
connected.

Remark. In Theorem 4.20 we assumed that forN the set ∂B(u)∩∂B(∞)
is infinite. Such a situation is presented in Fig. 6. Suppose now that for the
map N , ∂B(u)∩ ∂B(∞) is finite (actually this means that ∂B(u)∩ ∂B(∞)
consists of one point, see Subsection 4.4). In Fig. 6 this corresponds to the
exchange of 0 and u. Then repeating the proof of Theorem 4.20 we show
the existence of a similar parabolic bifurcation, but now neither B(0) nor
B(∞) is exotic.

Considering the parameter plane Λ we conclude that starting from the
Newton map N1 we arrive at some parabolic parameter λP1 which is the
landing point of the parameter rays R−CE (0) and RCR1(0), and start-
ing from N2 we come to λP2 which is the landing point of RCR1(0) and
R−CR1

(0). See Figs. 2 and 3.
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et II, avec la collaboration de P. Lavours, Tan Lei et P. Sentenac, Publication
d’Orsay 84-02, 85-04, 1984–1985.

[DH2] —, —, On the dynamics of polynomial-like mappings, Ann. Sci. École Norm.
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