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Associated weights and
spaces of holomorphic functions

by

KLAUS D. BIERSTEDT (Paderborn), JOSE BONET (Valencia) and
JARI TASKINEN (Helsink)

Abstract. When treating spaces of holomorphic functions with growth conditions, one
is led to introduce associated weights. In our main theorem we characterize, in terms of the
sequence of associated weights, sever. Npropertles of weighted (LB)-spaces of holomorphic
functions on an open gubset G € CV which play an important role in the projective
description problem. A number of relevant examples are provided, and a “new projective
description problem” is posed. The proof of our main result can also serve to characterize
when the embedding of two weighted Banach spaces of holomorphic functions is compact.
Our investigations on conditions when an associated weight coincides with the original
one and our estimates of the associated weights in several cases (mainly for G =C or D)
should be of independent interest.

Spaces of continuous functions with G- or o-growih conditions occur in
approximation theory; the corresponding spaces of holomorphic functions
arise in complex analysis, spectral theory, Fourier analysis, partial differen-
tial equations and convolution equations. (For concrete examples and ref-
erences, see [11], Section 4.) In contrast to the case of spaces of continuous
functions, however, not all continuous and strictly positive weights v are nat-
ural and intrinsically defined for spaces of holomorphic functions, as simple
phenomena demonstrate (e.g., in connection with Liouville’s theorem, see
Section 1.A). Therefore, one is led to introduce associated weights ¥ which
contain information on the holomorphic functions estimated by 1/v. (For
the exact definition see 1.1 and the start of Section 1.B.)

In fact, associated weights have been part of the “folklore” of the sub-
ject; for instance, they were mentioned explicitly in Anderson-Duncan 2],
beginning of Secuon 2. But, to the best of our knowledge, so far nobody
has ever undertaken a systefratic study of associated weights in reasonable
generality. In particular, it was not clear which conditions on a weight v
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138 K. . Bierstedt et al

would imply that v = %, and how far ¥ could actually be different from wv.
The first part of Section 1 and parts of Section 3 of the present article can be
considered as the start of such an investigation. (But the situation is rather
complicated, and many questions remain open.)

Qur main motivation for working with associated weights comes from
weighted (LB)-spaces VH(G) of holomorphic functions (cf. [11], [9], [8],
[L5]). The “projective description problem”, which is related to the notion
of “analytically uniform spaces” due to Ehrenpreis, asks if the inductive
limit topology of VH(G) can be described by weighted supseminorms with
respect to a system V of weights depending on the decreasing sequence
V = (vn)n in a natural way. In [11], it was proved that projective descrip-
tion holds, i.e., VH(G} = HV(G) topologically, if VH(G) is a (DFS)-space
or, more generally, just (semi-) Montel. But it is impossible to characterize
these topological vector space properties of VH(G) in terms of the given se-
quence V. Such characterizations have to invelve the associated weights v,,,
n=1,2,... (see Section 2), and hence it is sometimes very hard to evaluate
them.

The first counterexamples to projective description {for spaces of holo-
morphic functions) were given in [15], but they were unnatural in the sense
that they required enlarging the original domain of definition of the func-
tions by adding another dimension in order to produce unexpected phenom-
ena. The associated weights can serve to eliminate (at least part of) these
constructions.

The article is organized as follows. Section 1 has two parts. In Part A,
for a strictly positive continuous function w on an open subset & of CV,
ie., a growth condition on G, the definition of @ is given, together with a
number of examples and remarks. Part B deals with. weighted Banach spaces
Hv(G) of holomorphic functions and notes that, for w = 1/v and 7 =
1/4, one has Hv(G) = HY(G) isometrically. In our first theorem (Theorem
1.13), the canonical biduality Hv(G) = Hwy(G)" is characterized in terms
of associated weights.

Section 2 is devoted to weighted (LB)-spaces VH(G) of holomorphic
functions. After a short account of the projective description problem, we
proceed to characterize the (DFS)-property and bounded retractivity for
VH(G) as well as the semi-Montel property for HV(G) by inequalities in-
volving the associated weights (Theorem 2.1). Several interesting examples
follow. At the end of Section 2, we are led to define a new system V of
weights, depending on V = (U,), in the same way as V depended on
V = (va)n, and to pose the “new projective description problem” when
VH(G) = HV(G) holds topologically. In an Appendix to Section 2, we
show that the method of proof of Theorem 2.1 can also serve to characterize

icm

Associated weights 139

when two weighted topologies coincide on the unit ball of a weighted Banach
space of holomorphic functions and, in particular, when the embedding of
two such spaces is compact (Theorem 2.8).

Section 3 is of a more special character. It collects additional results,
remarks and estimates of the associated weights, as well as further examples,
mainly for & = C or D. For a more detailed introduction to the last section
we refer to its beginning.

Notation. Our notation is standard: Ny = NU{0}, Ry = {r e R:7 > 0},
D denotes the open unit disk in €. For an open set G in CV, H(G) denotes
the space of all holomorpbic functions on G; it is usually endowed with the
compact-open topology co. For notation on locally convex spaces and locally
convex inductive limits, see Pérez-Carreras and Bonet [23] and the survey
article [5].

1.A. Associated growth conditions, some examples. In the sequel,
let G be an open subset of CV (N > 1) and w a continuous (strictly) positive
function, i.e., a growth condition, on G.

1.1. DEFINITION. Put By, :={f € H(G) : |f| Swon G}. By & : G —
R, we denote the function (associated with w) defined by

@(z) = sup{|f(2)|: f € By}, z€G.

Since w is bounded on each compact subset of G, Montel’s theorem im-
plies that B,, is compact in (H(G),co). Using this fact and the continuity
of point evaluations immediately yields that the sup in the definition of @ is
a maximum. Moreover, Ascoli’s theorem implies that B, is equicontinuous,
and thus @, in the pointwise closure of the equicontinuous set of all finite
suprema of functions |f|, f € By, must be continuous. Now @ is plurisub-~
harmonic {p.s.h.) by Hormander [19], 1.6.2 and 1.6.6. We have obtained:

1.2. PROPERTIES OF 0. (1) 0 <@ < w,
(ii) @ is continuous and p.s.h.,
(iii) for f € H(G), |f| Sw (i-e, f € Bu) & if| <@ (ie., f € Bg),
(iv) for each z & G there is f = f, € By with |F(2)] = W(z) (or even
7(z) = @(z)),
(v) (B~ =, |
(vi) (Cw)™ = C@ for arbitrary C' > 0,
(vil) wy € wy = W < Wy,
(vili) (min{wy,we))™ = (xin(@1, ¥2))
Note that, according to [19], Example after 2.6.1, even log @ is p.s.h. (at
least if 7 is not identically zero on any connected component of G).
If G is bounded and w extends to a continuous function on & with
wlse = 0, then @ = 0 by the maximum principle. Thus, @ may have zeros.
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140 K. D. Bierstedt et al

The following two examples show that % may be strictly smaller than w for
other “patural” reasons.

1.3. EXAMPLES. {a) If G = C and w(z) = max(L, |2|"*P), z € C, where
n € Ng and 0 < p < 1, then @{z) = max(1, |2{™) for each z € C.

(b) (cf. [15]) Let Gy be an open subset of C and w; a continuous positive
function on Gy. Put G := G1 x €, and let w : G — Ry be continuous such
that for all {z1, z2) € G,

() 0 <w(zy, 22) < wi(21)(1+ |2},
Then W(z1, 22) < @Wy(z1) for all (21, 22) & G.

O<p<l.

Proof. (a) As the constant 1 belongs to B, we already know that
W(z) = 1 = w(z) for |2| £ 1. Moreover, as B, contains the function f,
f(z) = 2", we have @(2) > |2|" for |2] = 1. It remains to show @(z) < [2|*
on C\ D, Le, |f(z)| < |z|* for |z| > 1, f € By, arbitrary.

Put u = 1/z, g(u) := w" f(1/w), z 0. Then g is holomorphic on D\ {0}.

But f € B, implies

1) = mrers =2

9] = ful” M

for0 < |u[ <1

50 that g must have a removable singularity at 0. Removing the singularity,
we get g € H(D), [¢(u)| <1 on 8D, hence |f(2)/2"| = |g(u)] < 1 on D by
the maximum principle. Thus |f(z)| < |2|™ for |z| > 1. (We thank A. Galbis
for this argument.)

(b) Take an arbitrary f € B, and fix z; € G. In view of (%), |f{z1,")| <
w1(z1)(1+|-|?), and an application of {a general form of) Liouville’s theorem
yields that f(z,-) is constant, hence |f(z1,22)] = | f (21,0} < wy(z1) for all
#2 € C. As 2 varies in Gy, f(-,0) € H(G1) so that by 1.2(iii),

|f (21, 22)] = |f(21,0)] < Tufz1), (21,22) € G.
Since f € B, was arbitrary, the desired inequality follows. w
On the other hand, there are simple cases in which & = w holds.

1.4. EXAMPLE. If the continuous function w : G — R.. \ {0} happens
to be of the form w = sup{|g| : g € G} for some family G C H(G), then
g € By, for each g € G, and hence |g| < @ by 1.2(iii). As a consequence,
w=sup{|g| : g € G} <, ie., & =w.

Note that in 1.4, G cannot be an arbitrary subset of H(G). In fact,
G must be bounded pointwise on G, its sup must be continuous, and the
functions ¢ € G are not allowed to have a common zero. Of course, this
does not involve any loss of generality for finite families ¢ ¢ H(G) without
common zeros. On the other hand, if G = CV and G = {g}, g cannot take
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the value 0 on @, any f € B, can be divided by g, and another application
of Liouville’s theorem shows that f must be of the form Ag, A € C.
By 1.4, for w(z) = max(1,|2[*) on C, @ = w holds. (Compare with

1.3{a).)
If w = wiws on G, then iniws < i follows from the definition. If,
in addition, wy = |g| for some ¢ € H(G) without zeros, we get equality

here: f € By, implies f/g € By,, hence |f|/|g| £ @2 by 1.2(iii). Thus,
|f] < |gla = w1 @2 = @1 @ by 1.4, and we have shown @& < 1.

The equality 7 = w can also be deduced in another important case. To
do this, we must first introduce some notation. For a moment, let 7 denote
a balanced open subset of CV (ie,z€ G, A€ C, |\ <1= Az € G}, and
let w be a continuous positive function on &G which is, in addition, radiel in
the sense that z € G, A € C, |\ = 1 = w(Az) = w(z). For f € H(G) and
z € G put

M(f, z) = max{|f(A2)| : |\ = 1}.
1.5. OBSERVATION. For a continuous positive radial function w on a
balanced open set G ¢ TV, one has

W(z) = sup{M(f,2) : f € Bu},
and the sup is again o mazimum. Hence © is also radial.

Proof. Put @W(z) := sup{M(f,2) : f € By}, 2 € G. For fixed z €
@, {Xz : |A| = 1} is compact in G, and thus M(, z) yields a continuous
seminorm on {(H(G),co). Now compactness of B,, implies that the sup in
the definition of 7 must really be a maximum.

Since |f(2)| < M(f,2), trivially % < %. Fix an arbitrary zg € G. There
are f € By, and A € C, [Al = 1, with W(ze) = M(f,20) = |f(Az)|. Put
9(2) := f(\z), z € G. Then g is a well-defined element of H (G}, and since
la(2)] = | f(A2)] < w(Az) = w(z) for all z € G due to the radiality of w, we
have g € B,,. Finally,

@W(z0) 2 lg(zo)l = |f(A20)| = W(20).

1.6. COROLLARY. If the continuous positive radial function w on the
balanced open set G C CN happens to be of the formw(z) = M(f,z), 2 € G,
for some f € H(Q), then @ = w. In case N = 1, this holds in particular if
w(z) = f{|z]), z € G, for some f € H(G) whose Taylor series (at 0) hos
nonnegotive coefficients.

Note that for f &€ H(G) as in 1.6, f(0) must be 0 since w(0) was
required to be positive. On the other hand, if N = 1 and if w(z) =
max(1, f(1z])), = € G, for some f € H{G) with f(0) = 0 whose Taylor
series has nonnegative coefficients, then a simple modification of the argu-
ment again yields @ = w. Incase N =1, i Gisa balanced open set in C

zei,
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(i.e., G is an open disk centered at 0 or G = C), and if f is an element of
H(G) and 7 € R+ NG, it is customary to write

M(f,r) =sup{|f(2)| : |z] =},

By the maximum principle, » — M(f,r) is always increasing. Moreover, it
satisfles Hadamard’s Three Circles Theorem. Hence, in view of 1.5, for any
radial w on G < C, the function r — @(r) must be increasing and also
logarithmically convex. (Cf. the discussion after Prop. 3.1.)

1.7. EXxAMPLRES. We have @ == w for each of the following radial functions
w on balanced domains G, where C and « are positive constants and n
denotes a natural number:

(a) G = C, w(z) = exp(Clz|"},

(b) G = D, w(z) = exp(C/(1 — |2[}*),

(c} G= D, w(z) =1/(1—|2])%,

(d) G = D, w(z) = max(1, —Clog(1 — |2[)).

Now we would like to show that certain interesting nonradial functions
w on €, related to the Fourier-Laplace transforms of distributions or wtra-
distributions of Beurling type, do also satisfy i = w. We start by deriving
a slightly more general fact. In the sequel, let w; dencte a radial weight on
C such that, for some C > 0 and « > 0,

wy(z) < C(L+ |z))*T1(2), z€C.

While this hypothesis is clearly satisfied with o = 0 and C = 1 whenever
wy = w1, we will show in Proposition 3.1 below that it also holds for many
radial growth conditions w; on C with o =1, € > 0. Now take

w(z) = exp(n|lmz|)u1(z), =z€C,
and note that w; < w on C.
1.8. OBSERVATION. Under our assumptions,
w(z) € C(1+ |z)*w(z), z€C
In particular, if Wy = wy, then W = w.

Proof. Fix z € C. We treat three cases, starting with Imzy > O.
According to 1.2(iv), there is g € H(G) with |g| < wn and |g{zp)| = W1{20)-
Put

f(2) := exp(—inz)g(z), zeC
Then f € B, since

[ f(2)}| = exp(nImz)|g(2)| < exp(n|lm z\)wy(2) = w(z), =zeC.
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Thus, by hypothesis on w; and zp, we can conclude:
O(1 + |z])*@(z0) > C(1+12)7|f(z0)| = C(1 + |2]) ™1 (20) exp(n Im zo)
> wy (zg) exp(n|Im zp]) = w(zp).
The case Imzg < 0 can be treated in exactly the same way, replacing
exp(—inz) by exp(inz). The remaining case Im 29 = 0 is even easier: Choose

g as before and put f := g. (Once more we thank A. Galbis for this argument,
which is related to the one used after 1.4.) m

Since wy(z) = {1+ [2])", z € C, clearly satisfies &; = wy, the following
example is a consequence of 1.8.

1.9. ExaMPLE. 0 = w holds for
w(z) = exp(n|lmz})(1-+|z})*, 2z € C (n € N arbitrary).

Incidentally, on an arbitrary open set G C CV and for any growth con-
dition w on G, the property i = w is inherited by:

(a) positive scalar multiples,

(b) suprema, whenever the sup is continuous (and finite at each point),
{¢) finite products,

(d) finite sums.

Here, (b) follows directly from 1.2(vii) {cf. alsc 1.4), ard (c) and (d) are con-
sequences of 1.2(iv). In fact, (d) generalizes to arbitrary sums w =3, Wa
(with @, = w, for all @, which are continuous functions and) which converge
pointwise on G.

It is also noteworthy that, for any G and w = @, if Go is an open subset
of C¥ and f: Go — G is a holomorphic mapping, then wo f = wo f.
Similarly, if the radial extension of a function ¢ : Ry — Ry to C satisfies
@ =, then pow = ow.

Using 1.4 and the inheritance properties (a) and (d) (in its more general
form), one realizes that the following (in general nonradial) growth condi-
tions on an open set G € C with G # C have the property w = w:

w(z) = dist(z, C\ &)™,

w(z) = exp(C dist(s,C\ G)™") forn & Nand C > 0.
The same holds with o > 0 instead of n if G is simply connected (a gener-
alization of 1.7(b) and (¢)). ' '

From one-dimensional examples of functions w with & = w, one obtains

N-dimensionel ones (N > 2) on product sets, by use of the following simple
observation (which clearly bolds in slightly greater generality, but then the
notation would become more complicated).

1.10. OBSERVATION. Let Gy, < C be open, k- = 1,..., N, qnd ~G
H}’Ll Gy « CN. If wy is o continuous positive function on Gy with Wy, =
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wy, for each k, then w = w1 @ ... ® WK, w(z) = wi(z)...wn(zy) for
z=(21,...,2n) € G, again satisfles & = w.

1.10 (another consequence of 1.2(iv)) and 1.9 yield:

1.11. EXAMPLE. @ = w also holds for
N
w(z) = H exp(nlmzx)(1 + [z])", 2= (#1,...,28) € v,
k=1
where n € N is arbitrary and N > L.

While it is good to know that @ = w for many natural growth conditions,
also those w for which @ < w < C holds for some constant C >0, 1ie, for
which 17 is equivalent to w, are very important; see Sections 3.A and 3.B for
examples.

1.B. Weighted Banach spaces of holomorphic functions. In the
rest of Section 1, we deal with the role of associated weights in weighted
Banach spaces of holomorphic functions. Let G again be an open subset of
CV, and let v denote a weight on G, that is, a continuous function from G
into Ry \ {0}. The weighied Banach spaces of holomorphic functions (with
O- resp. o-growth conditions with respect to 1/v) are

Ho(G) = {f € H(G): |Ifll = I fllo = sgpvlfi < oo},

Hug(G) = {f € H(G) : vf vanishes at co on G, le,,
Ve > 0 3K compact C G Vz € G\ K : v(2)|f(2)] < €},

endowed with the induced norm. Now, look at the growth condition w :=
1/v. Then B,, as defined in 1.1 is nothing but the closed unit ball of H v(G).
Hence, if @ is the function from Definition 1.1, then @{z) = [|6:! muo(y
where &, : f — f(2) is the point evaluation at z € G. The “weight” asso-
ciated with v is defined by ¥ := 1/, where 1/0 = +o0o. From 1.2(i), we get
v <.

1.12. OBSERVATION. U may take the value +oo, But if HU(G) is defined
as above {with T replacing v, and adopting the convention that 0(-+00) = 0),
then Hu(G) = H¥(G), and the norms || - ||, and || - [z coincide.

Indeed, from v < 7, we already know |- ||, < ||+ ||z and HT(G) < Hv(G).
Fix f € Hv(G) with || #llu = 1. As remarked above, then f € By,. By 1.2(ii),
|f| < @, whence, clearly, f € H2(G) and ||flls <1 = || f]..

The associated weight ¥ has the advantage of being defined intrinsicolly;
it may also enjoy additional properties which v did not have (see 1.2(ii) and
(iv)). If ¥ is equivalent to v (in the sense that v < ¥ < Cv for some C' > 0),
then Hv(G) and Hv(G) are still (topologically) isomorphic.
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So far, we have only considered associated weights in the case of Hv(G),
but we can also do the same construction for Hvg(G). Namely, take again
w = 1/v, but now put

@o(z) = sup{|f(2)| : f € Hw(G), |f]| <1}, =2€G,
and Ug = 1/ig. Clearly, 0 € Wy < & < w, hence v < ¥ < .

1.13. THEOREM. The natural biduality Huo{G)" = Hu(G) holds isomet-
rically if and only if v =%,

Proof. 1.13 is an easy consequence of the abstract characterization in
[12], Theorerm 1.1 and Cor. 1.2, whereby Hug(G)" = Hu(G) isometrically (in
the canonical way) if and only if the closed unit ball B,,, of Hvg(G) is dense
in By, the closed unit ball of Hv(G), with respect to co or, equivalently,
with respect to the topology of pointwise convergence.

If this density holds, then the definition implies @wy(z) = @w(z) for each
z € G, hence ¥y = v. On the other hand, if B, is not pointwise dense in
B,,, there must clearly exist 2 € & and f € B, such that

@(z) 2 |f(2)] > sup{|g(2)] : g € Hvo(G), |lgll <1} = o(2),

and hence Tg(z) > ¥(2). (The first-named author thanks D. Vogt for con-
versations on the subject of Theorem 1.13.) m

For examples in which one has the biduality Huvo(G)" = Hu(G), see [12].
In particular, by [8], Theorem 1.5(d}, it holds if v is a radial weight on a
balanced open set G C CV such that Hug{G) contains the polynomials.

2. Weighted (LB)-spaces of holomorphic functions. In this sec-
tion we first show that associated weights can serve to characterize certain
properties of weighted (LB)-spaces of holomorphic functions which play an
important role in the projective description problem.

Here V = {,,)nen will always denote a decreasing sequence of weights
Uy on an open subset G of CV. The weighted (LB)-space of holomorphic
functions associated with V is the locally convex (l.c.) inductive limit

VfI(G) == ind, H'U'n(G)r

that is, it is the union of the weighted Banach spaces Hu,(G) of holomor-
phic functions, endowed with the strongest topeology given by a system of
seminorms such that all the injections Hv, (@) — VH(G), n € N, become
continuous. In the sequel, we shall put wy, = 1/v, and let B, = B, denote
the closed unit ball of Hun(G), n = 1,2,... Note that VH(G) is always
complete; in fact, it is the inductive dual of a Fréchet space ¥ (see [9],
Theorem 6). (Hence, the inductive limit topology of VA (G) exactly equals
BVE(G),Y").) |
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Tn an effort to describe the continuous seminorms for the inductive imit
topelogy, one introduces (cf. [11])

V =V (V) := {7 weight on G : for each n € N, T/v, is bounded on G}
and the corresponding weighted space of holomorphic functions
HV(G):={f € H(G) : for each T € V, pp(f) = sg'pﬁlfl < oo}

Endowed with the l.c. topology given by the system (pr)yey of weighted
supsemninorms, HV(G) is complete; it is called the projective hull of VH(G).
Clearly VH(G) ¢ HV(G) with continuous injection, but it is easy to see that
VH(G) = HV(G) algebraically and that the two topologies yield the same
bounded sets. We say that projective description holds if VH(G) = HV(G)
topologically, i.e., if (py)y induces the inductive limit topology; and the
projective description problem asks when this is the case. In [15], the authors
constructed the first counterexamples to projective description for spaces of
holomorphic functions; for counterexarnples in the case of entire functions,
see [14].

In {11] and some subsequent articles, the following conditions on V were
considered:

(S} YneNIm>n: T:Jﬂ vanishes at oo on G,
n
(M) ¥n €N VY not relatively compact in G Im =m(n,Y) > n:
inf 22 = D,
Y v

(RD} VneN3Im>2nVY CG:

inf 2™ >0 =>inf 2 >0, k=m+1,m+2,...

Y up Y o,
Clearly, {S) implies both (M) and (RD). It is easy to see that, whenever
(8) bolds, VH(G) is a (DFS)-space; if m > n is chosen as in (), then
the canonical injection Hv,(G) — Hun(G) is compact. In [11], Theorem
1.6, it was proved that (S) also implies VH(G) = HV(G) topologically.
More generally, using [6], Prop. 6, and applying the Baernstein Lemma {cf.
[11), 0.4) to VH(G) — CV(G) (the analog of HV (@) for continuous func-
tions), projective description holds whenever VH (G} is semi-Montel (i.e.,
each bounded subset of this space is relatively compact). By [9], Prop. 7,
(M) implies that HV(G) is seri-Montel. However, [15] gave an example
of a space VH(G) such that (M) holds, hence HV(G) is semi-Montel, but
VH(G) # HV{G) topologically. By [9], Theorem 2 and Theorem 6(2), (RD)
implies that VH(G) is a boundedly retractive inductive limit, i.e., for each
bounded set B C VH(G) there is n € N such that B is contained and
bounded in Hv,(G) and that, in addition, the topologies induced by VH(G)
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and Hv,, (@) coincide on B. In this case, VH(G) is the strong dual of a (quasi-
normable) Fréchet space Y. The method of construction of counterexamples
that was used in [15] does not work if VH(G) is boundedly retractive; it is
still possible that projective description holds whenever VH(G) has this
property.

As we will see below, none of the three implications “(S) = VH(G)
(DFS)”, “(M) = HV(G) semi-Montiel” and “(RD) = VH(G) boundedly
retractive” is an equivalence. Characterizations of the corresponding proper-
ties of VH(G) resp. HV (@) can be given (and are even not hard to prove),
but they must involve the decreasing sequence P = (T )n of associated
weights 7, (see Section 1.B). In fact, the characterizations also involve asso-
ciated weights for some more complicated constructions with minima (which
makes it hard to evaluate the characterizations).

In the sequel, for w, = 1/v,, n € N, @, has the same meaning as in
Section 1.A, and U, = 1/,. K+ (G) is the set of all nonnegative continuous
functions on & with compact support. Note that, due to the conventions
introduced in Section 1.B, min(1/v,,1/¢) is always a positive continuous
function on G for n &€ N and ¢ € K (G).

9.1. THEOREM. (a) VH(G) is a (DFS)-space if and only if
(Sg) YneNIm>nv¥e>0Ipeki(G):

o~ ~ 1 ~~
(min (—1—, i)) < (i) or, equivalently, (m'm ('wn, “)) < EWm-
Un @ U ©

(b) HV(Q) is semi-Montel if and only if
(M) VneNVTeV peKi(G):

(D) ()~ (o)) 52

U @ v @ ]
(c) VH(G) is boundedly retractive if and only if

(RDg) YnmeNImznvk>mVe>036>0:

(min (l-,—-ﬁ—)) < (»f—) or (min{wn, we))” < ewWm.
U Uk Um i

Proof. We will first reformulate the properties of VH(G) resp. HV(G)
in (a)~(c) in terms of a condition (x) which essentially involves an inclusion
of sets with an intersection of two sets on the left side. From this point on,
the three proofs are exactly the same, and we will only treat the case (c) in
detail.

(a) VH(G) is a (DFS)-space if and only if for each n € N there ism > n
such that the canonical injection Huv,(G) — Hum(G) is compact. Since By,
is compact in (H (6, co), this holds precisely if Hun (G) and co induce the
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same topology on B,. But as two l.c. topologies coincide on an absolutely
convex set if and only if they yield the same systems of O-neighborhoods, we
arrive at the following equivalence: VH(G) is a (DFS)-gpace if and only if

() YneNIm>0V¥e>03p e K (G):
Bon{f:pfl<1on G} CsB,,.

(b} Since HV(G) has the same bounded sets as the regular inductive
limit VH(G) and since each B, is compact in (H(G), co), HV(G) is semi-
Montel precisely if for each n € N, HV(G) and co induce the same topology
(at 0) on B,. This is clearly equivalent to

() YneNWeVIpck (G):
Bun{f:olfl<lon G} C{feH(G):ps(f) <1},

(c) Since VH(G) is always regular, the bounded retractivity of VH(G) is
equivalent to the fact that for each » € N there is m 2 n such that Hu,(G)
and VH((@) induce the same topology on Bi,. Moreover, since for regular
(LB)-spaces bounded retractivity is equivalent to bounded stability (cf. [5],
Appendix to Section 3, Prop. 9}, VH(G) is boundedly retractive if and only
if for each n € N there is m > n such that for each k = m, Hu,(G) and
Huy(G) induce the same 0-neighborhood system on By, ie.,

(%) YmeNIm>navk>mVe>036>0: B,NéBy C eB,,.

Now it suffices to show that in (a), (b), (c) the corresponding (+) is
equivalent to (Sy), (My), (RDg), respectively. Here is the proof for (c);
(a) and (b) need only minor modifications.

.(c), (RDg)=(*). If f € B, N 6By, then f € H{@) satisfies [f]| <
min(wn, fwy), hence by 1.2(iii) and (RDg)

)
[F] £ (min(wy, Swg))™ < et < ewnm,
that is, f € eB,,.

(*)=+(RDy) (indirect). Once more, fix n, m, &, ¢, 6. If there is z € G
su_ch that (min(wn, §w))~(2) > ey, (2), then by 1.2(iv) there is f € H(G)
with |f| < min(w,, fwi) on G, but |f(z)] > &iim(2). Now f € B, N 6By,
but f cannot belong to £B,, because in that case we would have |f| < gwpm,
hence by 1.2(iii) even | f| £ e, a contradiction. Thus, (*) cannot hold. m

(Sx) and (M) have the drawback that in their formulation not only
the associated weights, but also functions v & K,.(G) appear. (We could
have worked as well with characteristic functions of compact sets, but then
the minima in those conditions would not have been continuous in general,

violating the general hypotheses of Section 1.} In this respect, condition
(RDg) is better.
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By what we have said at the beginning of Section 2, (§) implies VH{G)
being (DFS), and hence (S)=(Sg). A direct proof of this implication is
easy. Later on, we will give an example of a (DFS)-space VH (G) for which
V does not satisfy (S), and hence (Sy) does not imply (). Clearly, if all T,
are weights (L.e., they do not take the value o), and if ¥ satisfies (5), then
in view of 1.12,

VH(G) = ind, Hva(G) = ind, H5,(G) = VH(®),

and thus VH(G) must also be a (DFS)-space. To deduce directly that if
satisfies (5), then (Sy) must also hold, it is useful to observe 1.2(v) and
1.2(viii). It is trivial to exhibit an example of a sequence V = (un)n with (5)
such that V = (Un)n is indeed a sequence of weights, but does not satisfy
(8): Just take G = C, fix ng € N and let V = (v, ) be defined by

vo(2) i= (max(l, |z[FetP " forzeC n=1,2,...,

where (p )n 18 an increasing sequence of numbers in (0,1). Note that each
Tn(2) is of the form (max(1,]z|™))~! by 1.3(a) and that all v, are radial.
Compare with Proposition 3.5 below and with the note after the proof of 3.5.

Similarly, (M) implies HV(G) Montel, and hence (M)=(My); using
[10], Prop. 5.2(3), one can also give a direct proof. A later example will
serve to show that (M) does not imply (M). Finally, (RD) implies VH(G)
boundedly retractive, and hence one has (RD)=(RDy). This time, it is
not so easy to give a direct proof, but it follows from [7], Theorem 1.1(a),
2(v). Later on, there will also be an example of a boundedly retractive space
VH(G) for which V does not satisfy (RD), and hence (RD g ) does not imply
(RD). Once more, if all %, are weights and if V satisfies (RD), then VH(G)
(= VH(G)) must have (RDy); using [7], one can deduce this directly.

At this point, we turn to examples, some of which were promised before.
We start with a simple construction, based on ideas from [15].

2.2, LeMMA. Let Gy be an open subset of C, and put G:= Gy x C. Let
T = (tp)n and U = (un)n be decreasing sequences of weights on Gi and
C, respectively. Let 0 < p < 1, ond assume that for each n € N and each
z€C, (1+12)7? < un(z) £ 1. Put V= (Un)n, vn(21,22) = tn(21)tn(22)
for (z1,22) € G, n € N. Then:

(a) Every f € VH(G) is constant in the second coordinate z;.
(b} VH(G) and TH(G,) are canonically isomorphic.

(a) follows from Liouville's theorem (cf. 1.3(b)), and then a short glance
at the map f — (-, 0) suffices to see (b). :
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2.3. EXAMPLE. Let Gq C C be open, and let the decreasing sequence
T = (tn)n on Gy satisfy (S). Then TH(G) is a (DFS)-space. If we take
un = 1l on Cforeach n € Nand if V = (v,)n, o G = Gy x C is defined
~asin 2.2, then V cannot satisfy (S) on G, but by Lemma 2.2(b), VH(G)
TH(G1) is a (DFS)-space, and hence VH(G) = HV(G) topologically.

We note that each f € Huv,(G) in 2.3 is constant in the second coordinate
by 2.2(a), and thus also each 7, must be constant in 2o, n = 1,2,... Now it
is easy to arrange situaticns as above in which all @, are weights, but the
sequence V = {Un)n does not satisfy (S). The preceding example also serves
to show that (My) does not imply {(M). In fact, V as in 2.3 does not have
(M) on G, and neither does V.

Before passing to our next example, which will be constructed along the
same lines as 2.3, but will in some sense be even “worst possible”, let us
recall two other conditions on V which arose in the corresponding projective
description problem for spaces of continuous functions.

Thus, for a moment, let X' denote a locally compact and o-compact space
and V = (v, ), a decreasing sequence of positive continuous functions on X.
Following [L10], V is said to satisfy condition (D) if there exists an increasing
sequence J = (X )men of {closed) subsets of X such that the following two
properties hold: ‘

(N,J) YmeNin, >m: inf

m‘vnm
(M,J) YneNVY CXwithYn(X\Xn,) #£0forallmeN

an' =n'(n,Y) > n: inf 2% =g,
Y wp
And V satisfies (N D) if there exists a decreasing sequence J = (Ji)x of
subsets of X such that

Ing ENVE>ng 3k >k

Uk

>0, k=nmi1, Mms2;-- .,

inf % >0, but inf 2% =0,

k Ung T Uny
It is easy to see that (even in the generalized setting above) each of the
conditions (M) and (RD) implies (D); thus (D) is the weakest condition
on V considered so far. And by [3], Lemma 1, (ND) means precisely that
condition (D) is not satisfied.

Now let the spaces Cun(X), VO(X) = ind, Cu,(X) and CTV(X) be
the exact analogs of Hun(G), VH(G) = ind, Hv,(G) and HV(G) for X
replacing G and continuous functions taking the role of the holomorphic
ones. Then VO(X) = CV(X) topologically if and only if V satisfies (D) (cf.
[6], Theorem 11).

2-4. EXAMPLE. Here, let simply Gy = C, and take a decreasing sequence
T = (tn)n of weights ¢, on C with tn(0) = 1 for all n such that 7T satisfies

icm

Associated weights 151

(S). Hence T H(C) is a (DFS)-space. For any decreasing sequence If = (tn)n
on € which satisfies the assumption of 2.2, if V¥ = (v)n on €2 = C x C
is defined as in 2.2, then Lemma 2.2(b) yields VH(C?) = TH(C) (DFS),
and projective description holds. By Theorem 2.1, V satisfies (SH), hence a
fortiori (My) and (RDg).

We will now construct U = (u,)n as above in such o way that V = (vn)n
does not satisfy (D). Then, by what was said before, VC(G) # CV(G)
topologically, and V cannot satisfy (RD).

For n € N and arbitrary k € Np, let first u, : Ry — R, be given on
[2k, 2k + 2] by

1 for r € [2k,2k +27"] and
T € [2k+ 1,2k + 2],
(1+ 1")“(”"”1)/(2") for r€ 2k +3.2-(+1) 2k 41 — 2—(11,-{—1)]’

with u, affine on [2k+ 27" 2k + 3. 2-0F1] and [2k +1 - 2-(»+1) 2k 4 1).
Distinguishing several cases, it is elementary to verify that the sequence
(tn)n is decreasing. Now extend u, radially, un(z) = un(|z|) for z € C,
n = 1,2,..., to obtain a decreasing sequence (u,), on C for which the
assumption of 2.2 holds with p = 1/2.

Now, it suffices to show that V satisfies (N D). For arbitrary n € N, take
Jn 1= {(0,2k+27") : k,m > n}. Givenn > ng := 1, for any (0,2k+2"™) €
Jn, clearly v, (0, 2k + 27™) = 1, but also

Ua (0,28 +27) = £, (0)u, (2 +27™) = 1
since m > n; hence infy, vy, /on, > 0. But for I :=n+1, k> n,

Ung1 (0, 2k 4 27™) = iy (2k - 27™) = (1 4 2k - 277) T/ F2)

inf Vb < (1+2k+ 2““)“?1/(211.»{»2) —_0

Jn 'U-nc'

which proves that V satisfies (ND).

In the rest of this section, we sketch a new approach to projective de-
seription which directly takes the agsociated weights @, into account.

Since the sequence V = (Bp)n is intrinsically defined, and hence “more
natural” than the original sequence V = (vn)n {on some open GC M), one
is led to introduce-—instead of V = V(V)—its analog V :=V(V), ie.,

V= {¥ weight on G : for each n € N, ¥/¥, is bounded on G}

Un(T) 1=

(kB — 00),

Since v, < T, for each n € N, it is clear that V C V. For arbitrary ¥ € 17',
put py(f) == supg Bl f| for f € VH(QG).

2.5. LeMMA. (a) For each v € V, vz defines a continuous seminorm on
VH(G). :
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(b) Hence, for HV(G) == {f € H(Q) : for each T € v, pa(f) < oo},
endowed with the Le. topology given by the system (pg)ie‘; of seminorms,
we have

VH(G) C HV(G) C HV(G)
with continuous inclusions, and the three spaces coincide algebraically and
have the same bounded sets.

Proof. By what is known about VH(G) C HV(G), it suffices to show
(a). And for this, it is enough to verify that ps| g, (¢ is a continnous semi-
norm on Hwv,{(G) for every n € N. But for f € Hv,(G), 1.12 implies

po(f) = supBf| < sup (éiﬁnm)
G e Un

v
Un

< (sup ,,E)(sup?fnlfl) = (sup
a G ]

Up

)(Sup’vnlfl)- .
el

In the light of Lemma 2.5, the “correct” projective hull of VH(G) is
rather HV(G) (even though it may be harder to compute the seminorms
P, U E 17, than the corresponding ones py, T € V). And there is even a bet-
ter chance that VH(G) = HV(G) holds topologically. Thus, the projective
description problem should rother ask when this equality holds.

Clearly, if VH(G) is boundedly retractive, the three spaces VH(G),
HV(G) and HV(Q), which always have the same bounded sets, also induce
the same topology on these bounded sets. With the method of Theorem 2.1,
the following characterizations are easy:

2.6. PROPOSITION. (a) HV(G} = HV(G) holds topologically if and only

if
(N) VieVIweVyneN: (min(w,,1/7)) <1/7.
(b) HV(G) is semi-Montel if and only if
(Mz) YneNYT eV Ipe Ky(G): (min(wn,1/p))” < 1/5.

Proof. (a) Vand V vield the same topology if and only if for each ¥ € ¥
there is ¥ € V' such that py(f) < pe(f) for each f € VH(G) or, equivalently,
for each f € By, n arbitrary. Thus, HV(G) = HV(G) topologically if and
only if
(*) VieV eV ¥neN:

Bun{f:3lfl <1} ¢ {f € H(G) : ps(f) < 1}.
Now, the proof of Theorem 2.1 immediately shows that (%) is equivalent to
(N). Finally, (b) is nothing but Theorem 2.1(b) with ¥ replacing V. u
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We _@nish this section with an example in which the topologies of H 17(6’)
and HV (G) are different. Note that in this example the sequence V = (v, ),
satisfies condition (M).

2.7. EXAMPLE. In the sequel, we stick to the notation of [15]. In Section 2
of that article, the authors constructed a decreasing sequence W = (%n)pn of
weights on the open set G1 ={2€C:1/2 <|z| <1, 0 < argz < 7} such
that HW(G1) contains a complemented subspace isomorphic to a non-
bornological sequence space Ko (i.e., to the strong dual of some non-
distinguished Kdthe echelon space \;); hence WH(G1) and HW(G;) have
different topologies,

Then, in [15], Section 3, V = (vn)n, vn(21,22) = wn(z1)un(2, |2e)), is
constructed on G = G x C in such a way (similar to the method of our
Lemma 2.2) that V satisfies (M), but VH(G) # HV(G) topologically. Each
f € VH(G) is constant in the second variable; the map A : HV(@) —
HW(G1}, Af(z1) = f(21,0) for 2y € G1, f € HV(G), is a linear bijection
with A% continious, but 4 is not continuous.

Similarly to our Example 1.3(b), one can now verify that the correspond-
ing associated weights satisfy

Wn(z1) < CnUn(21,22) for (21,2) € G,

where C,, is some positive constant, n = 1,2,... Now, we shall prove that A :
HV(G) — HW(G,) is continuous, whence so is A : HV(G) — HW(Gq)
and thus HV(G) # HV(G) topologically.

Fix an arbitrary & € W and define (21, 22) := W(z1), (21, 22) € G. For
each n € N, putting oy, = supg W/W,, we get

a1, 22) = W(21) € Onlin(21) € @ Crun(21,22), (21,22) € G

Hence 7 is an element of V, and for any f € H V(@),
pz(Af) = sup@|Af| = sup @(e1)|f(z1,0)!
G 2LEGY

< sup  (zi, 22)|f(21, 22)| = pi(f),
{z1,72)EG
which implies the desired continuity.

To complete the picture (as far as possible), let us note that A:l :
HW(Gh) — HV(Q) is continuous as well so that HW(G;) end HV(G)
are isomorphic. Indeed, Definition 1.1 implies that each U, must also be
constant in the second coordinate. And from 0 € u, < 1, it follows not
only that vy(z1,22) < we(zy), but in view of 1.2(vii), it is also clear that
Ug(z1, 22) < Wy(z1) for (z1,2) € G, k= 1,2,... Then, proceeding along the
lines of the corresponding part of the proof of [15], Prop. 4, the continuity
of 41 HW(Gy) ~ HV(G) bécomes obvious.
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Thus, we have the following situation:

VC(G) S CV(G)

T?s T
VH(G) = HV(G) —> HV(G)
WH(Gr) — HW(Gy) ——> HW (G1)

#

It remains open whether the topologies of WH(G1) and H W(G,), and
hence also those of VH(G) and HV(G), are different. However, Bonet and
Vogt have observed that there are examples of sequences V = {(vn)y of

weights on G = D such that v, = T, for each n, hence V' = V, bus still
VH(G) # HV (@) topologically.

In case VO(GR) = CV((G) holds topologically, the “old projective descrip-
tion problem” (concerning VH(G) = HV(G) topologically) was equivalent
to asking if VH(G) is a topological subspace of VC(G). The disadvantage
of the “new projective description problem” (concerning VH(G) = H V(@)
topologically) is that it is not directly linked to VC(G) any more. (But, of
course, if VH(G) is a topological subspace of VO(G) and if V satisfies (D),
then clearly VH(G) = HV(Q) = HV(G) topologically.)

Appendiz. In this appendix, we explain a result on compact embeddings
of weighted spaces of holomorphic functions which, in some sense, generalizes
(the main point behind) Theorem 2.1(a).

A general weighted space HV{G) of holomorphic functions is defined
exactly as HV{(G), but with V replaced by a general system V of non-
negative wpper semicontinuous functions on G, which (can and) will al-
ways be assumed to be a Nachbin family, ie., for vy,v; € V and any
A > 0, there is v3 € V with v, Ava < wvs, and for each z € G there
exists » € V such that v(2) > 0. The (Hausdorff) topology of HV{(G) is
given by the directed system (p,)}yev of seminorms, py(f) = supg v|f| for
f € HV{(G), and (By)vev yields a basis of O-neighborhoods in HV(G),
where B, :={f ¢ HV(G) : p,(f) < 1} forany v € V.

In the sequel, let v1 denote a weight, V5 a Nachbin family of weights and
Vs a Nachbin family of nonnegative continuous functions on &. We assume
that for each vy € V3 there is C > 0 with vy < Coy and that V3 < ¥, (in
the sense that for each vz € V3 there is vy € V3 with w3 < vp). Then the
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canonical injections
Huy(G) — HW(G) - HV3(G)
are continuous.

2.8. THEOREM. (a) Under our assumptions, HV3(G') induces the topology
of HVa(G) on the unit ball By := By, of Hvi(G) if and only if

Yus € Vy Jug € Vs : (min (—1—,«1—-)) < _:l',.

V1 Vg g

(b) The embedding Hvy(G) — HV3(G) is compoct if and only if

Yoy € Va 3p € Ko (@) : (min (l, 3)) <L
vy @ U2
(c) Let v1, vy denote weights on G with vy < v1, and put wy = 1 /vy,
k=1,2. Then the canonical injection Hu(G) — Huy(QG) is compact if and
only if

Ye>03p e KL(G): (min (wl,%)) < gws.

Proof. (a} Since the topology of HV3(G) is weaker than the one of
HV3{(), the two topologies coincide (at 0) on Bj if and only if, for each
vg € Va, there is v3 € V3 with By N B,, C B,, or, equivalently (since
B, ¢ HV,(G) C HV53(@)),

Bin{f:ulfl <1} C{f:wlf <1}

But the proof of Theorem 2.1 shows that this inclusion is equivalent to

1 1 ~ 1
(min (»——,w)) < —
V1 Vg (1)

(b) Since V5 iy a gystem of confinuous positive functions, the topology of
HV,(G) must be stronger than co. Hence the embedding Hvy (G) — HVL(G)
is compact if and only if co induces the topology of HV2(G) on By. But
for the Nachbin family V3 = KX..(@), we have HV3(G) = (H(G)},co), and
thus it suffices to apply (a). Finally, (c) follows directly from (b) by taking
Vasm{dug: A >0}. m

Associated weights can also serve to characterize (the boundedness and)
the compactness of composition operators between weighted Banach spaces
of holomorphic functions (see [13]).

3. Additional results and remarks. This section is divided into three
subsections. Part A is devoted to estimates for @ when w is a radial growth
condition on C satisfying certain natural assumptions (Prop. 3.1).
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In Part B, it is first pointed out (Prop. 3.4) that for radial weights v with
condition (/) on the unit disk, Shields and Williams {26} already showed
that v and the associated weight ¥ are equivalent. Then we prove (Prop. 3.5)
that for a sequence V = (vn ), of radial weights on D for which r — v, (r)
is strictly decreasing, » = 1,2,..., the space VH (D) is (DFS) if and only
if the sequence V = (¥, ), of associated weights satisfies condition (). This
is remarkable because a simple example after Theorem 2.1 demonstrated
that such a result cannot hold for C instead of IJ. Finally, there is a way
to calculate 40, up to a constant, if w = l/v is a growth condition on D
which has a radial limit function w* on 8D with certain properties: In this
situation, @ = 1/7 is equivalent to the modulus of the corresponding outer
function Q. (Prop. 3.6).

Part C sketches applications of Hérmander’s 8-technique and of Phrag-
mén-Lindelsf type theorems to estimates for @ on CV (Props. 3.8, 3.9). We
finish the article by constructing an example of a space VH (G) with some
“strange” properties, this time on a set G which is the union of a sequence
of pairwise disjoint disks in C.

In contrast to the previous sections, not all the arguments here are given
in (full) detail, and some (easy) calculations are omitted. But we provide
the reader with sufficient information and relevant references.

3.A. Estimates for @ or C. Let w be a radial growth condition on C.
If » — w(r) is increasing and logarithmically convex for r € [1, 00), then w
satisfies

(=) wi) =wte| X ay vz
1

for some positive increasing function w (see Clunie-Ké&vari [17], Theorem 4).
Classical results on Taylor series and growth conditions of entire functions
lead to estimates of 0, as follows.

3.1. PROPOSITION. Let w be a radial growth condition on C.

(a) If (even) v — w(r)//T is increasing and logarithmically convex for

r > 1, and if 1/w is rapidly decreasing (i.e., for everyn € N, w(r)/r™ — oo
as v — o), then there is C > 0 with

wir) <w(r) < C(L+m)wr), r>0.

() If r — w(r) is increasing and logarithmically convex for v > 1, and
if, for w as in (%), there is ¢ > 1 with w(cr) — w(r) > 1 for all v > 1, then
there exists C' > 1 such that

w(r) < wir) < Cif(r), r=0.

icm

Associated weighfs 157

Proof. (a) By Clunie and Kévéri [17], Theorem 2, applied to r —

w(r)//r, there is an entire function f (whose Taylor series has positive
coefficients) such that

w(r)
% 1<
(%) T
Put wi(2) = M(f,|z|), 2 € C. Then wy is a radial growth condition on.
C which satisfies w1(r) < w{r) < 9rwi(r) for r > 2. Hence, by 1.2(vii),

i (r)y £ @(r) for v = 2, and by 1.6, @y = w; holds. It follows that for
re 2,

9
< 9r, > -
= 'F___5

W(r) < w(r) < 9rwy(r) = 9 (r) < Srd(r).

The proof of (b) is similar: By [17], Theorem 4, applied to r — w(r), (x)
can now be replaced by

w(r)
Y un <9

The conditions of Proposition 3.1 are quite natural: Eg., v = 1/w
rapidly decreagsing means exactly that Hv(C) (or Hup(C)) contains the
polynomials. And if the radial growth condition on C is taken in the form
w(z) = expw(|2]), z € C, for a continuous increasing function w : Ry — Ry
with, say, w(0) = w(1) = 0, then supposing that logw is subharmonic is
equivalent to assuming that the function ¢, ¢(t) = w(et) for ¢ > 1, is con-
vez (see [4], 4.4.19 and 4.4.26), i.e., r — w(r) is logarithmically conver (cf.
the notes after 1.2 and 1.6). In this setting, 1/w is rapidly decreasing if and
only if logr = o(w(r)) as r — oo.

r>1. =

Let us now prove directly (without recourse to [17]) that, in the setting
which we have just described, w(r) < r@(r) forr > 1.

We will make use of the Young conjugate ™ : Ry — Ry of ; it is defined
by the formula ¢*(y) = sup{zy — ¢(z) : © > 0}. p* is again increasing,
convex and satisfies ¢*(0) = 0, y = o{*(y)) as y — oc; moreover, ¢** = ¢
(cf. e.g. [16]).

First note that for n & Np,

. sexpw(r) ., cexpw(r) . 3
?{{}1‘% —w = igﬁ — = 7{1_>1_f1 exp{w(r) —nlogr)
= exp(~ Sgl;(ﬂ logr — ¢(logr))) = exp(—¢"(n)),
r—-n
hence
() 0 < exp(~¢™(n)) < new}i%t—i—@» for each r > 0.
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Next, to prove the desired estimate, we fix 7o 2 1, let 0 < & < 1 and
choose ng € N with

rg® exp(—p*(no)) > (1 — &) sup (rf exp(~1"(n).

neNy

Then g{z) = exp(—p*(ng))2"°® for z € C defines an entire function g such
that, in view of (),

|g(z}] = exp(
for each z € €, while
w(ro) = exp ™ (log o) = jl}lg(?’é eXP(—W* (1))

—¢*{no))|2|™ < expw(|z]) = w(z)

n+l1

< sup( exp(—¢"(n))) < (o)

nENp
by our choice of ny. So far, we have proved that for each £ € (0,1) there
is g = g¢ € By, (see Def. 1.1) with g(ro) > (1 — e)w(ro)/ro. Since £ > 0 is
arbitrary and B, is compact in the topology of pointwise convergence, it
follows that for each rg > 1 there exists f € By, with

£(ra)] = ~-w(ro)

It is interesting to note that if, in addition, {¢*)' ewists and is strictly
increasing, then there is an increasing sequence {(On)nen © Ry, gn — 00,
such that W(pn) = w(pn) for each n € N.

In fact, put 7, = (¢*)(n) and g, = e™, n = 1,2,...; since y =
o(p*(y)), clearly lim,,,o0 0n = 00. Now, for arbitrary n € N, a glance at the
derivative yields '

w(gn) = expw(gn) = exp p(rp) = exp(glgg(ym —©"(¥)))

~ 1
whence @(ro) = T—w(*r‘g). a
0

¢*(n)) = gy exp(—¢*(n)).
On the other hand, g(z) := exp(—¢*(n))z™ for z € C defines an entire
function g which, in view of (+}, satisfies |g| < w on C and g(gn) = w(gn),
ie., W(on) =wl(on) w
Now we modify an idea of [17], Theorem 3, to show that, even under the
conditions of Proposition 3.1(a), @ can really be essentially smaller than w.
For this purpose, let us fix a sequence (rp)nen, C Ry with rg = ry =
Lt < rpga form 2 1, limp oo rn = 00, and set A, = (r1...7)70,
n € N. Next, put 'w|[011] = 1 and w(r) = A,r"2 for v € [ro,Thte1)s
n = 1,2,... Then w : Ry — R, is continuous, increasing and satisfies
hmr.ﬁ,‘J r /w(r) =0 for each n € N; moreover, the corresponding function

, p(t) = log(w(e*}/Ver) for t € R, , is convex. Fmally, extend w to a radial
function on C by taking w(z) := w(|z|) for each z € C.

= exp(nry, —
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3.2. LeMMA. Let f be an entire function with |f| < w on C such that

the Toylor series of f, f(z) = 3 5, 0kz®, has nonnegative coefficients ax,
ke Ng. Then
1/2 1/2
Tn 7
050 ((2) " +(Z) Jel rebmm, n=12,..
r Tr-1

Proof. Fix n € N. Clearly, |f| < w implies

[o.}
Sarti<a,
k=0

re [T‘n, ’I"n.|.1).

Hence, for all such r,

ken—1/2 _ vz k-n—1j2( T " AR

B n —f— n < m

Yt m () Dot () s (3)
r 1/2 00 N r k—n—1

Z akrk“"”l/zz( ) Z kT o (———)

r
h=nt1 f— ntl

r 1/2
)"
Tl

Summing up, we get

/2 po Y2
S iaa((2) (55))
7 Tnl

and multiplication by r"+1/2 yields the desired inequality. =

3.3. ExaMPLE. For w as above, for n € N and 7 € [rn,*rn31), the corre-
sponding ¥ satisfies

s (%) (20) oo

Proof Fix g € By,. By a result of Erdés-K&vari [18], there is a function
Fe H(C), f(2) = Tpopanz® with ax > 0 for all k € No, such that

() “f(T) < M(g,r) <35(r)

Since w is radial and |g| < w, it follows from (*) that f(r) < 6w(r), r > 0.
Now Lemma 3.2 yields, for n € N and each 7 € [ra, rn41),

ersa(() 4 () )

for each. r > 0.
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hence by another application of (%),

o () () )0

Finally, invoking Observation 1.5, one realizes that the last estimate also
holds for @(r) instead of M(g,r). =

Note that, taking rn41 = 2"r, for n=1,2,..., one gets by 3.3,

1 1/4
@2 ?r,) < 36(-2z) w(2™?ry,).

3.B. Functions on the unit disk. Let v : [0,1] — Ry be a continuous
decreasing function with v(0) = 1, »{1) = 0 and »(r) > 0 for r € (0,1).
Then v becomes a radial weight on D by taking v(2) := v(|z]}, 2 € D. The
auxiliary function ¢ : [1,00) — R \ {0} is defined by v¥(2) := 1/v(1 - 1/1),
t > 1; note that 1/v(r) = ¥(1/(1 — 7)), » € [0,1). According to Shields-
Williams [26], ¢ is said to satisfy condition (U) if there are a,c > 0 such

that
Yl L)
y* - =z
in this case, we will also say that v satisfies condition (U'}. As communicated
to the authors by W. Lusky, (U) is equivalent to his condition (%) (on v) in
[21]. For examples of weights v which satisfy (I7), we refer to [21] or [25]. Now
Proposition 3.4 follows directly from Shields-Williams [26], Lemma 1(iv).

3.4. PROPOSITION. For a radial weight v on D as above (which, in par-
ticular, satisfies (U)), there is a constant C > 0 such that

v(r) £3(ry < Cu(r) for eachr € [0,1),

i.e., v and U are equivalent weights.

1fe<y=

If the radial weight v on D decreases very rapidly (e.g., exponentially)
as r — 1_, (U) is not satisfied. Then the corresponding growth condition
w = 1/v increases very rapidly. The method of Proposition 3.1(b) can still
be used to prove equivalence of w and % (under certain assumptions).

We suppose thot the radial growth condition w on D satisfies

(o)

w(r) = w(D)eXPSi"_”EdQ, 0<r<l,
0

where T is o positive increasing function on [0,1) such that, for somec> 1
and all g € [0, 1), :

(%) T(l—(1=g)/c)—r{g) > 1.
Then there is C > 1 with @ < w < OO0 on D:
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In fact, starting from 7, one defines a positive increasing function % on
[1,00) by w(g) := 7(1 — 1/0) and puts
T'
P(r) .= w(0) exps r> 1.
1
Since $(1/{1 — 7)) = w(r) for all » € [0,1) and () holds, & satisfies the
assumptions of [17], Theorem 4. Hence there is an entire function f whose
Taylor series has positive coefficients such that, for some Cp > 0,

o) _ %) .
oyt < = <Ch, r21.
C T MF 7
Define g(z} := f(1/(1 — 2)) and wi(z) = g(|z|) for z € D. Then g is an
analytic function on D whose Taylor series at 0 also has positive coefficients,
and hence the growth condition wy on I satisfies #; = wy by 1.6. Moreover,

wlr) = @(11—7") < cof(i—}:;) = Cows(r), 0<r<l,

and wy(r) € Cow(r) follows in the same way. Now 1.2(vii) yields
w(r) £ Cow(r) = Coti (r) < C3i(r), 0<r<1l. n

Next we turn to the characterization of the (DFS)-property of the space
VH(D) = ind, Hv,(D) in terms of condition (S) (cf. Section 2) on the
sequence V = (T )y, of associated weights 7, when V = (v,,), is a decreasing
sequence of “nice” radial weights v, on D.

3.5. PROPOSITION. Let V = (v,)y, denote o decreasing sequence of posi-
tive continuous radial weights such that each r — vn(r) is strictly decreas-
ing on [0,1), n = 1,2,... Then VH(D) is a (DFS)-space if and only if
V= (Un)n satisfies (S).

Proof In a remark after the proof of Theorem 2.1, it was already
pointed out that VEH (D) = VH(D) is a (DFS)-space if V satisfies (S) (and
this holds for any sequence V on an arbitrary open set G C CV).

Conversely, assume that VH(D) is a (DFS)-space and again write wy, ==
1/vn, n=1,2,... Exactly as in the proof of Theorem 2.1(1), one shows that

(#)  for each n € N there is m > n with the property that for each &£ > 0
one can find § > 0 (without loss of generality, § < w,(0)) and r €
(0,1) such that each f € H(D) with [f| < wn on D and |f| < 6 on
D,., the closed disk of radius 7 around 0, must satisfy | f| < e@, on D.

To show that ¥ = (T, )y, satisfies (S), fix n € N and choose m > n as in (x);
for arbitrary £ > 0, take § > 0 and r € (0,1) as provided by (). We claim
that there exists ro € [r, 1) such that T (z) < 267 (2) for all z € D\ D,,.
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This claim will follow after the introduction of an auxiliary function ¢.
Let us first put @ 1= §(1—7)/{wn(r)—8) > 0; clearly a/(1+a—r) = &/wa(r).
Now define ¢ & H(D) by p(z) := a/(1+a~ z), z € D; it is easy to check
that

(i) [¢|<lonDand

(ii) |p| < 8/wy(r) on Dy
Since () is real for z € [0, 1) and lim,_; (2) = 1, there is ro € [r, 1) such
that o(s) > 1/2 for s € [rg,1).

To prove the claim, we fix z € D \ D,, and let s := |2|, whence s > rg.
By Observation 1.5, @, and i, are radial, i.e., @n(z) = @n(s) and Win(z) =
W (8). By 1.2(iv), there is g € H(D) with |g| < wq on D such that {g(s)| =
Wn(s). Now, define f := @g € H(D). By (i), we have |f| £ w, on D; on the
other hand, for ¢ € D,., we get from (ii),

Q1 =190 19(6)] £ wa(O iy = KD 5 <

(%) implies that |f| < e, on D; in particular, |f(s)| < elWm(s). Since
(s} > 1/2, we finally obtain
|7 (sl

W (2) = Wy (s) = |g(s)] = (5)

which is equivalent to the claim.

< 2etim(8) = 2etm(2),

Recently, D. Vogt extended Proposition 3.5 to general open sets & if
the weights v, satisfy the condltlon of 1.13, i.e., he proved the following
theorem:

Let G be an open subset of CV and V = (v,)n a decreasing sequence
of weights on G. If, for each n € N, T, is a weight with T, = Uno (in the
notation introduced before 1.13), then the following assertions are equivalent:

(1) VH(G) is a (DFS)-space,
(2) VoH(G) = indn H(vn)o(G) is a (DFS)-space,
(8) V = (@) satisfies (5).

So far, our results in Section 3 have dealt with radial weights. But non-
radial weights on the unit disk are alsc important: They come up naturally
e.g. when functions on a half plane H (with growth conditions on the bound-
ary) are considered and the conformal map H — D is used. The following
remarks apply to certain nonradial weights v on D.

For a function f : D — Cand 0 < r < 1, let fn : D — C be defined
by f-(e¥) = f(re?*), i € [~m, 7). Now let v be a weight on D which has
an extension v : D — [0, 00] with v|sp = lim,_,1_ v, a.e. on 8D such that,
for w = 1/v and for some 1 < p < 00, 8UP,¢p,1) || wrll 2oy < 00, wlap =
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w* € LP(8D) and logw* € L'(OD). In this case, Hv(D) is contained in
the Hardy space HF (cf. Rudin [24], 17.7); in particular, each §f € Hu(D)
has a radial limit function f* : 3D — C, defined at almost all points of
aD. Also recall (see [24], 17. 14) that for any g € LP(8D) with g > 0 and
logg € L' (8D), the outer function Q, € H(D) is defined by

Q) = (5 | S

6zt

it

1ogg( et) dt) zeD.

3.6. PROPOSITION. Let v be o weight as above and w = 1/v. If there is a
constant C' > 0 with C|Qu~| < w on D, then @ 4s equivalent to |Qy-+|, i.e.,
O\Qw* i w

Proof. The first inequality is clear from 1.2(iii}. To see the second es-
timate take an arbitrary f € H(D), f # 0, with |f| < w on D. Then
f € Huv(D) C H? and |f*| £ w* ae. on D. Now, it follows from [24],
Theorems 17.16 and 17.17, that

171 < Q] € 1Qurl.
Thus, we get ¥ < [Qu«| on D. m

Now take a function g € LY(D) with g > 0 a.e. and logg € L*(3D).
Then the Poisson integral of g (see [24], 11.7),

17 etz it
o SWRe(eit_z)g(e ) dt,

is harmonic and positive on D; it satisfies all the assumptions on w needed
for 3.6 (with p = 1 and w* = g; cf. [24], Corollary to 11.10).

w == Plg] =

3.7. COROLLARY. For w = Plg] in the present situation, one actually
has @ = |Qy].

Proof From [24], proof of 17.16 {using Jensen’s inequality), |Qy| <
Plg] = w follows, hence by 1.2(iii), |@q| < @. The second inequality is clear
from 3.6. w :

Note that, using 3.7, one can give simple ezamples of functions w = P[g]
such that @(r) < w(r) for each r € [0,1). (E.g., take g(e®) = m for t €
[~m,0] and g(e®*) = M for ¢t € (0,x], where m # M.) And it follows from
techniques of [22] that for other interesting weights on D the conditions of
3.6 are satisfied,

3.C. Final remarks. Let p denote a nonnegative continuous p.s.h. func-
tion on CN and let g be defined by g(z) = sup{p({) : ¢ — 2l < 1},
z € CV. Let | - | denote the Euclidean norm. We consider the continuous
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positive function w on CV,

w(z) = explg(z) + 3log(1 + |2[>)) for z € CV.

The d-techniques of Hérmander can be applied to estimate @, as follows.

3.8. PROPOSITION. Forw as above, there is M > 0 such that exp(p(z)) <
Mi5{z) for each z € CV.

Proof. By a result of Abanin ([I], Lemma 4), there is M > 0 such
that, for each zg € CV, there is f € H(CY) with f(zq) = exp(p(z0)) and
\f| € Mw on CV. Now

- expp(z0) < sup{lg(z0)| 9 € Bu} = Blzo).

Phragmén—Lindeldf theorems can also be applied to estimate associated
weights; here is an exarople:

3.9. PROPOSITION. Let w be a positive continuous function on CV such
that the following estimates hold for some B > 0 and some n € N:

(i) w(z) < exp(B]z|) for each z € TN and
(i) w(z) < (1+|z|)" for each z € RY.

Then @(z) < (14 |2)) exp(B|Im z|) for each z € CV.

Proof. Let f € H(CV) satisfy |f| < w on CV; then the estimates (i)
and (ii) also hold for |f|. Applying the Phragmén-Lindeldf principle as in
Hérmander {20], proof of 16.3.10, we conclude

()] < (1 +2))" exp(B|Im 2|)

whence the desired estimate. m»

for each z € TV,

We note that it is possible to replace the term (1 -- |z|)" in 3.9 by
exp(Cw(z)), C > 0, where w is a nonguasianalytic weight as in [16]; for
example, w(z) = |z{?, 0 <p < 1.

For our final example, we adopt the following setting:

Let v, w be continuous real-valued functions on [0,1), »(0) = w(0) = 1,
v strictly increasing with lim,_1_ v(r) = 0o and w strictly decreasing with
limyp-,;_ w(r) = 0. Both are extended to D radially.

3.10. LEMMA. Given 0 < £ < 1, let vy be the unique number in (0,1)
with v(rg) = ™. Put b= v(rg)/w(re) > 1, define v := min{v, bw) on [0,1)
and then u(z) := u{|z]) for z € D. Now, if f € H(D) satisfies ulf| < 1,
then w|f| < e on D.

icm
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Proof Fix f € H(D) with u|f| < 1 on D and take a point z with
|2g| = r such that | f(z0)| = maX s zr, |£(2)] = max, <, | £(2)]- Since v(0) —
bw(0) =1 —b < 0, v(ro) — bw(ro) =0 and v(r) —bw(r) » coasr — 1_, it
follows that u(r) equals v(r) for » < rg while u(r) = bw(r) for r > ro. Now,

sup w(z)|f(2)] Sw(o)ﬁ? (=) = [ f (20}

jz|Sro

< ulr)™ sup w(2)|f(&)] < ulro)™ = vire)* = ¢,

|z|=ro

sup w(2)|f() =071 sup buw(2)|f(2)| b7 sup u(z)|f(2)]
rp< iz <L rp<|z[<1 26D

<b b w(rg) = () =6 w
Turning to our example, put
Dp=dm+D, m=12..., and G:=|] Dn
© meN
The decreasing sequence V = (v, )n of weights on G is defined by
on(2) 5= {w(z — 4m),

v(z ~ 4m),

z & Dy, m <,
z€ D, m2>n

3.11. EXAMPLE. V satisfies (N.D) (so that the topologies of VC(G) and
CV(G) are different, cf. Section 2), but VH(G) = HV(G) topologically, and
this space is isomorphic to Py Hw(D).

Proof Let ng =1 and put

Je = {4m+1-1/s:m2k seNy, k=12...

Clearly, (Ji)x is decreasing, and if z € Jy,, then z € Dy, for m 2 n, hence
vn(z) = v(z — 4m) = v1(2), Le., inf,ey, va(2)/vi(2) = L. But dn+1-1/s €
Ju N Dy, for arbitrary s € N, and we have v1{4n+1—1/s) = v(1— 1/s)
while vppy(dn + 1~ 1/8) = w(l — 1/s); thus,

. Up (@bl =1/8) I w(l—1/s) _
o e A 1=1)s) e u(I=1/s)
ie., we have verified that V has (N.D).
Next, note that, clearly, Hv(D) = {0}. Therefore,

¥ VH(G) — P Hw(D), $(f) = (f{dm+))men,
N

is well-defined, linear and, in fact, bijective and continuous, hence an iso-
morphism by the open mapping theorem for (LB)-spaces.
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It now suffices to show that ¢ : HV () — By Hw(D) is also continuous.
To see this, take an arbitrary O-neighborhood in By Hw(D); it contains a
set of the form

V= P{f € Huw(D): w|f| < em on D},
meElN

where (&m)m C (0,1) is decreasing. For each m € N, let 7., € (0,1) satisfy
v(rm) = ety and put by = v(rm)/wlrm) > 1; then (rm)m and (by)m
are increasing. By Lemma 3.10, if %y, = min(v, byw) and f € H(D), then
| f| < 1 implies w]f| < &m on D,

We let vy := 1, i 1= by for m > 2 and take 7 € V with inf, apv, <%
{cf. [11], 0.2, Prop.). Since (@n)r, is increasing, we have

('mnf Ontn)(z) = min{v(z — dm), bnw(z — dm))

forze Dy, m=1,2,... _ :
Now suppose that f € HV () satisfies T|f| < 1 on G and let ¥(f) =
(gm)m- Then, for each m € N, ‘
sup min(v(z — 4m), bpw(z — 4m)}|f(2)| € T(2)|f(z)] < 1,

zZED,

hence tm |gm| < 1 and thus w|gm| < €, on D. Tt follows that
Y({f € HV(G) :3/f| <1lon GhH cV,
that is, ¢ is continuous on HV(G). u
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(3837)

Added in proof (October 1997). In the recent article by J. Bonet, P. Domaniski
and M. Lindstrém, Essential norm and weok compaciness of composition operators on
weighted Banach spaces of analytic funciions, preprint, 1997, the authors show, among
other things, that for a radial continuous weight v on D which is decreasing as a function
of r € [0,1} and satisfies lim, .1 2(r) = 0, v is equivalent to the associated weight ¥ if and
only if r — 1/v(r) is equivalent to a log-convex function.

icm

STUDIA MATHEMATICA 127 (2) (1998)

The Weyl asymptotic formula
by the method of Tulovskil and Shubin

by

PAWEL GLOWACKI (Wroctaw)

Abstract. Let 4 be a pseudodifferential operator on RY whase Wayl symbol a is a
strictly positive smooth function on W = RY x BY such that [8%a| < Caa'™? for some
o > 0 end all ja| > 0, #%a is bounded for large |o], and limy—eo a{w) = co. Such an
operator A is essentially selfadjoint, bounded from below, and its spectrum is discrete.
The remainder term in the Weyl asymptotic formula for the distribution of the eigenvalues
of 4 is estimated. This is done by applying the method of approximate spectral projectors
of Tulovekil and Shubin.

Introduction. Let 4 = a%(z, D) be a pseudodifferential operator on
RY given by the Weyl formula

r , $
Af (@) = He"‘”"““”%(m} y,e) fl) dy e,
where a is a strictly positive smooth function with derivatives of polynomial
growth. It is assumed that A enjoys certain “hypoelliptic” properties to be
specified later which imply that A is selfadjoint and has a purely discrete
spectrum A, " oo. Let

AfmTAe(dA)f
0

be the spectral resolution for 4.
Tulovskil and Shubin [13] give estimates for the error term in the Weyl
agymptotic formula
N = [ dede
A
for the number of eigenvalues of A smaller than or equal to A. Their proof is

based on a construction of a family E) of pseudodifferential operators that
approximate the spectral projectors £, of A sufficiently well. This method
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