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(3837)

Added in proof (October 1997). In the recent article by J. Bonet, P. Domaniski
and M. Lindstrém, Essential norm and weok compaciness of composition operators on
weighted Banach spaces of analytic funciions, preprint, 1997, the authors show, among
other things, that for a radial continuous weight v on D which is decreasing as a function
of r € [0,1} and satisfies lim, .1 2(r) = 0, v is equivalent to the associated weight ¥ if and
only if r — 1/v(r) is equivalent to a log-convex function.
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The Weyl asymptotic formula
by the method of Tulovskil and Shubin

by

PAWEL GLOWACKI (Wroctaw)

Abstract. Let 4 be a pseudodifferential operator on RY whase Wayl symbol a is a
strictly positive smooth function on W = RY x BY such that [8%a| < Caa'™? for some
o > 0 end all ja| > 0, #%a is bounded for large |o], and limy—eo a{w) = co. Such an
operator A is essentially selfadjoint, bounded from below, and its spectrum is discrete.
The remainder term in the Weyl asymptotic formula for the distribution of the eigenvalues
of 4 is estimated. This is done by applying the method of approximate spectral projectors
of Tulovekil and Shubin.

Introduction. Let 4 = a%(z, D) be a pseudodifferential operator on
RY given by the Weyl formula

r , $
Af (@) = He"‘”"““”%(m} y,e) fl) dy e,
where a is a strictly positive smooth function with derivatives of polynomial
growth. It is assumed that A enjoys certain “hypoelliptic” properties to be
specified later which imply that A is selfadjoint and has a purely discrete
spectrum A, " oo. Let

AfmTAe(dA)f
0

be the spectral resolution for 4.
Tulovskil and Shubin [13] give estimates for the error term in the Weyl
agymptotic formula
N = [ dede
A
for the number of eigenvalues of A smaller than or equal to A. Their proof is

based on a construction of a family E) of pseudodifferential operators that
approximate the spectral projectors £, of A sufficiently well. This method
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170 P. Glowacki

of approzimate spectral projectors has been subsequently substantially im-
proved and extended by Hormarnder [5] within the framework of his general
Weyl calculus [6] (and [8]).

Our aim here is to pursue this idea in order to cope with a class of symbols
which extends that of Tulovskii-Shubin and is not covered by Hérmander’s
approach. Let us recall that Tulovskil and Shubin demand that there exist
0, > 0 such that

(A) |8%a(w)| € Cua(w) =22, |a| >0,
and

(B) ofw) Z cllwll®,  weW,
whereas we only need

(a1) [6%a(w)| < Cua{w)* ™8,  |al >0,
(a2) 6% < Ca,  lazge |a,

(b) S a(w) = co.

Incidentally, (as) can be dropped, as has been shown by Czaja and Rzeszot-
nik [2].

Symbols of this kind arise in a natural way in the study of unitary repre-
sentations of non-smooth infinitesimal generators of continuous semigroups
of measures on the Heisenberg groups (see [4]). To explain this statement,
let us start with the following example. Let P be the Schwartz distribution

w) — f(0
[[oc]
lwil<1
on the phase space W = RY x R¥. A direct computation shows that
a(w) = P(w) ~ log(1 + lw])

violates both (A) and (B), while (a;), (as), and (b) are satisfied with any
e>0.

More generally, every real negative definite function o on W is a symbol
of a selfadjoint operator A = x(P), where P &€ §*(W x R) is a generating
functional of a continuous semigroup of measures on the Heisenberg group
G =W x R with multiplication

{w,t) o (v,8) = (w+v,s+1t+ §{w,v)).

Here (:,-) is a symplectic form on W, and = stands for the Schridinger
representation of G. The relationship between a and P is very simple, namely

a(w) = ﬁ(w, 1), wew

icm
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Although such symbols a are always continuous, they need not be differen-
tiable. However, one can write

a=H*a-mT,

where H ig the Gauss function and 7 is positive definite so that the operator
T = 7%(z, D) is bounded on L*(RY )- If, furthermore, o happens to be
homogeneous and does not vanish away from the origin, H «a satisfies (a;),
(az) and (B), though not (A). Thus o fits the framework of our theory (cf.
Corollary (3.4) below as well as [4]).

It is a future study of similar operators descending from nilpotent Lie
groups via unitary representations that primarily motivates our interest in
the Weyl formula as considered here,

I wish to express my gratitude to Jean Nourrigat for suggesting the
subject of this investigation, Krzysztof Nowak for a number of informative
conversations, and Jacek Zienkiewicz for his interest and encouragement
during the preparation of the paper.

1. A symbolic calculus. Let V be an N-dimensional real vector space.
Let V* be the dual vector space and z€ the pairing between z € V and
£ € V*. We fix a euclidean norm ||« || in V and hence the dual norm in
V* and the product norm in the phase space W = V x V* denoted in. the
same way. Let {e;}{; be an orthonormal basis in V and {e;}2%,,, the
dual basis in V*. For a multi-index o € N2V, let

O%f = 8105 .. %N f,

where
Oif(w) = == flw+te;)
1N i dE g i)
The length of & multi-index o is defined, as usual, by |a| = 351 (27

There is a natural symplectic form on W:
(w,v) =y —en  forw= (2,6), v=_(y,7)-

IfA= fol 8% i the (positive) Laplace operator on W, then

(1.1) (Do + 1)l = (14 |lofP)e

The Lebesgue measures dz, dé on V and V*, respectively, are normalized
50 that the volume of the unit cube is equal to 1. Then the same is true
of dw = dad¢. Let S(V) denote the Schwartz function space on the vector
space V., The relationship between a function f € S(V) and its Fourier
transform f & 8 (V*) is given by

F1&) = {e~™t f(z) da,

foru,v e W.

fla) ==t f(0) de.
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‘We shall identify W with its dual by means of the bilinear form (1.1), The
Fourier transform on S(W) takes the form

Flw) = {{ fv)e2mitvw) do,

Note that under this identification the Fourier transform turns out to be
equal to its inverse.

A strictly positive continuous function m on W is called a temperate
weight or simply a weight if it satisfles
(1) m(w +v) < Con(w)(1 + o])*
for all w,v € W and some constants C,n > 0 (cf. Hérmander [7], 10.1). In
particular, every weight m satisfies

CTHL A+ Jlwl)™ < m(w) < C(L+ |wl)"

for w € W. Note that the weights form a group under multiplication. More-
over, if m is a weight, then log(l + m) is a weight, and for every real 8, m?
is also a weight.

For a given weight m, let us denote by S{(m) the class of all a € C°°(W)
such that

p—d m: -1 (j)
lalk = |al} 1%%53}”“("”) eV (w)|| < oo

for all positive integers k. Obviously, S(m) is a Fréchet space if endowed with
the family of norms @ + |a|x. It is convenient to extend this definition to
symbols with values in finite-dimensional vector spaces so that, for instance,
we can write al*) € §(m) instead of 8%a € S(m) for all || = k.

Every a € C(W) with derivatives of polynomial growth defines a con-
tinuous endomorphism A = Op(a) : S(V) — §(V) by the Weyl prescription

Af(a) =[] ‘"‘”)fa(m 3 y,é)f(y) dydg.
The function a is called the symbol of A. Then

ba,0) =i vka(TEL, )
is the kernel] of A, and the symbol can be retrieved by

o(z, €) = | e 2" Wek(z 4 y/2, & — y/2) dy.

The weak version of the above definition

(1.3) (Af,9) = | alw)s,q(w) dw,
. w
where
(1.4) brg(w, ) = { e f (o 4 y/2)5(z — y/2) dy,
v
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makes sense for every ¢ € §*(W). Thus the Weyl correspondence extends
to symbols in §*(W) (cf. Hérmander [8)).
We shall denote by £(m) the linear space of all the operators Op(a) with
g € S(m). Every A € L{m) is closable when regarded as a densely defined
operator on L*(V') with S{V) for its domain D(A).
If A€ L{my),B € £L(my), then AB € L(mymy). Denote by ao b the
symbol of AB. The explicit formula is

(1.5) aob(w) = 4" “7’5”@(11) + ) Q8 b(w 4 v)et™ U} gy, dy,

where Py, = (L4 16[[ul|*) " (L + 4u) and @, = (1+ A)(1+ 16]jv[[?)~T are
differential operators acting in the w and v variable respectively, and kp is
so large that the integral (1.5) is absolutely convergent. By the mean value
theorem and {1.1),
(1.6)  7(a,)(w) = a o b(w) - aw)b(w)
2N 1
= 221 N e (| PR (8;0) (w + tu) Q50 () (w + v)et™ ) du du
§=10
if ko is sufficiently large. Here 8; = 8,y if L € § < N, and 8; = —~0;_y if
N+1< j<2N. Note the following Leibniz formulas:
(L7  Bi{ach)=0dsacb+acdb, 8r(a,b)=r(5;a,b) +r(a,o;b).

The composition is continuous, that is, for every j there exist integers
k,l and a constant C' = Cjy; such that
(1.8) a0 b7 < Clalg™ |6},

which follows from. (1.5) and (1.2).

Suppose now that a and b are of polynomial growth and o' € S{m,),
b € S(mg). Then r(a,b} € S{mymy) and for every j there exist integers
k.l and a constant C = Cjy such that

2N

(1.9) Ir(a, B)[™2 < C Y |8salp |0:bl7
EES )

We also have

(110)  [18*r(a, B0 € Cupo 2210b]co-

0<Iﬁ|<lal+2ko+1
Another simple estimate i3

o ’8 max 8'5 oG-
(1'11) [8%7(a, B)llx < Ca 0<|ﬂ|<|a\+2kn+1” ol o<|af<|al+2ko +1H o

Let e, f € 8{1). Let o € S(m) and o' € S(n). If

eogo f=eaf+r(ea,f)
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then there exists ko such that, for all k,
(112) (e, @, D)k € Creyr ng«!’C(llff”’ﬁE ‘1o + [0 - alle + [10°f - 1s0),

where

Choent = Cr{leliorn + Flhprs)
and 0 < |8| < ko + k. All the formulas (1.9)-(1.12) are direct consequences
of (1.6) and (1.2).

(1.13) LEMMA. If o : W — C is a continuous positive definite function,
then A = Op(a) is a bounded operator on LP(V) for 1 < p < oo, The norm
of A is less than or equal to a(0).

P roof. By Bochner’s theorem, there exists a bounded measure x4 on W
such that u = @ and ||p]| = a(0). Thus, by (1.4),
(Af,9) = | a(w)bpg(w)dw = § d5,4(w) pldw) for £,9€ S(V).
w w
Since
Vrolzm) = | &7 f (o + 2/2)5(w — 2/2) da,
v _
we have [1,q] < | £llpllglle, where 1/p -+ 1/g = 1, so that

[{Af, )i < a(0)|flInlglls,

which is our claim. =
Our next lemma is Theorem 3.1.1 of Howe [9].

(1.14) LEMMA. Let a : W — C be a bounded function whose Fourier

transform @ has compact support. Then A = Op(a) is o bounded operator
on L3(V). u

For the proofs of the following three classical results the reader is referred
to, e.g., Shubin [12] or Folland [3].

(1.15) PROPOSITION. Let a € C*VHY (W), If 8%a are bounded for |a| <
2N + 1, then Op(a) has a unigue extension to an operator A € L(L*(V))
whose norm i estimoted by

Al < 8“0 co-
Al sc max 0%l

If, in addition, lim|jy|—e a(w) = 0, then A is compact. w
Let
H(w) = e=2mlwl?
denote the square of the Gauss function. For every weight m, H » m i3 a
weight equivalent to m, that is,

C™'m < H+m < Cm.
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(1.16) PROPOSITION. Let m be a weight and « € S(m). If o > 0, then
A= Op(H = a) is positive. m

(1.17) COROCLLARY. There exists a constant L > 0 such that ifa >0
satisfies

~max_[8%] <C,
0<|ee| 2N 41

then the operator Op(a) + LC is positive.

Proof We have @ = Hxa + (6 — H) x a, where, by Proposition (1.16),
Op(H * a) is positive, and

(1.18) (6 — H) *a(w) =\ (a{w) — a(w - v))H({v) dv

so that for |a| < 2NV 41,
N 1
8°(6 — H) xa(w)] < > {dt]18°0sa(w — tv)| - |v,[H(v) do
g=1 0

< OZS|v3|H(U) dv,

and our claim follows by Proposition {1.15). m

Recall that A = Op(a) is a Hilbert-Schmidt operator on L#(V) if and
only if a € L2(W), and then its Hilbert-Schmidt norm is

(119) s = (latw) )

(1.20) PROPOSITION. Let a € CNTYW). If 8%e € LHW) for |a| <
2N + 1, then Op(a) has a unique estension to a trace class operator A on
L*(V) whose trace norm is estimated by

(43
4| < C o [6%alls.

In addition,
Trd= S a(w)dw. =
w
Let n be a weight and ¢ > 0. We say that a symbol ¢ € ¢ (W) such
that :

(1.21) lim la(w)| = o

[|w]|—o0
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is (n, o)-hypoelliptic if n < C(1 + |al)*~¢, o’ € S(n), and a® € S(1) for
some k € N. Let us remark that if a symbol a > 0 is (n, ¢)-hypoelliptic, then
(1.22) m(w) = a(w)

is a temperate weight, which follows immediately by the Taylor expansion
formula.

The proof of our next lemma is an adaptation of those of Hérmander [5],
Lemmas 3.1 and 3.2, and Manchon [10], Proposition I1.2.6.

(1.23) LEmMA. Let 0 < a € C(W) be (n, g)-hypoelliptic. Let m = q.
There ezist real symbols b € $(m™") and ¢ € S(/?) such that

boa—1€8m™), gog—aeSm™).
Proof Let bg=1/a, 70 =1~ bp 0 a, and
rn=782",  bpyy = (L4 Tpyp1) © by,
Then the symbolic calculus gives b, € S(m~!), r, € S(m=2"""2) and
bpoa=1-r,

so that b = b, has the required property if n is sufficiently large.
The other part of the assertion is proved in a similar way. In fact, let
go = a'/? and
n =0nOqn — & Q+1:qn""%"‘
ke e 3 il 2qn
The symbolic calculus gives ¢, € S(mY?), ¢ € S(m'/?72), and r, €
S(m!~{(r+1)e} 50 that g = g,, has the desired property if n is large enough. m

Recall that in the Weyl calculus an operator A & £(m) is symmetric if
and only if its symbol a is real. Let A € £{m) be symmetric. The formula

(. Ag) = (4f.9), feSWV), geS*(V),
defines a continuous extension of A to 8*(V).
We say that a selfadjoint operator A on a Hilbert space B has discrete

spectrum if the spectrum of A consists of a discrete sequence { g} of eigen-
values of finite multiplicity.

(1.24) PROPOSITION. If & > 0 is an (n, ¢)-hypoelliptic symbol, then
A =0p(e): S(V) — LE(V)
is essentially selfadjoint, bounded from below, and its spectrum is discrete.

Proof. Let u € D(A*). This implies that v = Ay € L2(V). Let m = a.
By Lemma (1.23), there exist B, R € £(m~") such that

% = By — Ru.
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Once we prove that Cv € D(A) for C € L(m™) and v € L3(V), we shall

have u € D(A4), and consequently A* = Z,

Let v, be a sequence of Schwartz functions converging to v in LQ(V).

The operators C € £L(m™) and AC € £(1) are bounded so
Cup = Cu,  A(Cuy) — (AQ)w.
Since A is closable, this implies Cv € D(A).

By Lemma (1.23) and Proposition (1.15), there exist compact opera-
tors B,5 € L(m™") such that BA = I — S. Consequently, A has discrete
spectrurn.

Again, by Lemma (1.23) and Proposition (1.15), A = Q2 + R, where
Q : S(V) — L*(V) is symmetric and R is bounded. Thus A is bounded
from below. m

For general information concerning pseudodifferential operators, as they
are presented in this paper, the reader is referred to Folland [3], Hérmander
[8], and Shubin [12]. ‘

2. The Weyl formula. Let A : Dy — H be a selfadjoint operator
bounded from below on a Hilbert space with a discrete spectrum X, ./ oc.
Let

NQA)=Na(A) =#{neN: A, <A}
be the spectral funciion of A. The following version of the Tulovskit-Shubin

Lemma on approximate spectral projections is due to Hormander (see [5],
Lemma 2.1).

(2.1) Lemma. Let E be o selfadjoint operator of trace class such that AR
is bounded. Let A\, K > 0. If E(A— A)E > —K, then

Na(A+4K) > Tr E - 2||E ~ B?||ns.
(I ~E)YA~N({I —~E)2 K, then
Na(A—4K) S Te B+ 2| B - Bz w
For a positive a € C(W), let
v =v = | dw
a{w)<A

be the volume function associated with a. For a function g : [Ag, 00) — RY,
let pg{A) = () and

A= pn(A)) A —pa(A) = Ao,
(2.2) finr1(A) = {zg)\o) () ;f/\-—inEAg < )\g-

The following is the main result of this paper.
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(2.3) THEOREM. Let a be a sirictly positive (n, g)-hypoelliptic symbol.
Let Ao = infa(w), and let p : [ho,00) — RY be a monotonic function such
that

C'n(w) < pla(w)) € Ca(w)'™2,  weW.
Assume that either u is increasing and

t
24) ) <o D hzizn,
or u is decreasing and there eists n € N such that, for every v > 0,
(25) (T}u')n()\) < C?’L,T’nu‘(/\)i A Z AO-

Then A = Op(a) is essentially selfadjoint and bounded from below, its spec-
trum 45 discrete, and there cxists a constant R > (O such that, for large A,
N < RV(A%—RM-V(A— Ru)

V(A - V(A '

Before starting the proof of Theorem (2.3), let us make some comments
on our hypotheses. If @ is an (1, g)-hypoelliptic symbol, there always exists
a function  such that all the remaining assumptions are satisfied for we can
let, for instance,

1

p(N) = Xe Az A
Sometimes, however, one can do much better: see Example (3.8) and Propo-
sition (3.11) below.
If ;i is decreasing, then, by definition,

for every n. Note also that for every C; € R, there exists Cy > 0 such that
(2.7) p(A+Ciu(\) £ Cap(d), A 2 o

which is a direct consequence of (2.4) when p is increasing, or of (2.5), (2.6)
when 4 is decreasing. Finally, observe that (2.4) is trivially satisfied also in
the case when 4 is decreasing.

Proof of Theorem (2.3). The proof is divided into a sequence
of propositions. We are going to define a family of selfadjoint trace class
pseudodifferential operators By and show that they uniformly fulfil the hy-
potheses of Lemma (2.1) with K = Ru(X).

To this end, let ¢ &€ C*(R) be a positive function such that ¢(t) =1 for
t <0 and ¢{t) =0 for £ > 1. For a given A > Ap, let

Oa(t) = (u(A)HE — )
80 that ’

< Cru{A) 7k

dk
D B
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for k € N. Define

ex(w) = dala(w)), Ex=Ople,)
for w € W and A = Ao. If o satisfies the hypothesis of Theorem (2.3), then
(28) [0%ex(w)] < Ca

for all ¢, which, by Proposition (1.15), implies that F), are uniformly
bounded. Since ey are smooth with compact support, it is clear that Ea
are of trace class (Proposition (1.20)) and selfadjoint.

(2.9) Remark. For every A > Ay, AEy is bounded on L? (V).

Proof In fact, @ o ey = aex +r(a, €x) = ay + 7, where |8%y| < Oy,
and, by (1.10), |8%ra] < Cup(A). Thus our claim follows from Proposition
(1.15). w

(2.10) LeMMA. We have
(2.11) 185 = Bl < C(V(A+p) = V(X))
for all A > Ap.

Proof. The symbol of E; — E% decomposes as
(2.12) (1~ex)oey =nx+ra

where py = (L~ ex)ex and ra = —r(ex, ex). Since py is supported where
A<a <A+ pand, by (2.8), all its derivatives are bounded, we have

[6%palls < Ca(V(A+p) = V(A)):
Similarly, combining (2.8) with (1.11), we get
[8%ralls < CalV(A+p) - V().
By Proposition (1.20), these two estimates imply the desired conclusion. m
(2.13) LemMa., For all A > A,
V() < T By S VO + ).

Proof By Proposition (1.20), Tr Ey = { e, dw, so our claim is a conse-
quence of the definition of ¢). w

(2.14) LeMMA. For large X,
B — AN = By)|| € Cul}).
Proof. We have
exo(A~aje(l—e)=ax+ra

where ay = ex(A—a)(1—ey) and ry = r(ex, A—a,1~e,). Note that |aa| < 4,
and, by (2.8},
|3aﬂ'>\| < Gcrp’()\)
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In a similar way, by (1.12) and (2.7),
10%ra] £ Cap(X + 1) < Cou(N)
for all c, which, by Proposition (1.15), proves the required estimate, m

{2.15) PROPOSITION. If i is increasing, then there cxists a constant C
> 0 such thal
Ex(A— A)Ex 2 ~Cu()
Proof We have

for large A.

exo(A—a)oey=ay+ry
where a) = e2(A —a) > —p and 75 = r(ex, A — a, ¢3). Since, by (2.7),
18%ax| < Capt(A + ) < Chpl(N)
for ja| > 0, it follows, by Corollary (1.17), that
Op(ax) 2 —Cu(A).

Moreover, by (1.12), [8%ra] € Cau()) for all e so that, by Proposition
(L.15),

10p(ra) || < Cu(A).
Thus, our claim follows by Corollary (1.17). m

(2.16) LEMMA. Let p be decreasing. Let K : R™ — RT be decreasing and
Wi (A) = p(A — K). Then, for large A,

(Bx = Ex)(A = A)2Ex - E.) 2 —Cic (),
where A — K < g < A,
Proof In fact,
(ex —ex) o (A—a)o (2exn —ex) = ax + 12,

where ax = (ex —ex)(A—a)(2e) ~ ex) and ry = —r(es — ey, A — a, 2e) — e, ).
We have ay > —u(d) > —pi(A), and 18%y| < Capls) S Chut(N) for
i > 0, hence, by Corollary (1.17),

Op(ax) 2 ~Cpk(A).

At the same time, by (1.12), [8%ry| < Cap(s) < Clhuwk(A) for all o, which,
by Proposition (1.18), proves that

[0p(ra)ll < Crk ().
To complete the proof, it is sufficient to invoke Corollary (1.17). m
(2.17) LeMMA. Let i be decreasing. Let K be as in Lemma (2.16). If
Ex(A— A)E) = —K())
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for large X, then, for A still larger,
E\(A— A)E\ > —Cui()).
Proof By hypothesis,
Ei(A— A)E: > -KE3.
Therefore, for large A and £ = A - K|
Ex(A~ A)By = BEx(A = A)By 4 Tox = EX(k — A)B2 + KE2 + Ty + T
2 Do = [Tkl 2 ~Cpuke (),
where
Tw = Boll — Bo)(& — A)E.(21 - E)
with ||T|| € Cute (M) estimated by Lemma (2.14), and
Do = (BEx = Beo)(A = A)(2Ex — Ex) > —Cujc(3),
by Lemima (2.16). m

(2.18) PROPOSITION. Let i be decreasing. There ewists a constant C' > 0
such that

Ex(A~ A)Ey 2 ~Cu(X)
Proof In fact,
Es(A—A)E) =E\(A—A) - Ey(A = A)(I — Ey).

To estimate the first term, write

for large A.

exo (A—a)=ay+ra,
where o) = ex(A—a) = —u(A) and r) = —r(ex, a). Since, by (2.8), [§%ax| <
Copi{ o) for || > 0, it follows, by Corollary (1.17), that Op(ax) > ~K for
a constant K > 0.
In a gimilar way, by (1.10) and (2.7), |8%rs| < Cau(A) for all o so that,
by Proposition (1.15), |Op(ra)} € Cu(A). The other term is estimated by
Lemma (2.14) so that

(2.19) Ex(A—A)E) 2 -K
for large A and a constant K > 0.
Now, by repeated use of Lemma (2.17), we arrive at (2.19), where
K = K(}) = (ru)a(A); _
for r sufficiently large, so that, finally, our conclusion follows by (2.5). m

Propositions (2.15) and (2.18) provide the first estimate required by
Lemma, (2.1). Now we turn to the other one. This time, however, we start
with the case when 1 is decreasing, which is much simpler.
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(2.20) PROPOSITION. Let p be decreasing. Then there ezists a constant
C > 0 such that, for large A,

(I— E)\)(A - M- )= —~CulA).

Proof We have

(I-B)(A- NI - Bx)= (A~ N ~ Ex) + Ex(A~ A)(T - E,).
To estimate the first term, write

{a~MNo(l—ey) =ax-7

where ay = (¢~ A)(1—e,) 2 0and ry = —r{a, &x). Since p is decreasing, we
have [8%a,| < Cpu{A) for |al > 0, and |8%r)| < Cuu(A) for all a so that, by
Corollary (1.17) and Proposition (1.15), Op(ax +ra) 2 —Cu(A). The other
term is estimated by Lemma, (2.14). m

Note that from the formal point of view the argument which follows
covers the general case of monotone .

Recall from Section 1 that H(w) = e vl® e W

(2.21) LeMMA. Let ap = {a — A)(1 —ey). Let k € N. Then
(6 = HY* xay = by e p,

where

(2.22) |bak] < C(A™2a -+ u(A),
(2.23) 8% k| < Cap{A),
for all o, and

(2.24) |6%by 1| < Ca

for le| sufficiently large.
Proof. By (1.18), the mean value theorem, and the Leibniz rule,
(6~ H)** % ay(w)

k
= S S a,&k) (M+th'uj)(1)1: ,T);ﬂ)ﬂ'(’vl)....H(’Uk)d’u df.
[0,1]% Wk =1

k
S S (1 ey)a® (w + Z tjvj) cwH(vy) .. H(ug) dv dt
(0,1} Wk J=1

k ; < ’
- Z (J) S S e&”@cm('““?) (u.:—i—zt_.;vj) v (vr) .. H(vg) dvdi
o<j<k (0,1]* W =l

) ]
- § - (ws Y tyvy) - oH(vr) .. H{u) dv dt
[0,1] Wk j=1
=bxk + Crk;
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where by % 15 equal to the first term on the right-hand side and ¢y is the
sum of the remaining terrus. Since

18°77ad7 (1 ~ €1)] £ Cpylipgagituinrn S O n(A)
fOI‘0<’Y<ﬂ: and
(@ = NP (1 — )] < Cpu(N),

it is obvious that ¢, satisfies (2.23). Recall from (1.22) that a is a weight.
At the same time y satisfies (2.4) so

A
|(1~ ex)8%a| < Coligznn < Cé#a,
whence
fbak| € Cap M&A)a-

To end the proof of (2.22), observe that
a<ay+ A+ pu(A).
Finally, by hypothesis of Theorem (2.3), all derivatives of large order jor} are
bounded, which implies (2.24). =
(2.25) PROPOSITION. For large A,
(I = BA) (A= NI = Exa) 2 —CufA).
Proof. We have
(I = EafA— NI —By) = (A—- NI~ Ex\)+Ex(d— A1 — BEy).
To estimate the first term, write
(a— Ao (1—ey) =ax+r7a
where 2y = (@ — A)(1 —ex) = 0 and 7y = —r(a,ex). By (1.10), [0%ra] <
Cun(A) so that |Op(ra)|| < Cu(X). To handle a) we decompose it as
m—1 ‘ .
ay = Hx Z(&~—H)*’“*a;.+(6——H)*m*a>\ =H*xpx+qn
Jp==0)

where
m=—1

m
pr=oat ) bk = H+Y  enp + bams
k=1 k=1
and by g, cax are as in Lemma (2.21). Now, by Lemma (2.21), pa 2
—~Cprp(A) for large ), and |8%qa| < Ca so that, by Propositions (1.15} and
(1.16), Op(ay) = —Cu()). The other term is estimated by Lemma (2.14). =

Conclusion of the proof of Theorem (2.3). By Proposition (1.24), A %5
essentially selfadjoint and hounded from below, Moreover, its spectrum 18
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discrete. Propositions (2.15), (2.18), (2.20), (2.25), and Remark (2.9) show
that Lemma (2.1} applies. We get

N = Cp) < Te By + 2| Bx - B} ||y

and
N +Cp) = Te By — 2By — B3|z
so that
N € T Bseop + 2Baron ~ B poulm
and

N(A) 2 Tr Ba—op ~ 2 Ba-cu — Ex_culn-

In view of Lemmas (2.10), (2.13), and inequality (2.7), this completes the
proof. m

3. Applications. This section contains some corollaries to our main
theorem and examples.

(3.1) CoroLLARY. Let A = Op(a), where a satisfies the hypothesis of
Theorem (2.3) with u increasing. Let T = T™ be a bounded operator on
L*(V) with a symbol T which is a continuous function such that |r(w)] <
Copla(w)). Let B=A+T and b= a+ 7. Then, for large X,

Ao | Y0 R Ve~ i)
Vo(3) - V() '

Proof. Let Ey be the family of approximate projections for 4, as con-

structed in the course of the proof of Theorem (2.3). Since T' is bounded,

EA(.)\ —_ B)EA > -Ciu— K, (I — E\)(B - )\)(I e E)\) > —-Chipu—K
so that, for A large enough,
Bx(A=B)By > ~Caps, (I = Ba){B ~ \)(I = By) > —Cap.
Consequently, by Lemma (2.1) and the properties of V,, we get

Ne(A) VoA +Cp) = VoA = C
}Vf@\) ”1‘50 Mx)/a,(z) s,

However, since |7 £ Cou(a),
VG(A) S V}J(A + GO/J‘)! VEJ(A) S Vt:'z(’\ '|' G[],U')y
which implies our assertion. m

(3.2) Remark. Let a satisfy the hypothesis of Theorem (2.8). Then

Nal) — 1‘ < exp { HSM Vi) dt} . )\+SRH V'(t)

V(A Wc{t.

V(#)

A—Rp A—Rpu
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Proof. Note that V is increasing, hence differentiable almost everywhere
on BT, For m > 0,

VA +m) = V(A —-m) Ay
0= (T E)a

(3.3)

A—n

ATm V"(f) Am V’(t)
ser{ § Vo« ) Vo

A—m
30 our claim follows by Theorem (2.3). w

Let D be a non-degenerate semisimple linear transformation of W. Let
d; > 0 be the eigenvalues of .D. The number

2N
Q =TrD = Z dj
j=1
is called the D-homogeneous dimension of W. Recall that there exists a Borel
measure op on 5 = {w € W : |jw|| = 1} such that for every g € Ce(W),
o0
{g(w) dw = S r9=4\ g(6,@) op(dw) dr,
0 by
where 8, = t2 is the family of dilations generated by D. As a matter of fact,
the measure ¢p has a smooth density relative to the spherical Lebesgue
measure on X,
We say that a function f : W s C is D-homogeneous of degree @ if

Fbw) =t f(w) fort>0andweW.

Recall that a symmetric function F': W — C is called negotive definite
if for every ¢ > 0 the function e~*¥ is positive definite. This is equivalent to
saying that F(0) > 0 and

ZF(’U)i — wj)ciéj <0
for every finite collection of vectors w; and complex numbers ¢; with
3. ¢; == 0. Every negative definite function is continuous and its real part

is positive. If F is a negative definite function and F(0) > 0, then F™% is
positive definite for every rez > 0 (cf. Berg-Forst [1], Corollary 7.9).

(3.4) COROLLARY. Let {uf}3, be lincarly independent linear functionals
on W. Let

2N
blw) = 3 s ),

where v; > 0. Then B.= Op(b) : S(V) — L*(V) is bounded from below and
essentially selfadjoint. Iis spectrum is discrete, and there exists a constant
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C > 0 such that
Np(A) = CA%(1+0(A"2)),

where @ = Zfivl l/rj and g = min(1, {r;}).

Proof Let
Du = (iu;(w), L), ..., J-u.;N(w))
71 ) TON
so that b becomes D-homogeneous of degree 8 = 1. Then
oy = | 250
5
and
() _ @

(35) A
Let

IN

a(w) = (uf (w)|? -+ Aluf (w)))"/?,
g=1

where h € CP°(R) is a fixed positive function such that h{0) == 1. Then
T =b —a is a bounded function.
Now, a satisfles the hypothesis of Theorem (2.3) with ¢ = min(1, {r;})
and u(A) = A'~¢. Let A = Op(a). Assume for the moment that
(3.6) T = B ~ A = Op(r) is bounded on L*(V).
Then, by Corollary (3.1), Remark (3.2}, and (3.5), we get
1—g
Na(A) MOATE
“1<cC Y < oxe
oI N B
A-CAL-e

for large A, which is our claim.
To prove that (3.6) holds true, let

R = max{r;}3Z;,

For 1/R <rez <4(N + 1)/r let

r = min{r; }32}.

2N 2N
ax(w) = 3 (hwsl* + hwg)¥ 52, by(w) = 3 |2
J=1 J=l

so that
a{w) = ay o U(w), blw)=byoU(w),

where U is a non-singular linear transformation of W such that u} (Uw) = w;
forl1 <4 <2N.
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Let ¢ € S(W) be such that # is compactly supported and equal to 1 in
a neighbourhood of the origin. Let e; = b, — @, and
@, = Op(p* (c:oU)).
The symbols ¢ « (¢, o U) are bounded and their Fourier transforms have
compact support (depending on. ¢} so, by Lemma. (1.14), the operators ¢,
are bounded with
I€:][ < O,
Now, for re 2z = 4(N + 1)/r, ¢, € C* 1 (W) and
|8%e, (w)| € Cy
so the same is true for ¢ o U, and, by Proposition (1.15),
8.l < Cr, rez=4(N+1}/r
On the other hand, if rez = 1/R, then
Cp=by — 0y = (bz "dz)+ (dz —az):

where
anN

da(w) = 3 (juyf? + 1)1/
J=1

Note that, by the mean value theorem,

1

dz —_ bz = %% S (ij‘z _|_t)'fj2/2-~1 dt,

0
which, by the remarks preceding this corollary, implies that d, — b,, and
consequently (d, — b,) ¢ U, is positive definite. It is also clear that d, — a.,
and consequently (d, — a,) o U, is bounded along with all its derivatives so
that, by Lemma (1.13) and Proposition (1.15),

1#:]l < Co, 1ez=1/R.

Now we are in a position to apply the Stein interpolation theorem (cf.
Simon~Reed [11], Theorem IX.21) which yields ||#1| € C, where C' does
not depend on ¢. Thus I'= B — A is bounded. =

(3.7 Remark. If U is symplectic, then T = Op(7) is unitarily equiv-
alent to TV = Op(r o U) (cf. Hérmander [8], Theorem 18.5.9) and TV is
evidently bounded since the variables in 7 o U are separated.

Let ug recall a lemma of Tulovskil and Shubin (see Shubin [12], Proﬁo—
sition 28.3). '

(3.8) LEMMA. Let 0 < a € C°(W) fulfil

o' (w) - w| > ea(w)
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for large |w|| and some ¢ > 0. Then there exists C > 0 such that

% <oxt
Let us denote (2.5) by (2.5)n. Let
(@)= (1+ 2|, zeV.
(3.9) ExaMPLE. Let A = Op(a), where
a(z,§) = (z) + {£).

Then a is (1, 1)-hypoelliptic and satisfies hypothesis (2.5); of Theorem (1.15)
with p(A} = 1. Moreover,

for large A. m

! .
R e e (w) v =1
llwlj—oe  a(w)
Therefore, by Theorem (1.15), Remark (3.2}, and Lemma (3.8),
Na() =V + 00X,
where
(3.10) vy = i
{z)+(£)SA
For a function y: RT — R, let
AN =eru(ed), Ax0.
Recall that the functions pu, have been defined by (2.2).

(3.11) LEMMA. Let i : RT — RT be decreasing. Then, for every n € N,
there exists r = v, > 0 such that

(3.2) i) < () )N
Moreover, if i satisfies (2.5}, then [ satisfies (2.5)n1.

Proof. Observe that (3.12) is trivial for n = 0. Suppose it holds true
for some n > 0. Then

fins2(A) = (A — Fingr(A)) = elimtigm Ay (A=)
< Ce e = e ((rp)™)n(X) € e (Rp)naa(€?)
= ((B) " Int1(A),

which completes the proof of (3.12). The remaining part of the lemma follows
immediately from (3.12). w

(3.13)_ PROPOSITION. Let a be an (n, 1)-hypoelliptic symbol satisfying the
hypothesis of Theorem (2.3) with some u. Let 0 < b € C°(W) and

b(w) = log a(w)

dedt. m
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for large ||w||. Then b is (n/a,1)-hypoelliptic and satisfies the hypothesis of
Theorem (2.3) with . Moreover, for large A,
N5(A) = V() (1 + O(Ar(e™)),
where B = Op(b), and
A0

Ar(N) =
R A_SR# Va.(l';)

Proof. By hypothesis, u satisfies (2.5), for some n. Thus, by Lemma
(3.11), [ satisfies (2.5)n.1. That b and [ fulfil the remaining assumptions
of Theorem (2.3) is quite obvious. We also have

Vi) _ i Va(eY)
Vi(A) = Va(eh), bV = gr o f
b( ) ( ) ‘VE'J()\) Vu(e)\)
for large A outside a set of measure zero. Therefore,

MR exp(A+RE)

dt.

1 ot )
Va(A) AR Valet) exp(A—Rji) Va(s)
e Ryp(et) oy
< ¢ Ya(®) 45 — AR, (),

T om0
which completes the proof. m
Let; log™ and exp™ denote the n-fold iteration of the corresponding func-
tion.
(3.14) ExampLE. Let n € N and let 0 < an € C>=(W) be such that
an (2, €) = log"((@) + {£))
for large ||z!| + ||} By induction, starting with Example (3.9) and using
Proposition (3.13), we get
Na, () = V(exp" () (1 + O(1/exp™ (X)),
where An = Op(a,) and V is as in (3.10). = '
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An isomorphic Dvoretzky’s theorem
for convex bodies

by

Y. GORDON (Haifa)) O. GUEDON (Noisy-le-Grand) and
M. MEYER (Noisy-le-Grand)

Abstract. We prove that there exist constants € > 0 and 0 < A < 1 so that for
all convex hodies K in R™ with non-empty interior and all integers k so that 1 £ k £
An/ In{n. + 1), there exists a k-dimensional affine subspace ¥ of R” satisfying

dY nK,BY < 0(1 + I_k"'”’_ )

(5 minT 5)
This formulation of Dvoretzky’s theorem for large dimensional sections is a generalization
with & new proof of the result due to Milman and Schechtman for centrally symmetric
convex bodies. A sharper estimate holds for the n~dimensional simplex.

1. Section of a convex body. By a conver body, we always mean a
closed convex set with non-empty interior in the Euclidean space. Let K be
an arbitrary convex body in R™ with the origin in its interior. The gauge
functional of K is defined by px(z) = inf{t > 0 : 2 € tK} for all z € K",
We define the distance between two convex bodies 4 and B included in R™
by

inf {A>0:B+ucCT(4) CAB-+u}.
wERR, TEGIL(F)
This is the analogue to the Banach-Mazur distance between two Banach
spaces.

Denote by (&;)1<i<k the canonical basis of R*, £ the space R* equipped
with the Euclidean norm |- |2, and B the unit ball of this space.

By {95)1<j<n and (gi;)1<ick, 1555n We always denote some independent,
centered, normalized gaussian random variables. If (f)i<p<n € RY, we
denote by ((t,)2 )7 the gth coordinate of the decreasing rearrangement, of

d(A,B) =
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