190 P. Gtowacki

[4] P.Glowacki, Stable semigroups of measures on the Heisenberg group, Studia Math,
89 (1984}, 105-138.
[5] L.H&rmander, On the asyrptotic distribution of the eigenvalues of pseudodiffer-
ential operators i B™, Ark. Mat. 17 (1979}, 207-313.
6] —, The Weyl caloulus of pseudodifferential operators, Comm. Pure Appl. Math 32
(1979), 359-443,
[7] —, The Analysis of Linear Partial Differential Operators II, Springer, Berlin, 1683.
[8] —, The Analysis of Linear Partiol Differential Operators 111, Springer, Berlin, 1583.
[B] R. Howe, Quantum mechanics and partial differential operators, J. Funct. Anal.
38 (1980), 188-254.
[10] D.Manchon, Formule de Weyl pour les groupes de Lie nilpotents, J. Reine Angew.
Math. 418 (1991), T7-128.
11] M. Reed and B. Simon, Methods of Modern Muothemalical Physics IIt Fourier
Analysis, Self-Adjointness, Academic Press, New York, 1975.
[12] M. A. 8hubin, Pseudodifferential Operators and Spectral Theory, Springer, Berlin,
1987.
[13] V.M. Tulovskif and M. A. Shubin, On the asymptotic distribution of the eigen-
values of pseudodifferentiol operalors in R™, Math. USSR-8b. 21 (1973), 565-533.

Mathematical Institute

University of Wroclaw

Pl. Grunwaldzki 2/4

50-384 Wroclaw, Poland

E-mail: glowacki@math.uni.wroc.pl

Received 10 February 1997 (3839}

icm

STUDIA MATHEMATICA 127 (2) (1998)

An isomorphic Dvoretzky’s theorem
for convex bodies

by

Y. GORDON (Haifa)) O. GUEDON (Noisy-le-Grand) and
M. MEYER (Noisy-le-Grand)

Abstract. We prove that there exist constants € > 0 and 0 < A < 1 so that for
all convex hodies K in R™ with non-empty interior and all integers k so that 1 £ k £
An/ In{n. + 1), there exists a k-dimensional affine subspace ¥ of R” satisfying

dY nK,BY < 0(1 + I_k"'”’_ )

(5 minT 5)
This formulation of Dvoretzky’s theorem for large dimensional sections is a generalization
with & new proof of the result due to Milman and Schechtman for centrally symmetric
convex bodies. A sharper estimate holds for the n~dimensional simplex.

1. Section of a convex body. By a conver body, we always mean a
closed convex set with non-empty interior in the Euclidean space. Let K be
an arbitrary convex body in R™ with the origin in its interior. The gauge
functional of K is defined by px(z) = inf{t > 0 : 2 € tK} for all z € K",
We define the distance between two convex bodies 4 and B included in R™
by

inf {A>0:B+ucCT(4) CAB-+u}.
wERR, TEGIL(F)
This is the analogue to the Banach-Mazur distance between two Banach
spaces.

Denote by (&;)1<i<k the canonical basis of R*, £ the space R* equipped
with the Euclidean norm |- |2, and B the unit ball of this space.

By {95)1<j<n and (gi;)1<ick, 1555n We always denote some independent,
centered, normalized gaussian random variables. If (f)i<p<n € RY, we
denote by ((t,)2 )7 the gth coordinate of the decreasing rearrangement, of

d(A,B) =

1991 Mathemotics Subject Olassification: 46B20, 52A40, GOBO0S. :
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(tp)1<p<n. When no confusion is possible, we shall denote it by t7. The
letters ¢, ' will denote universal positive constants which can be different
in each case.

We shall prove the following theorem, which extends to general convex
bodies a result proved by Milman and Schechtman [MS1], [MS2] and which
was reproved in a different way in [Guj.

THEOREM 1. There exist C' > 0 and 0 < A < 1 such that for all conver
bodies K in R™ and for all integers k so that 1 < k < An/lnn, there exists
a k-dimensional affine subspace ¥ of R™ satisfying

dY NK,B;) < C’(l . P

Proof. The proof consists of two steps. First, we use a result of Rudelson
to obtain a new convex body which is near our original convex body but
which has less contact points with its John ellipsoid and such that the John
decomposition of the identity has all the coefficients ¢, of the same order of
magnitude, Secondly, we reduce the study to the case of a polytope with few
contact points. In this part, we use the sharp generalization of the Slepian—
Fernique inequality proved in [Go2] for the decreasing rearrangement of
gaussian processes.

Let us recall the result due to Rudelson [R1] which allows us to find a
new convex body with a “good” John decomposition of the identity operator
and with few contact points. He improves this result in [R2] and obtains the
following statement:

Let K be a convex body in R* and let 0 < & < 1. Then there ewists o
convex body K1 C R™ such that d(K, K) < 1+, B} is the John ellipsoid
of Kq and if we denote by y1,...,ym all the contact points of K, with BY,
then

T
(1) Id=Zcpyp®yp for some c1,...,0m > 0,
p=1l
m
(2) Z%yy:oz
p=1
(3) Ta-e)<e <20 for all 1 <p <
Bi-0)<o<t+e) frall<p<m
(4) m < c(e)nlnn.

For the proof of Theorem 1, we may take ¢ = 1/2 and suppose from
now on that K = K. Now, note that equation (1) as stated implies the
Dvoretzky-Rogers lemma [DR]:
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There exists an orthonormal basis uy,...,un of R® and contact poinis
Yprs o> Yo € {Y1,-..,Ym} such that for all 1 <4 < m,

/ i—1
SPan{ypu"'iyp-e}:Span{ula-",ui}) |(y'puui>i z 1_T

To see this, take yp, = 11 = w1 and proceeding by induction over 1 <
k < n, suppose that the preceding relations hold for 1 < ¢ < k. Let A =

{p1,...,px}. Then
k m

k
k=S lul =Y "> colypui)’
iz=1

i=1 p=1

% 2
= Z Zcp(ypa'”'i)z + Z ZCP(yP’m)z

pEA i=l nEA fzm]
k
. A2
>t (Do) o (3w
peEA }JQA =1
Since 3., ¢p = n we get
£ k— E;neA Cp

i (tw)®) < 5220

ga=]
It follows that there exists pry1 ¢ A such that F (Vo oui)? £ k/n.
Define a vector ugy1 orthogonal to {u,. .-, ux} such that |ug1]2 =1 and
span{Yp, , -+ - s Yppsa § = SPa{U1, . .., Y41} Then
k
k
2
(ypk+1’uk+l)2 =1- 2;<yph+1 Jug® 21— o
=
Of course, one can suppose that yp, =y for 1 <4 < n and observe that

Wi yi)| < /(G —1)/nfori<j<n.

Let us recall the following inequalities [Gol, Th. 2.5]:

k
-

Let K be o conves body with the origin in its interior, (vj)igj<n be N
points of R* and G, be the gaussian operator defined by

kB N
Gu = Zzgij(w)ei & vy :2’2‘ — (R™, pk).
i=1 =1
We have the following inequalities:

N
() ]E(PK (;gﬂj)) — apea({vshigyen) < E imﬁ{lPK(Gw(w))

(6) <E sup pxr{Gu(z)) < E(px (i Qj'”j)) + area({v; hrgi<n)
| =

|z|2=1
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where {gi;} and {g:} denote sequences of orthonormal standaerd gaussian
variables, and

BB <V s = oo ox(Slbein).

In our case, set again
k )
= 3% gij(w)ei @ ¢ £ — (R, px).
i=1 j=1

Since By K and (e1,...,e,) is an orthonormal basis of K", it is easy to
see that 52({e3}1<]<n) = 1 We shall consider two different cases:

1. Dvoretzky’s theorem case: E(px (37—, gj€;)) = 2ax. In this case, we
deduce from (5) and (6) that

Esupp),=1 pr(Gu(z))
Einf|g,=1 pr{Gu(z))

axea({e;}1<i<n) }/{ area{{ejF1<i<n) }
<1+ A 1- JIisls <3
{ E(ps (371 95€)) Elpx (Xjey 9ie) ) ~
So, there exists wg such that dim(Im G.,,) = k and

SUP(y),=1 PK (Guo ()
il'J'f|~":|2=1 Px (Guy(T))
Let Y =Im@,,. Then dimY =k and d(Y N K, Bf) < 3,

<3

2. Second case: B(pg (37, 94€4)) < 20k By (6), we see that
E sup pK(Gw(:ﬂ)) < 3&;;.

7|2 =1
To find a lower bound of Einf 4|,=1 px (Gu(x)), we follow the same idea

as in [Gué, Lemma 4]. We apply (5) to new gauges p; on R, defined for
l<m—1and fort &R by

!
1
pi(t) = TZ:[ Cplty Up) et ) g -

.The pr are gauges because by (2), prl cpyp = 0. Moreover, K is contained
in the polytope {z € R : maxicpem (T, yp) < 1}, and by (3), for all 1 <
p < m, ¢p < 3n/(2m); it follows that for all ¢ € R", we have

3n 3n
7 0< < ma.x e 1Y =
(7) pi(t) Cp( +Up) < B 101X {t,yp) < 5 Pk (%).
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We now apply (5) to pi:

®  E ik nGa@) > 5o D)) - o max pilt)

Jz|z=1 = ftla=1
First we note that

3n
< —_—
(2) |1¢q[123"=x1 pi(t) < Am

Indeed, fix a t € £§. Then for all 1 < ¢ <, there exists pg € {1,...,m}
such that

((ep(t: o) Ypea)g
By (1) and (3), we deduce that

= Cpy (t, Ypq ).

pi(t) = (Z%q {t,Up, ) ) = %(i%((t’yﬁnz) m(i:%)l/z
g=1 q=1
<\ o I

Next we prove that

(b) (p;(ZgJeJ)) ZC’T—n—Uln (1—}-%) for 1 < [n/2],

Indeed, we have

n *

n 1 ! m
(9) pl( _“lgjej) = -I-Z ((ZQﬁCP(ei’yf’))p:l)q

] 10 =1
A (e,

because this is the decreasing rearrangement of the same sequence with fewer
terms. Let now Xp{w) be the random variables defined for 1 < p < [n/2] by

“‘“CPZQJ

By the choice of the y1,...,Yn/2) M the Dvoretzky-Rogers lemama, and by
(3), we deduce that for all p # g,

(€5, ¥p)-

2
n
E) X, — Xqf* = leotp — cq¥al® 2 eyt cg— V2epeg 2 &Mz’
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Let hi, ..., hisz be [/ 2] centered, independent gaussian variables with
variance ¢ = n/(4m). We then have for all 1 < p,q < [n/2],
2
9 2 _ T
]E{Xp - Xqi z E|hp - hq‘ - W

By a generalized Slepian-Fernique inequality [Go2, Theorem 1.3], for all
[=1,...,[n/2] we get

H i
1« 1
B Y Xp 2B D
p=1 p==l

Applying classical estimates to the gaussian vector (hy, ..., n /2)) with law
N(0,¢1d}, we have

I
1 N i)
- E > - =1,... :
Elp=lh > Co ln(1—|— l) for l=1,...,[n/2]
It follows from (9) that

E(Pl(;.gjej)) > 0%4 /In (1 + T;-)

This concludes the proof of (b).
By (8), (a) and (b), we obtain

. n n 3n
E inf Lz > ol Y a2
i wilGule) 2 Oyl (H z) “\ 2m

One can now choose a universal constant 0 < A < 1/2 so that if{ = [km/n]
A then

1A

zlp=1 m

B il p(Gu(e)) 2 5oy (1 -|Jlf).

Observe that this imposes k& < An?/m, that is, k < Aen/Inn, since m <
enlnn. Then we deduce from (7) that

E inf pr(Gu(z)) = g p(Gu(z)) 2 C ]an "l""@i
lo]s =1 =30 jeja=1 AT = A\ '

Using the hypothesis of the second case, we find wy such that dirm(Im G.,) =
k and

sup|m|z=1pK(Gwo(m))'< . k < c(l-l k )
inf|ﬂz——~l PK(qu (27)) B 111(1+ ]::l.:',‘]‘) B hl(l + F’i%ﬁ) .

Ag in case 1, this concludes the proof. m
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2. The case of the simplex. It is well known and easy to see that
the distance of an n-dimensional simplex S, to the Euclidean ball is n.
Here we consider k-dimensional sections of S,,. We note below that 5, has
an [(n + 1)/2]-dimensional section which is precisely a parallelepiped, hence
this section through the center of mass is symmetric. A question then arises
whether there exist sections of S, of dimension greater than sn, for 1> £ >
1/2, whose distance to the Euclidean ball is agymptotically c{s)/r. When
% > 1/2 sections of Sy, of dimension xn cannot be centrally symmetric. The
following theorem states these results precisely.

THEOREM 2. Denote by S, an n-dimensional simplez, with center of
mass at the origin.
(A) If k < n/2 then there is a subspace B of dimension k such that

(8, N E, B < Cy/ Tn(Tk/fJ

where C is a universal constant.
(B) If n/2 < p = xn < n then there is a subspace E of dimension p such
that

d(Sn N E,B%) <

1—x

Proof. (A) The simplex has a section of dimension [(n + 1)/2] which is
a parallelepiped. This is shown as follows.

If S, is a regular simplex in R, denote by Sﬁ its polar body with respect
to the center of mass of S, and let p = [(n + 1)/2]. If we prove that there
exists an orthogonal projection P onto a p-dimensional subspace E of R™
such that P(89) is a symmetric convex hull of p points, then &1 Sy, will be
a parallelepiped. We distinguish between the two cases (iyn=2p—1, and
(ii) n = 2p.

Tn case (i) let S = conv{zy,...,%p, Y1, -, Ypy and F = span{z1 +
Yi,-.- 1% +Yp}. Then since Yoo, (i +y:) =0, F is (p—1)-dimensional and
E = FL = span{z1 —v1,.- - Zp—VYp} is p-dimensional. Let P be the orthog-
onal projection onto E. Then ker P = F, thus Pz; = ~Py; fori=1,...,p,
so that P{S%) = conv{Px;, —Pz;}].,. Moreover, E = span{ Pz1,- .., Pap}
so P(50) is a section of the simplex which is an £] ball.

In case (ii) let SO = comv{zy,...,%p,Y1,-.»Up,2}, and let F =
span{z1 + Y1,-.., Tp + Yp, 2} Then F is p-dimensional and we conclude
as above.

Now apply the theorem of Milman—Schechtman [MS1], [MS2] (see also
[Gué]) to the space A +1)/ 2], which yields the result.

(B) Let S, be an n-dimensional regular simplex with the origin as center
of mass. Let k =n — p, r + 1 = [n/k], and m = k(r +1). We describe the
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vertices of S, as follows:
k k . _
Sn = COD.V((@%, Peey 6,1._'_1), iy (61,. cey BT._J(,,]_), En_|_1) ifm= T,

andifm<n—land[=n-—-m,

L i
Sn = COI!V((E%, R ,6,1.+1, em-l—l)-) ey (@1v R R R e-n.)a
] ) k
(ell—l-lw_,ef-rill),, ,,,(ei“,...,e.,._l_l),en+1).
Let
rt1 r+1

F=span(em+i+ze§,26§: 1< £, l-kliqsk).
vt

Then F is a k-dimensional subspace of R"; denote by P the orthogonal
projection onto E = FL Forl1 <i<landl+1<q <k, we have

Pemi+3 51 Pel =0 and SiiiPel=0Forl<i<iandl+1<g<k,

if E; = span(Pei,..., Peryy) and Fy = span(Pef, ..., Pel), then
A¥ = conv(Pel,. .. ,Pel g, Pepys) and S59= conv(Pef, ..., Pel.;)

are simplices in E; and Fj.
Moreover, dim E; = 7 + 1, dim Fy =,

! k
Ez@&@ @an
LES

g=l-+1
dim E = p and

n
Pepq1 = —"Zpej =0.
J=1

Tt follows that P(S,) = conv(4Y, ..., A", S, ..., §%), and thus
1 prekd
d(P(Sx), Bf) < Vimax(max d(4', Bi™), max d(S7, B3)).
We conclude that

d(P(Sw), B) < (r+ 1)Vk.
By definition of 7 and k, the projection P is of rank p = n ~ k and satisfies

dP(S,), BY) € e
‘ Vi ~p/n
By self-duality of the simplex, this gives part (B) of the theorem. m
Remark 1. We now prove that this estimnate is sharp. Indeed, suppose

that 0 is in the interior of S, and let ¥ be a k-dimensional subspace of R".
Let £ be any ellipsoid contained in Y MSy; by the inverse Santald inequality
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iBM], for some ¢ > 0, we have

(voI(Y N S,) vol((¥ N §,)%)\ /%
vol(£) vol{£7)
where the polar is taken with respect to the center of £.
If Py denotes the orthogonal projection onto Y, we have
(Y N8, = PySY C &0
Thus if S, = conv{yj};-‘ill, we get (Y N Sp)0 = conv(Pyryr,..., Prynst1).
Since (Y N S,)? C £°, we deduce from a classical result due independently

to many authors (Maurey, Bardny and Fiiredy, Carl and Pajor, Gluskin, see
for instance the general version due to [GMFP]) that for some ¢ > 0,

vol((Y N $,)%) 1/]“__ voleonv(Pyy1, ..., Priinyl) 1/k
vol(£9) a vol(£9)

, (In(l+n/k)
SN T

so that for some constant C' > 0 we have

vol(¥ 1 8,)\/* [k
( vol(£) ) 2C In(l +n/k)

Applying this inequality to an ellipscid £ such that
ECYNS, cdYnS,, BYE,

vol(Y N Sy,) e i
d(Y N Sn, BY) > (_voT(E)“”) = CM'

Remark 2. Part (A) of Theorem 2 can also be proved directly using the
same method as in Theorem 1, but adapted to the case of the simplex, and
without using Rudelson’s theorem. As the proof of Theorem 1 uses random.
methods, it produces a set of large probability (see e.g. [Go2]) such that the
k-dimensional subspaces Im G,, satisfy the conclusion of the theorem.

>e

—

we get
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