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Factorization of operators on C*-algebras
by

NARCISSE RANDRIANANTOANINA (Oxford, Ohio)

Abstract. Let A be a C*-algebra. We prove that every absolutely sumnming operator
from A into £ factors through a Hilbert space operator that belongs to the 4-Schatten—von
Neumann class. We also provide finite-dirnensional examples that show that one cannot
replace the 4-Schaiten—von Neumann class by the p-Schatten—von Neumann class for any
p < 4. As an applicatien, we show that there exists a modulus of capacity e — N(g) so
that if A is & C™-algebra and T' € IT1{A, €s) with m1(T) < 1, then for every € > 0, the
e-capacity of the image of the unit ball of A under T does not exceed V(). This answers
positively a question raised by Pelczyfski.

1. Introduction. It is a well-known consequence of a classical result
of Qrothendieck that if X is a Banach space and X** is isomorphic to a
quotient of a C'(K)-space then every absolutely summing operator from X
into £, factors through a Hilbert-Schmidt operator. The present paper isan
atterpt to get a generalization of this fact for the setting of arbitrary C*-
algebras. Different structures of operators defined on arbitrary C*-algebras
were considered by Pisier in [13] and [14]; for instance he proved that every
(p, q)-summing operator on an arbitrary (*-algebra admits a factorization
similar to that of operators on C(K)-spaces, and every operator from any
C*-algebra into any Banach space of cotype 2 factors through Hilbert space.
Using the notion of C*-summing operators introduced by Pisier in [13], the
author proved in [15] that absolutely summing operators from C*-algebras
into reflexive spaces are compact. The main result of this paper states that
for the case of C'*-algebras and the range space being a Hilbert space, one
can factor every absolutely summing operator through a Hilbert space op-
erator that belongs to the 4-Schatten-von Neumann class (see definition
below). The basic idea of the proof of this result is the factorization of C™*-
summing operators used in [15] and some well-known coincidence of different
classes of Hilbert space operators. This result allows us to prove a quan-
titative result on the compactness of absolutely summing operators from
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C*-algebras into Hilbert spaces, answering a question raised by Pelczyniski
in [10] (Problem 3’) for the space of compact operators on a Hilbert space.
A finite-dimensional approach shows that unlike the commutative case of
C(K)-spaces, one cannot expect to factor every absolutely summing opera-
tor from general non-commutative C*-algebras into Hilbert spaces through
Hilbert-Schmidt operators. In fact, our examples show that the result stated
above cannot be improved to the case of the p-Schatten~von Neumann class
for any p < 4.

Our terminology and notation are standard. We refer to [2] and [20] for
definitions from Banach space theory and [6] and [17] for basic properties
from C*-algebra and operator algebra theory.

2. Preliminaries. In this section we recall some definitions and facts
which we use in the sequel. Throughout, the word “operator” will always
mean a linear bounded operator and £(F, F') will stand for the space of all
operators from FE into F'.

DerINITION 1. Let E and F he Banach spaces and 1 < p < oo, An
operator T € L(E, F) is said to be absolutely p-summing (or simply p-
summing) if there exists a constant C' such that for any finite sequence
{e1,...,e,) of E, one has ‘

(anj;:rein?)l/p < C’Sup{(zn:](ei,e*ﬂp)l/p rere B et < 1.

i=1 i=1
The least constant C for the inequality above to hold will be denoted by
mp(T). It is well known that the class of all absolutely p-summing operators

from E to F is a Banach space under the norm m,(-). This Banach space
will be denoted by II(E, F).

DEFINITION 2. Let 1 < ¢ < p < co. An operator T € L(E, F) is said to
be (p, ¢)-summing if there is a constant K > 0 for which

n 1/p il 1/g
(ZHTeiHP) SKsup{(ZKe*,ei)]q) ret e B |le*|| € 1}
k=1 i=1
for every finite sequence (eq,...,e,) in E.

As above, the least constant X for which the inequality holds is the (p,q)-
summing norm of T" and is denoted by m, o(T). The class of (p, ¢)-summing
operators from £ into F is a Banach space under the norm mp (). This
class will be denoted by I7,, ,(E, F).

Another class of operators relevant for our discussion is the Schatten—von
Neumann class.
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DeFINITION 3. For 1 < p < o0 and for Hy and H: Hilbert spaces, the pth
Schatten—von Neumann closs consists of all compact operators I7 : Hy — Hy
that have a representation of the form

o0
() U=Y_ an(en)fn,

n=l
where (en)n is an orthonormal sequence in Hy, (fy)n is an orthonormal
sequence in Hy, and (an)n € 4p.

We will refer to (1) as an orthonormal representation of U. It is well
known that one can always choose the sequence (e, ), in the representation
(1) to satisfy 0 € apyy1 < o for all admissible indices. The pth Schatten—von
Neumann norm is defined by

op(U) = (i|an|p)1/p .

n=1
and the pth Schatten—von Neumann class is denoted by S,(H1, Ha).

DerINITION 4. Let E and F be Banach spaces, 1 < p < oco. We say
that an operator T' € L(E, F) is Ly-factorable if there exist a measure space
(2, X, 1) and operators Uy € L(E, Ly(p)) and Us € L({Lyp(), F**) such that
ip o1 == Uy o U; where ip : F — F** denotes the natural embedding.

The L,-factorable norm of T is defined by ,(T) := mf{||U1] - HU2||}
where the infimum is taken over all possible factorizations as abowve.

For detailed discussion of p-summing operators, (g, p)-summing opera-
tors, p-Schatten—von Neumann operators and Lp-factorable operators, we
refer to [3], [12] and [18]. :

We will now recall some basic facts on C*-algebras and von Neumann
algebras. Let A be a C*-algebra; we denote by Ap the set of Hermitian
(self-adjoint) elements of A. For z € A and f € A*, we denote by zf (resp.
fz) the element of A* defined by =f(y) = f(y=z) (resp. fo(y) = flzy)) for
every y € A.

DEFINITION 5. A von Neumann algebra is said to be o-finite if it admits
at most countably many mutually orthogonal distinct projections.

We refer to [6] and [17] for some characterizations and examples of o-
finite von Neumann algebras. :

3. Main theorem
THEOREM 1. Let A be a C*-algebra and T & IIL{A, £3). Then for every

€ > 0, there exist a Hilbert space H and operators J : A+ H and K : H —
£y such that:
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(YT =Kol
@) 7 <1
(3) K € S4(H, £2) with c4(K) < 2(1 +&)m (T).

To prove this theorem, we will first consider the following particular case:

PROPOSITION 1. Let M be a o-finite von Neumann algebra end assume
that T € IT;1 (M, £y) is weak* to weakly continuous operator. For every € > 0,
there exist o Hilbert space H and operators J : M — H and K : H — 4
such that:

() T= Ko J;

(2) I <1

(3) K € S4(H, £y) with 04(K) < 2(1 + &)ymi (T).

Proof. The proof is based on the factorization technique used in [15].

We will repeat the argument for completeness.

Let T' € II; (M, 43) and assume that 7' is weak™® to weakly continuous.
Fix § > 0 such that (14 6)%/2 < (1 +¢&).

By [15] (Proposition 1.1) and [13} {Lemma 4.1), there exists a normal
positive functional g en M such that ||g|| <1 and

| Tz < m(T)g(Jl)

Since the von Neumann algebra M is o-finite, there exists a faithful normal
functional fy in M, where M, denotes the predual of M (see [17], Propo-
sition II-3.19). We can choose fq so that || fol| < 8. Let f = (g+ fo)/(1+5):
clearly, ||f|l € 1 and

1Tz < (1 + 8)ma(T) f(j])
From Lemma 2 of [15], we deduce that
T2|l <201+ &)m(T)af + follm.
As in [15], we equip M with the scalar product
oyt + ¥z
(@, ) =f(~*—y 5 L )

Since f is faithful, M with (-, -) is pre-Hilbertian. We denote the completion

of this space by La(M, f) (or simply L (f)). From {15], we have the following
factorization:

for every © € Mj.

for every z € Mp,.

for every z € M.

M—EF ¢,
J I

Lo(f) —> La(f)* L M,
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where 8(Jx) = (-, J{(z*)) for every & € M, and L((zf + fz)/2) = Tz for
every ¢ € M, and J is the inclusion map (one can easily check as in [15]
that J* o 8o J(z) = (zf + fz)/2).
Set H := La(f) and K := Lo J* o4. Clearly, (1) and (2) are satisfied.
To prove (3), let us consider the adjoint maps:
by ———> M,
L -
M= Ly(f) > La(f)*

The proposition will be deduced from the following lemma:

LemMa 1. For every p > 1, K* € Ilzyn(fa, H*) with mp o(K*) <
mp(T)Y/2|| L2,

To see the lemma, let (z,), be a sequence in #; such that

el (£ )

iz €l 2l S1}=0C<oo.

Then
1/p
)" ge M, el <1} < TlC.

Similarly,

o (S5 ar)”

where (L*(2n))* is the adjoint of the operator L*(2,) in M for every n € N.
Since ({L*(2n))*)n is a sequence in M, one can apply 7. The fact that T’
is p-summing (because every l-summing operator is p-summing for every
p > 1) implies that

(S e))1e)” < ml sup{(i (T 0F)
n=sl n=1

< mp(I) I ZHIC.
is bounded (in fact, it is bounded by C) we get

ge M, gl <1} < Lile

el <1}

But since (25 )n
(3 KT )Y mP) S mDIEIC
n=1

Now for each n € N,
(T((L*(20))*), 2n) = (Lo J* 080 J(L"(2a)"), 2n)

= (§ o J(L*(2n)*),J 0 L*(2n))
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= (J(L*(2n)), J(L* (2))) = BT (L* (20))|Z 55
So

(1o Eir)” < mmiic®

n=1
Hence

= 1/(2p)
(3o IEGn)l??) " < m(@y2 Lo,
n=1
which shows that K* € IIpp,(f2, H*) with me, o(K*) < mp(T)Y2||L)|2/2.
The lemma, is proved.

To complete the proof of the proposition, we apply the above lemma for
p = 2; we get mya(K*) < ma(T)Y?||L||*/2. We also note from the proof of
Theorem 1 of [15] that the set {zf + fz : £ € M} is norm dense in M,, so
from the estimate

P (55)

we get
|L{zf + fe)|| <41+ m(T)|zf + fzllam,  for every z € M.
We conclude that || L{| < 4(1 + §)m1(T") and therefore
ma2(K*) < wo(T)Y22(1 + 6)Y2r(TYY? < 2(1 + &)my (T).

From a result of Mityagin (which appeared for the first time in a paper
of Kwapieni [8]; see also [3], Theorem 10.3, or [18], Proposition 11.8), the
space IIy2(f2, H*) is isometrically isomorphic to S4(£z, H*) so

oa(K*) < 2(1 + &)my(T)

and from Proposition 4.5 of [3] (p. 80), K € S4(H, £2) with
o4(K) = o4(K*) < 2(1 + &)x1 (T).

The proof of the proposition is complete. m

Proof of Theorem 1. Assume first that 4 is separable and T' € IT1 (A, £a).
The space A** is a von Neumann algebra and T** ¢ 11y (A**, €2). Let i4:
A — A** be the natural embedding and choose & countable dense subset
(an)n of A. I M is the von Neumann algebra generated by {i4(a,) : n > 1},
then M is o-finite. Also, if we denote by I the inclusion of M into .A4**, then
I is weak* to weak* continuous. From Proposition 1, the operator T** o [
factors through a Hilbert space operator K that belongs to the class S, and

so does T' = T™* oI oi4. One can easily verify that this factorization satisfies
the conclusion of the theorem.

= ||Tz|| <20+ 8)m (T)|lmf + fz||pm, for every z € M,
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For the general case, we will use the ultraproduct technique. Let (A;)ses
be the collection of all separable C*-subalgebras of A. As a particular case of
Theorem 3.3 of {16] (which is the ("*-version of Proposition 6.2 of [5]), there
exists a subset A of S and an ultrafilter Z{ on A such that A is (completely)
isometric to a subspace of (A )y. Inspecting the proof in [16], one notices
that in our case A = 5,

Let T : A — {2 be a l-summing operator and i, : A, — A be the
inclusion map. It is clear that T o4, € IT1(As,£2) with m1 (T 0 4;) < 71 (T).
From the separable case above, there exists a Hilbert space H, such that
the following diagram commutes:

T'oia

A,
H,

with [|Js]] < 1 and o4{K,) < 2(1 + g)mi (T)-
From this, one can verify that the following diagram commutes:

2

(TDia)u

(As)ll (fz)u
m\ Au
(Hs)u

Tt is clear that ||(Js)u! < 1 and since S4 is a maximal ideal opera-
tor, we get (Kg)u & S4((Hs)u,(f2)u) with U4((K5)u) < lim,, gz ou(K,) <
2(1 + &)my (T) (see [5], Theorem 8.1).

Let Q : (£2)u — £2 be defined by Q((vs)s) = weak-lim, 1 ys andJ: A —
(As)u be the isometric embedding. We claim that Q@ o (T'o igwol=T.

To see this, notice that for every = € A4, I{z)s = 0if z ¢ A, and
I{z), =z if x € Ay So (T o4, )u(Jw) = (y)ses Where y, =0if z & A, and
yo = T if z € A, and by the definition of @ the claim follows.

We get the conclusion of the thecrem by setting J = (Jouol, K =
QO (Kg)u and H = (Hs)u. ]

For the next simple extension of Theorem 1, we refer to [19] for definitions
and examples of JB*-triples and JBW-triples.

COROLLARY 1. If A is a JB*-triple then every absolutely summing op-
erator from A into £y factors through an operator that belongs to the 4-
Schatten~von Neumann class.

Proof, Let T : A — £ be an absclutely summing operator. The space

A* is a JBW*-triple. But every JBW*-triple is (as a Banach space) iso-
metric to a complemented subspace of a von Neumann algebra (see [1]).
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From Theorem 1, 7** {and consequently T') factors through an operator
that belongs to the class 54, w

REMARK 1. We remark that Lemma 1 is valid for any weak™* to weakly
continuous absolutely summing operator from a o-finite von Neuman algebra
into a general Banach space; in particular, the adjoint of any such operator
belongs to the class ideal Iy, , for every p > 1.

The following finite-dimensional examples show that one cannot improve
Theorem 1 to the case of the p-Schatten—von Neumann class for p < 4.
The type of operators considered below was suggested to the author by
Pelczynski.

For n > 1, B(#3) (resp. HS(¢3)) denotes the space of n x n matrices
with the usual operator norm (resp. the Hilbert—Schmidt norm).

Let I : B(£%) — HS(£%) be the identity operator and set ap = 7 (Ip).

THEOREM 2. For everyn > 1, let T, = I, /o, There exists an absolute
constant 8 > 0 (independent of n) such that if H is a Hilbert space, and
J € L(B(£3),H) and K € L(H,HS(£3)) satisfy:

@7l <1,

({) T, =Kold,

then for every p > 2, 0,(K) > Bnl4—P)/(29),

For the proof of this theorem, we will recall a few facts about the operator
1. The following proposition can be found in [4] and [11].

ProOPOSITION 2. (1) There exists a universal constant ¢ > (O such that
an = m(I,) < en for everyn > 1.

(2) There exists a universal constant ¢ > 0 such that y(I,) = ¢'n®/?
for everyn > 1.

Proof {(of Theorem 2). Let H be a Hilbert space and J and K be opera-
tors as in the statement. Since HS(£%) is a finite-dimensional Hilbert space,
K : H — HS(}) is a Hilbert-Schmidt operator. Similarly, the adjoint
K*: HS(¢3) — H is also a Hilbert-Schmidt operator. One can choose, by
the Pietsch Factorization Theorem, a probability space (2, ¥, ) such that

HS() X g
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with |[V]| = 1 and ||U|| = mo(K*) = mo(K). Taking the adjoints,
H > H5(03)
U v*
Ly (X) i1, (N

Hence the operator T), factors through Ly (}) as follows:

B(¢3) Lo HS(g)

th Vv
Ly(A)

where U] = é3ol/*oJ. From the definition of v, (T},) (see Definition 4 above),
we get the following estimate:

(T} < | Gl -Vl < diasll - 1T N1 V] < T == e (K.
From the above proposition, ¢'n'/?/¢ < ¢'n®?/a, < my(K).

If we set 3 := ¢'/c, we get ga(K) = m3(K) > Bn'/? and the theorem is
proved for the case p = 2.

For p > 2, note that B(£}) and HS(£%) are of dimension n® so we can

assume without loss of generality that dim(H) = n?. Let (3;(K))1<i<n? be
the singular numbers of K. It is well known that for every ¢ > 0, g (K) =

(0, 5:(K)9)H4. Using Hélder’s inequality, we get, for every p > 2,

(i wlK) ) (Z (& )1/p (2 1) (1-2/p)/2

(=) i=1
= gp(K)n'" 2P,

Hence Anl/? < o3(K) < op(K)n*~%?, which implies that op(K) =
Bn~L/2+2/e o ﬁn(‘*"?’)/ (2p) The proof of the theorem is complete. =

Uz(K)

The operator T}, satisfies m,(T) = 1 but any factorization through any
Hilbert space operator has large p-Schatten—von Neumann norm for p < 4.
This shows that the class S in the statement of Theorem 1 cannot be
improved.

The results above lead us to the question of characterizing operators
from & C*-algebra into £ that can be factored through Hilbert-Schmidt
operators.

THEOREM 3. Let A be a C*-algebra. An operator T : A — £y factors
through o Hilbert-Schmidt operator if and only if it s L1-factorable.
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Proof If T factors through a Hilbert—Schmidt operator then it is L,-
factorable since Hilbert-Schmidt operators are L;-factorable.

Conversely, assume that 7T is Li-factorable i.e. there exist a measure
space ({2, X, )) and operators Uy : A — L1 (2, 2, X) and Uz : L1 (02, 2, A) —
£5 such that T = Uy o U;. From Grothendieck’s theorem U, is 1-summing.
Since L;(£2, £, A) is of cotype 2, Uy factors through a Hilbert space (see
[13]), which shows that T factors through a Hilbert—-Schmidt operator. m

4. Measure of compactness. In this section, we will provide an ap-
plication of the main theorem to measure compactness of any absolutely
summing operator from C™*-algebras into Hilbert spaces.

Let L be a normed linear space with norm | - || and A be a totally
bounded set in L. For any given ¢ > 0, we set N (A} := the infimum of
integers m such that there exist subsets Ei,..., Eyp, of L whose diameters
do not exceed 2 and whose union contains A, i.e.,

|JEx2 A and diam(Ej) < 2e.
k=1

DEFINITION 6. H.(A4) := log, N (A} is called the e-capacity of the set A.

The number H,.(A) (along with other related notions) has been exten-
sively studied in the literature (see for instance [7]).

Our main result in this section answers positively a question raised by
Pelczyriski and can be viewed as a quantitative version of Theorem 1 of [15].

THEOREM 4. There exists an absolute constant C' such that if A is a
C*-algebra and T € II1(A, £2) with m1(T) < 1, then for every e > 0,

H.(T(B4)) < C/e*.
We will show that Theorem 4 is a consequence of the following result.

THEOREM 5. Let H be a separable Hilbert space and S € Sp(H, £3). Then
Jor everye > 0,

B,(5(85)) < 2230 eE)

where p(p) = (8% /p+ fo
The proof is based on a notion of entropy of operators (see [12], p. 168).

DEFINITION 7. Let E and F be Banach spaces and S € £(E, F). The nth
(outer) entropy number e, (S) of the operator S is the minimum of § > 0
such that there exists a finite sequence y1,...,y, € F with ¢ < 2*~! and

S(Bg) € Ui 1{yi + Br).

" In(1/t) dt + 1)°.
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This notion was formally introduced by Pietsch primarily motivated by
some catlier work of Mityagin and Pelczyfiski on e-capacity of operators (see
[9]). It is clear that eny.1(S) < en(S) for every operator § and every n € N.

For diagonal Hilbert space operators, the following proposition was
proved by Pietsch.

PropPOSITION 3 ([12], p. 174). Let § € L(£2) such that S((&n),) =
(@nfn)p>1 and (@), € co. Then

(S entd#)” < 5(S o)™

Proof of Theorem 5. Let 1 < p < oo and S € S,(H,43). The operator S
admits an orthonormal representation

(s 4]
@) S=Y ol hn)fu
n=1
where (hy) and (fn) are orthonormal sequences in H and £; respectively,
and (o), € £,. We can choose this representation so that 0 < any1 < o
for all admissible indices. Let (e,,),, be the unit vector basis of £;. Let Z =
span{h, : n € N} in H. Since $(Bz) = 5(Bg), we can assume without loss
of generality that H = Z.
Let I: £y — H be defined by le,, = hy for every n € Nand J : £z — £
8o that J(f) = e, for every n € N. Let 3 = JoSoI. Clearly, § € Sp(£a,£2);
and I and J are isometries.
For every x € £y, we have

Sz = i an(Iz, ) (fr) = Z 0 (2, I"hn ) en = Z (2, en)en.

nml nw=1 n=1

So for every = = (zn),, € f2, ST = (CnEp)ys;. Hence S satisfies the assump-
tion of the above proposition and therefore

(f:(en(:sﬁ))ﬁ")mJ < Kp(i |an|p)1/p < Kpop(5).
nwl ne=1

For & > 0, define k() := max{k : en(9) = &} We have

k(e)
(Kpop(S))P 2 Z en(S))? 2 3 (en(8))F 2 Pkle)
== n=1

80

k(z) < (WI&%’K@)P-
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~

From the definition of %(g) we get ey(e)+1(S) < &, and the definition of the
nth entropy of S implies that there exist § < £ and {y1,-.. a@jg]’ C £y, with
g < 2%G). 50 that §(Bg,) C {u1,...,¥g} + 0By, ie. the set S(Bg,) can be
covered by 25 balls of radius & < £, so N.(5(Be,)) < 2%¢) and

He(5(Br,)) < h(e) < =

Now since J is an isometry, He(S(Bg,)) = H.(S o I(By,)); also, by the
definition of I, I(Bg,) = By so

H(SBa) = E(5(8u)) < ZO0E

and setting o(p) = K}, the theorem is proved.
The estimate on K, can be found in Pietsch’s book [12] (p. 174). =

Proof of Theorem 4. If A is a C*-algebra and T € (A, £;) with
m1{T) < 1, then one can deduce from Theorems 1 and 5 that H (T(B4)) <
3%p(4)/e*. In fact, one can choose H, J and K (as in Theorem 1) so that
o4{K) < 3, 50 from Theorem 5, H. (K (Bg)) < 3*g(4)/e* and since ||J|| < 1,
H.(T(B4)) < 3%(4)/e*. Hence if we set C' = 3*g(4), the proof of the theo-
rem is complete. =
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