

STUDIA MATHEMATICA 129 (2) (1998)

On extremal and perfect σ -algebras for flows

by

B. KAMIŃSKI (Toruń) and Z. S. KOWALSKI (Wrocław)

Abstract. It is shown that there exists a flow on a Lebesgue space with finite entropy and an extremal σ -algebra of it which is not perfect.

1. Introduction. The theory of invariant σ -algebras is an important part of ergodic theory having applications in the spectral theory of dynamical systems ([7], [9]), statistical mechanics ([3], [4]) and probability theory ([10]-[13]).

The extremal and perfect σ -algebras play the key role in the theory of invariant σ -algebras.

The paper [8] contains a positive solution to the Kwiatkowski question whether there exists a \mathbb{Z}^d -action on a Lebesgue space and an extremal σ -algebra of it which is not perfect.

The purpose of this paper is to give an affirmative answer to this question in the case of flows. The existence of perfect σ -algebras for flows has been proved by Blanchard [1] and Gurevich [6].

2. Result. Let (X, \mathcal{B}, μ) be a Lebesgue probability space and let (T^t) be a measurable flow acting on (X, \mathcal{B}, μ) . Let $\pi((T^t))$ denote the Pinsker σ -algebra of (T^t) .

Now we recall the definition of a special flow.

Let (Y, \mathcal{C}, ν) be a Lebesgue probability space, T be an automorphism of Y and $f: Y \to \mathbb{R}^+$ a measurable function such that $\inf\{f(y): y \in Y\} > 0$ and $f \in L^1(Y, \nu)$. Let $Y_f = \{(y, u) \in Y \times \mathbb{R}^+ : u < f(y)\}$ and let \mathcal{C}_f be the restriction of the product σ -algebra $\mathcal{C} \otimes \mathcal{L}$ to Y_f , where \mathcal{L} denotes the σ -algebra of Lebesgue sets of \mathbb{R}^+ . We denote by ν_f the measure on \mathcal{C}_f defined by

¹⁹⁹¹ Mathematics Subject Classification; Primary 28D10.

The first author is supported by KBN grant 2P 30103107 and the second by KBN grant 2 P03A07608.

$$u_f = \left(\int\limits_V f \, d\nu\right)^{-1} (\nu \times \lambda),$$

where λ stands for Lebesgue measure. Let (T_f^t) be the measurable flow on $(Y_f, \mathcal{C}_f, \nu_f)$ defined as follows. For $0 \leq t < \inf\{f(y) : y \in Y\}$ we put

$$T_f^t(y,u) = \begin{cases} (y,u+t) & \text{if } u+t < f(y), \\ (Ty,u+t-f(y)) & \text{if } u+t \ge f(y). \end{cases}$$

For other values of t the automorphism T_t^t is uniquely determined by the condition that (T_f^t) is a one-parameter group of automorphisms. The flow (T_f^t) is called the special flow built under the function f, the automorphism T is called the base automorphism, and f is called the ceiling function of

Let $\mathcal{D} \subset \mathcal{C}$ be a σ -algebra such that $T^{-1}\mathcal{D} \subset \mathcal{D}$ and let \mathcal{D}_f be the σ -algebra obtained from \mathcal{D} in the same manner as \mathcal{C}_f from \mathcal{C} .

LEMMA 1 ([2]). $T_f^t \mathcal{D}_f \subset \mathcal{D}_f$ iff f is measurable with respect to \mathcal{D} .

LEMMA 2 ([5]). If f is measurable with respect to \mathcal{D} then for any t < 1 $\inf\{f(x):x\in X\}$ we have

$$H(T_f^t \mathcal{D}_f | \mathcal{D}_f) = t \frac{H(T\mathcal{D} | \mathcal{D})}{\int_X f d\mu}.$$

LEMMA 3 ([5]). If T is a K-automorphism with finite entropy, P is a finite generator for T such that the σ -algebra $\bigvee_{n=0}^{\infty} T^{-n}P \cap \bigvee_{n=0}^{\infty} T^nP$ is not non-atomic, f is measurable with respect to the algebra P^* generated by P and the values of f are independent over the field \mathbb{Q} then $\{T_{*}^{t}\}$ is a K-flow.

Let now (T^t) be an arbitrary measurable flow acting on a Lebesgue space (X, \mathcal{B}, μ) . A σ -algebra $\mathcal{A} \subset \mathcal{B}$ is said to be extremal for (T^t) if

- (i) $T^t \mathcal{A} \subset \mathcal{A}$, t < 0.
- (ii) $\bigvee_{t \in \mathbb{R}} T^t \mathcal{A} = \mathcal{B}$,
- (iii) $\bigcap_{t\in\mathbb{R}} T^t \mathcal{A} = \pi((T^t))$

If, in addition.

(iv)
$$h(T^t) = H(T^t \mathcal{A} \mid \mathcal{A}), t > 0$$

then A is called *perfect*.

Theorem. There exists a measurable flow and an extremal σ -algebra of it which is not perfect.

Proof. We construct the desired flow as a special flow.

First we describe the base automorphism of the flow. Let the space Z = $\{-1,1\}^{\mathbb{Z}}$ be equipped with the product σ -algebra $\mathcal C$ and let ν be the Bernoulli measure determined by the probability vector p = (1/2, 1/2). We denote by σ the shift transformation of Z.

Let

$$(Y, \mathcal{F}, \lambda) = (Z, \mathcal{C}, \nu) \times (Z, \mathcal{C}, \nu).$$

We consider in Y the skew product transformation T defined as follows:

$$T(x,y) = (\sigma(x), \sigma^{x(0)+1}(y)), \quad (x,y) \in Y,$$

where σ^0 means the identity transformation on Z.

Let ξ be a measurable partition of Y defined as follows: points (x, y), $(\widetilde{x},\widetilde{y}) \in Y$ are equivalent if $y = \widetilde{y}$ and $x_i = \widetilde{x}_i$ for all $i \geq 0$. We define ξ as the collection of all the equivalence classes of this relation. Let \mathcal{D} be the σ -algebra generated by ξ .

It is shown in [8] that T is a K-automorphism. It is easy to see that \mathcal{D} coincides with the σ -algebra \mathcal{D} defined in the proof of the Theorem in [8] and, therefore, it is extremal and is not perfect, i.e.

$$(1) T^{-1}\mathcal{D} \subset \mathcal{D},$$

(2)
$$\bigvee_{n=0}^{\infty} T^{n} \mathcal{D} = \mathcal{F},$$

$$\bigcap_{n=0}^{\infty} T^{-n} \mathcal{D} = \mathcal{N},$$

$$(3) \qquad \qquad \bigcap_{n=0}^{\infty} T^{-n} \mathcal{D} = \mathcal{N}$$

where \mathcal{N} denotes the trivial σ -algebra,

(4)
$$H(\mathcal{D} \mid T^{-1}\mathcal{D}) < h(T).$$

Let P be the zero-time partition of Z, i.e.

$$P = \{A_{-1}, A_1\}, \quad A_i = \{x(0) = i\}, \quad i = -1, 1,$$

and let $R = P \vee \sigma^{-1} P$.

We consider the partition Q which is the product of P and R, i.e. Q = $P \times R$. First observe that

(5)
$$\bigvee_{i=0}^{\infty} T^{i}Q = \bigvee_{i=0}^{\infty} \sigma^{i}P \otimes \bigvee_{i=0}^{\infty} \sigma^{2i}P, \qquad \bigvee_{i=0}^{\infty} T^{-i}Q = \bigvee_{i=0}^{\infty} \sigma^{-i}P \otimes \bigvee_{i=0}^{\infty} \sigma^{-2i}P.$$

Since $T^{-1}(x,y) = (\sigma^{-1}x, \sigma^{-x(-1)-1}y)$ it is enough to check the first equality. Let n be an arbitrary positive integer. The atoms of $\bigvee_{i=0}^n T^iQ$ have the form

$$\bigcap_{k=0}^{n} T^{k}(P_{i_k} \times R_{j_k}) = \bigcap_{k=0}^{n} \sigma^k P_{i_k} \times \bigcap_{k=0}^{n} \sigma^{\sum_{p=1}^{k} (i_p+1)} R_{j_k}$$

where s_n denotes the number of ones in the sequence (i_1, \ldots, i_n) . Therefore, every atom q of $\bigvee_{i=0}^{\infty} T^i Q$ is contained in $\bigcap_{k=0}^n T^k (P_{i_k} \times R_{j_k})$.

Since $s_n \to \infty$ modulo a set of measure zero we have $q \subset s \times r$ where s is an atom of $\bigvee_{i=0}^{\infty} \sigma^{i}P$ and r is an atom of $\bigvee_{i=0}^{\infty} \sigma^{2i}R$. On the other hand, we have $\bigvee_{i=0}^{n} T^{i}Q \subset \bigvee_{i=0}^{n} \sigma^{i}P \otimes \bigvee_{i=0}^{n} \sigma^{2i}P$ and so

 $s \times r \subset q$. Therefore $s \times r = q$ and (5) is valid.

From (5) it easily follows that Q is a generator and

(6)
$$\bigvee_{i=0}^{\infty} T^i Q \cap \bigvee_{i=0}^{\infty} T^{-i} Q = Q.$$

Now we want to check that $h(T) < \infty$. More precisely, we show that

$$(7) h(T) = \log 4.$$

It is easy to see that T is a natural extension of the non-invertible endomorphism

$$\tau(u, v) = (S(u), S^{u(0)+1}v),$$

where $u, v \in \Omega = \{-1, 1\}^{\mathbb{N}}$ and S is the one-sided shift. Let $\pi: Z \to \Omega$ denote the natural projection and let $\Phi(x,y) = (\pi x, \pi y)$. Then $\Phi \circ T = \tau \circ \Phi$.

We denote by Q^+ the partition of $\Omega \times \Omega$ given by the formula

$$Q^+ = P^+ \times (P^+ \vee S^{-1}P^+)$$

where $P^+ = \pi P$. Let A_{-1}^+ and A_1^+ be the atoms of P^+ . It is easy to see that Q^+ is a generator for τ . Let J_{τ} denote the Jacobian of τ and let ν^+ be the Bernoulli measure on Ω determined by the vector p = (1/2, 1/2). We put $\lambda^+ = \nu^+ \times \nu^+$. We have

$$h(T) = h(\tau) = \int_{\Omega \times \Omega} \log J_{\tau} d\lambda^{+}$$

$$= \int_{A_{-1}^{+} \times \Omega} \log 2 d\lambda^{+} + \int_{A_{1}^{+} \times \Omega} \log 8 d\lambda^{+} = \log 4.$$

Let now f be an arbitrary positive function, constant on the atoms of Qand such that its values are independent over the field of rationals.

Consider the special flow (T^t) with base automorphism T and ceiling function f. Denote by (X, \mathcal{B}, μ) the corresponding Lebesgue space on which (T^t) acts. It follows from (7) and the well known formula for the entropy of a special flow that the entropy of the flow (T^t) is finite. Let $\mathcal{A} = (\mathcal{D} \otimes \mathcal{L}^1) \cap \mathcal{B}$.

It is easy to see that the atoms of Q belong to \mathcal{D} , i.e. f is \mathcal{D} -measurable. Therefore, Lemma 1 implies that $T^t A \subset A$, t < 0.

The equality $\bigvee_{t \in \mathcal{R}} T^t \mathcal{A} = \mathcal{B}$ follows easily from (2)

Now the equalities (3), (6) and Lemma 3 imply (T^t) is a K-flow, i.e.

$$\bigcap_{t<0} T^t \mathcal{A} = \mathcal{N} = \pi((T^t)).$$

This means that \mathcal{A} is extremal.

Let now $t \in (0, \inf_{y \in Y} f(y))$. Lemma 2 gives

$$H(T^t A \mid A) = t \frac{H(T \mathcal{D} \mid \mathcal{D})}{\int_Y f d\lambda}.$$

The inequality (4) and the formula for the entropy of a special flow imply

$$H(T^t \mathcal{A} \mid \mathcal{A}) < t \frac{h(T)}{\int_{\mathcal{X}} f \, d\lambda} = h(T^t),$$

i.e. A is not perfect.

References

[1] F. Blanchard, Partitions extrêmales des flots d'entropie infinie, Z. Wahrsch. Verw. Gebiete 36 (1976), 129-136.

--, K-flots et théorème de renouvellement, ibid., 345-358.

M. Binkowska and B. Kamiński, Entropy increase for \mathbb{Z}^d -actions on a Lebesgue space, Israel J. Math. 88 (1994), 307-318.

S. Goldstein and O. Penrose, A non-equilibrium entropy for dynamical systems, J. Statist. Phys. 24 (1981), 325-343.

B. M. Gurevich, Some existence conditions for K-decompositions for special flows, Trans. Moscow Math. Soc. 17 (1967), 99-126.

-- Perfect partitions for ergodic flows, Funktsional, Anal. i Prilozhen, 11 (3) (1977), 20-23 (in Russian).

B. Kamiński, The theory of invariant partitions for Zd-actions, Bull. Acad. Polon. Sci. Sér. Sci. Math. 29 (1981), 349-362.

B. Kamiński, Z. S. Kowalski and P. Liardet, On extremal and perfect σ -algebras for \mathbb{Z}^d -actions, Studia Math. 124 (1997), 173-178.

V. A. Rokhlin, Lectures on the entropy theory of measure-preserving transformations, Uspekhi Mat. Nauk 22 (5) (1967), 3-56 (in Russian).

[10] T. Shimano, An invariant of systems in the ergodic theory, Tôhoku Math. J. 30 (1978), 337-350.

-, Multiplicity of helices of a special flow, ibid. 31 (1979), 49-55.

[12] —, Multiplicity of helices for a regularly increasing sequence of σ -fields, ibid. 36 (1984), 141-148.

-, On helices for Kolmogorov system with two indices, Math. J. Toyama Univ. 14 (1991), 213-226.

Faculty of Mathematics and Informatics Nicholas Copernicus University Chopina 12/18 87-100 Torun, Poland E-mail: bkam@mat.uni.torun.pl

Institute of Mathematics Wrocław Technical University Wybrzeże Wyspiańskiego 27 50-370 Wrocław, Poland E-mail: kowalski@banach.im.pwr.wroc.pl

Received May 6, 1997 Revised version November 3, 1997 (3880)