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Spectrum of commutative Banach algebras and isomorphism
of C"-algebras related to locally compact groups

by

ZHIGUO HU (Windsor, Ont.)

Abstract. Let A be a semisimple commutative regular tauberian Banach algebra
with spectrum X 4. In this paper, we study the norm spectra of elements of 5pan &4 and
present some applications. In particular, we characterize the discreteness of X4 in terms
of norm spectra. The algebra A is said to have property (S) if, for all ¢ € 5paE 24 \ {0},
4 has a nonempty norm gpectrum. For a locally compact group G, let MS(@) denote the
(*-algebra generated by left translation operators on L?(G) and Gy denote the discrete
group &, We prove that the Fourier algebra A(G) has property (8) iff the canonical trace
on M%(@) is faithful iff Mg(@) = M%(é}). This provides an angwer to the isomorphism
problem of the two C*-algebras and generalizes the so-called “uniqueness theorem™ on
the group algebra L'(G) of a locally compact abelian group G. We also prove that (/g
is amenable iff G is amenable and the Figh-Talamanca—Herz algebra Ap(@G) has property
(8) for all p.

1. Introduction. Let A4 be a semisimple commutative regular tauberian
Banach algebra with spectrum 4. In this paper, elements of 54 are con-
sidered as multiplicative functionals on A and ¥4 has the Gelfand topology
induced by o{A*, A). Let I be a proper closed ideal of 4 with the zero set
Z(I) = F. The ideal I is said to be synthesizable if I is the largest closed
ideal of A whose zero set i3 F. De Vito proved in [9] that synthesizable ideals
of L*(R) are exactly the ideals of the form I, = {a € L'(R) : ¢ *a = 0}
for some nonzero almost periodic function ¢ on R. It is well known that the
algebra of almost periodic functions on R is identified with &pan X Liw)- To

study synthegizable ideals for general algebras, I"ngr defined in [32] the norm
spectrum o () for elements ¢ of 5pan K4 by o(p) = {p-a:a€ A} N Za,
which coincides with the definition given, for instance, by Katznelson [25,
p. 159] in the case where A = L*(R). It is also known that o(p) # @ for
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all p € span L4 \ {0} when A = L'(G) for some locally compact abelian
group G (the so-called “uniqueness theorem”; see the books by Benedetto
(5, p. 110] and Katznelson [25, p. 163]). An algebra A with this property
is said to have property (5). Among other results on the space X4, under
the assumption that A has property (S) plus the “separating ball property”
(SBP for short; see §2), Ulger gave the following generalization of De Vito's
result: the ideal I is synthesizable with a separable zero set iff I = I, for
some ( € §paii X4 \ {0} (see [32, Theorem 5.5]).

As stated in Question (h) of [32], it would therefore be important to
decide when the algebra A has property (S). In particular, it is interesting to
consider this problem for the Fourier algebra A(G) and the Figa-Talamanca-
Herz algebra A,(G) of a locally compact group G. We will provide in this
paper a complete answer to the above question.

Let MZ(G) denote the C*-algebra generated by left translation cperators
on L*(G) and Gy denote the group G considered as a discrete group. Then
M (G4) is the reduced group C*-algebra of Ga. A natural guestion is when
we have M$(G) = MZ(G3) (which is also written as C3{G) 2 C*(Gy) in
the literature). Obviously, MBG) = ME(Gy) if G is discrete. Tt is known
that M3(G) = MZ(G3) if G is abelian. Zeller-Meier proved in [33] that the
same conclusion is true whenever G4 is amenable (see also [12], [3], and [4]).
Recently, Bédos complemented Zeller- Meier’s result by showing that Gq is
amenable iff G is amenable and M3 (@) = ME(Fa) (see [1, Theorem 3)).
Another problem tackled in our paper is the existence of any characterization
for M$(E) = M3I(G3) to bold. We show that this is intrinsically related to
the property (S) of A(G).

After the results presented in this paper were obtained, we received a
preprint of Bekka, Kaniuth, Lau, and Schlichting [2], where it is showed
that M$(G) = ME(Ga) iff G contains an open subgroup H such that Hy
is amenable (]2, Theorem 1]). This nice result is further reformulated in
terms of weak containment of unitary representations of G and in terms of
inclusion of Fourier and Fourier-Stieltjes algebras of G (see [2, Theorem 2
and Theorem 2']).

Here are some details on the organization of the paper. §2 consists of
some notations and preliminaries used throughout.

We investigate in §3 some basic properties of the norm spectrum and
present some applications. Assume the algebra A has the SBP. Ulger [32,
Theorem 3.6] showed that the space X4 is discrete iff, for each o in A, the
map A — A given by ¢ — az is (weakly) compact, which is also knowmn to be
equivalent to A being an ideal in its second dual A** equipped with either of
the Arens multiplications (see Duncan and Husseiniun [11, Lemma 3]). We
present in this section another equivalent property: the space 54 is discrete
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iff o(p) =
obtained:

Z(I,) for all ¢ € span 24 (Theorem 3.4). The following are also

(1) The ideal I is synthesizable with a scparable zero set iff I — I,
for some @ € spam X4 \ {0} satisfying the condition “@ - a # 0 1mp11es
o(yp-a) # 0" (Theorem 3.11);
(2) If the algebra A, (G) has property (), then either Mg{@) = PF,(G)
or Md(G) N PFy(G) = {0} (Corollary 3.15(f)), where Mg(@) and PF,(G)
denote the norm closures of I'(@) and L*(@) in A, (G)*, respectively.

The proofs are primarily motivated by some results in Ulger [32] and
our understanding of the relation between the norm spectrum and invariant
mean.

§4 concerns the property (S) for A = A(G) and A = 4,(G). Let G be
a locally compact group with unit e. Let tr be the finite trace on the C*-
algebra M3(G) defined by tr(p) = wo({e}) {p € I*(G)). We prove that A(G)
has property (S) if and only if tr is fajthful on MZ(G) if and only if MI(E) =
ME(G3) (Theorem 4.3). This result provides an answer to the isomorphism
problem of the two C*-algebras from a point of view different from that

of [2]. As we know, when G is abelian with dual group G, then A(G) =
Ll(G) MZ(B) 2 AP(G) (the algebra of almost periodic functions on &),
and tr is always faithful on AP(G). Therefore, Theorem 4.3 generalizes the
“uniqueness theorem” mentioned above on the group algebra L'(G) of a
locally compact abelian group . We also prove that Gy is amenable if and
only if 7 is amenable and A, (G) has property (S) for all p (Theorem 4.5).
Our approach depends heavily on the well-developed theories of Fourier
algebras, C*-algebras, and amenability.

This paper is mainly inspired by Ulger [32]. Tt is a pleasure to thank
Professor Ali Ulger for his encouragement and valuable suggestions and for
providing a copy of [32]. The author is also indebted to Professor Anthony T.
Lau and Professor Ali Ulger for their helpful comments on the early draft of
the paper and for bringing to her attention the preprint of [2] and references
[1, 5], respectively.

2. Preliminaries and notations. In this paper, we assume that zll
spaces are over the complex fleld C. For a Banach space E, we denote by
E* and E; the Banach space dual of E and the closed unit ball of B, re-
spectively. If ¢ € E* and = € E, the value of ¢ at z will be written as (i, z)
or (z, ). We always regard F as being naturally embedded into its second
dual E**,

Let A be a semisimple commutative regular tauberian Banach algebra
with the spectrum X'4. We consider each element of X4 as a multiplicative
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functional on A. The usual (Gelfand) topology of X4 is the relative weak*
topology on X4 induced by o(A*, A). Further, §pan £4 denotes the norm-
closed linear subspace of A* spanned by X4. For a € 4 and f € A*, we
define f-a € A* by (f -a,0) = {f,ab), b € A If f € A* and the set
{f-a:a¢€ Ay} is relatively compact, f is said to be almost periodic. Note
that, for all ¢ € Y4 and @ € A, we have - a = (p,a)¢. Thus every
@ € 3paii X4 is almost periodic.

For a closed ideal I of A, Z(I) denotes the zero set of I, that is, Z(I) =
{f € X4 : I Ckerf}. A proper closed ideal T of A is said to be synthesizable
if I = (e gy Ker f (see, for instance, De Vito [9] for the case A = L' (R) and

Ulger [32] for general A). In other words, if F' = Z(J), then I is synthesizable
iff I is the largest closed ideal of A whose zero set is F. Note that [ is
synthesizable if Z(I) is a set of spectral synthesis in the usual sense (that is,
there exists a unique closed ideal of A with zero set equal to Z(I); cf. Hewitt
and Ross (24, §39]). But the converse is not true (see Remark 3.9(i) below).
It is well known that, even in (R}, not every closed ideal is synthesizable
{Malliavin’s theorem). De Vito [9] proved that synthesizable ideals of L'(R)
are exactly the ideals of the form I, = {a € L'(R) : ¢ % @ = 0} for some
nonzero almost periodic function ¢ on R (i.e. ¢ € span Ly \ {0}). To
study synthesizable ideals for general algebras, Ulger defined in [32] the
norm spectrum o{¢) for ¢ € §pan X4, which coincides with the definition
given, for instance, by Katznelson [25] for A = L!(R).

DEFINITION 2.1 ([32]). Let & span £4. The norm spectrum of ¢ is
defined by
glp)={p-a:ae€ A}N X,4.
Note that o(yp) is different from the usual “w*-spectrum” of ¢, which
is always nonempty if ¢ is nonzero (see, for example, Hewitt and Ross (24,
§40]). As mentioned in the introduction, o () # § for all € 5pan T4 \ {0}
when A is the group algebra L'(@) of a locally compact abelian group G.

But this is not the case for general algebras A. Therefore, we would like to
give the following.

DEFINITION 2.2. The algebra A is said to have property (8) if (i) # 0
for all » e gpan X4 \ {0}.

In [32], Ulger introduced the concept of “sepurating ball property” (SBP
for short) which played an important role in his discussion on the discrete-
ness of X4 under the weak topology of A*. The algebra A is said to have
the SBP if, given any two distinct elements f and g in X4, there exists an
a € A such that (f,a) = 1 and {g,a) = 0. Many algebras of harmonic
analysis have this property. For easy reference, we would like to quote the
following results from [32] on algebras with the SBP,
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Lemma 2.3 ([32, Lemma 5.1]). Assume A has the SBP. Then, for each
f € Za, there exists my € A*™ such that (my, f) = 1 end {mg,gy =0 for
allg € Ta \{f}.

LEMMA 2.4 ({32, Lemma 5.2 and 5.3]). Assume A has the SBP. Let
pespan La \ {0}, f € X4, and a € A. Then

(1) {-a,mys) = (f,a){p,my).

(i) f € o(p) iff (p,my) #0.
(iti) op- @) = o(p) N {g € Ty :{g,a) #0}.
(iv) o) is a countable subset of Y4,

Throughout this paper, G denotes a locally compact group with unit e
and a fixed left Haar measure A. For any subset U of (7, we denote by 1z the
characteristic function of U. The symbol LP(G) (1 < p < 00) has the usual
meaning. ‘The group G is said to be amenable if there exists m € L*®(G)*
such that |m|| = (m,1g) = 1 and (m,,f) = (m, f) for all f € L>(G)
and & € G, where ,f is the left translate of f by z. We denote by G4 the
algebraic group G endowed with the discrete topology. Then G is amenable
if G is amenable. All solvable groups and all compact groups are known to
be amenable. However, the free group on two generators is not amenable.
For more information on this subject, see Greenleaf’s book [21] and the
books by Pier [30] and Paterson [29)].

For 1 < p < co, we denote by A4,(G) the Figa-Talamanca-Herz algebra
of G. Elements of A,(G) can be represented, nonuniquely, as

o0
(%) o= Z’un * G,
==

with un, € LP(G), vn € LYG) (where 1/p+1/¢ = 1), i, () = un(z~1), and
Y omet Mun]lpllvnlly < co. The norm of a is defined by

lall = inf > [junlipllval g,
n=1

where the infimum is taken over all the possible representations of a of the
form (*). It is known that 4,(G) is a subspace of Cp(G) (the space of all
continuous functions on G vanishing at infinity) and, equipped with the
above norm and the pointwise multiplication, is a semisimple commutative
regular tauberian Banach algebra whose spectrum is 7 (via Dirac measures).
For p = 2, we have 4,(G) = A(G), the Fourier algebra of &, which is
isometrically isomorphic to Ll(a) for commutative G with dual group G.
See Eymard [14] and Herz [23] for details on the algebras A(G) and A, (&),
respectively. Furthermore, Ap(G) has the SBP for all 1 < p < oc (see Ulger
[32, Proposition 2.5]).
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Let M{G) denote the measure algebra of G and My(G) the space of
discrete measures in M(G). Then M () can be considered as a subspace of
AP(G)* by

() = (o) dulz), e A4,(G),
G
with ||l a, e < |6llae- In particular, (., u) = u(z), z € G, u € 4,(G),
where d, denotes the point measure at x. By definition, Mg(@) and PF,(G)
are the norm closures of My(G) and LY(QG) in A,(G)", respectively (see
Granirer [171). For p = 2, we have PFy (G} = C}(G), the reduced group C*-
algebra of G; and MZ(G) is also denoted as C}(G) (see Lau [26]). Under
the identification G = Xy (), we have span Ly (g) = Mg(@). Therefore,
A = A,(G) has property (S) iff (i) # 0 for all p € MYUE) \ {0}

3. Norm spectrum, discreteness of 54, and synthesizable ideals.
Throughout this section, A will be a semisimple commutative regular taube-
rian Banach algehra and X4 the spectrum of A with the Gelfand topology.
Then, for any proper closed ideal I of A, the zero set Z(7) of [ is nonempty.
We also assume in this section that A has the SBP.

For f € X4, let my € A be the same as in Lemma 2.3. The following
lemma is a direct consequence of Lemma 2.4(ii).

LEmmA 3.1. (3) For ¢ = 3 scs, o f € span T4, we have o(ip) = {f €
EA : C'f :,é 0}.

(i) If oo = Fsep, chf € spanTa and v, — @ € SPAH T4, then
{o,myg) = Bmp_o ¢l for all f € Z4. In particular, o(p) = {f € Za :
limy, 00 cf # 0}.

For ¢ € span X4, let

I,={acA:p-a=0}
Then I, is a closed ideal of A. If ¢ # 0, then I, is a proper closed ideal
of A,
LeMMA 3.2. For any ¢ € 5pall X4, we have o{p) & Z(I,).

Proof Suppose ¢ € 5pan Xy, Let f € o(p). We need to show that
f € Z(I,). Let a € I,. Then ¢ -a = 0 and hence 0 = (p - a,mns) =
(f,a)(p,my) (by Lemma 2.4(i)). But (i, my) 5 0 (Lemma 2.4(ii)). It follows
that (f,a) =0 for all ¢ € I, ie., f € Z(I,). Therefore, o(ip) C Z(I,). m

The following simple lemma, is well known.

LEMMA 3.3. If X is a nondiscrete locally compact Hausdorff space, then
X contains a countable nonclosed subset.
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Now, we first cbserve the following description of the discreteness of 24
in terms of norm spectra.

THEOREM 3.4. The space 4 is discrete if and only if o(y) = Z(L,) for
all p € span Ly,

Proof. Suppose the space X4 is discrete. Let € 5pam £4. By Lemina
3.2, we only need to show that Z(1,) C o{p). Let f € Z(I,). Then I, C
ker f, that is, ¢ - @ = 0 implies (f,a) =0, for all @ € A. Since A is regular
and X'y is discrete, there exists a € A such that (f,a) = 1 and (g,a) = 0
for all g € T4\ {f}. So we can now take ms = a (m; is the same as in
Lemma 2.3). Since ¢ - a # 0 (otherwise, {f,a) = 0), there exists b € A such
that (¢ a,b) # 0, that is,

0+# {p-a, b) ={p-b, mf) = (fa b><(10’mf) (by Lemma 2-4(i))'

Thus, {@,ms) # 0. That f € o(p) follows readily from Lemma 2.4(ii).
Therefore, Z(I,) C o(p) and hence o(yp) = Z(I,).

Conversely, suppose o{p) = Z(I,,) for all ¢ ¢ 5pan T4. Assume that the
space X4 is not discrete. By Lemma 3.3, X4 contains a countable nonclosed
subset (fn)nz1. Let ¢ = 3 .00 27" f, € 8pan L4. By Lemma 3.1, we have
(@) = (fn)n>1, which is not closed. But the zero set Z(I,,) is always closed
in the space X4. So o(p) # Z{I,), a contradiction. Therefore, the space 374
is discrete. w

An element a in A is said to be (weakly) compact if the map 7, : A — A,
defined by 7,(2) = az, is (weakly) compact. It is well known that each a
in A is weakly compact iff A is an ideal in A** equipped with either of the
Arens multiplications {see Duncan and Husseiniun [11, Lemma 3]). One of
important results of Ulger [32] is that the space X4 is discrete iff each a in
A is (weakly) compact (see [32, Theorem 3.6]). Our Theorem 3.4 provides
another characterization for the discreteness of £4. In summary, we now
have the following.

CoRrOLLARY 3.5. The following assertions are equivalent:

(a) Bach a in A is compact.

(b) Each a in A is weakly compact.

(c) The space X4 is discrete.

(d) o{w) = Z(I,) for all p < Span L.

(e) A is an ideal in A** equipped with either of the Arens multiplications.

As an immediate consequence of Theorem 3.4, we have

COROLLARY 3.6. If the space X4 is discrete, then the algebra A has
property (S).
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Proof. Let ¢ € 5pan X4 \ {0}. Since ¢ # 0 and A is regular tauberian,
I, is a proper closed ideal of A. Thus, Z(I,) # 0. By Theorem 3.4, o(p) =
Z(I;) # 0. Therefore, A has property (S). =

REMARK 3.7. The converse of Corollary 3.6 is generally not true. For
example, A = A(R) = L'(R) has property (S) (see Katznelson’s book [25,
p. 163)), but X4 = R is not discrete. In §4, we will present some character-
izations for A(G) to have property (S) for all locally compact groups G.

Next, we investigate the structure of synthesizable ideals of A by using
norm spectra of elements in 5pan & 4. For any ¢ € spat X4\ {0}, we consider
the following conditions on :

(1) o = 327 cnfr for some ¢, € C and f,, € span X4 with (o(fn))n>1
pairwise disjoint.

{2) ¢ - a# 0 implies that o{¢ - a) # @, for all a € A.

{3) o(p) is (weak™) dense in Z(I,).

(4) o(0) # 0.

(5) The ideal I, is synthesizable.

The following result shows some implications among these conditions.

PROPOSITION 3.8. Let ¢ € 8pani U4 \ {0}. Then (1)=-(2)=>(3)=>(4) and
(2)=(5).

Proof. (1)=(2) follows from Lemma 3.1 and (3)=-(4) is trivial.

We now follow an argument of Ulger [32, Theorem 5.5] to prove that
(2)=(3) and (2)=(5).

(2)=>(3). Suppose (2) holds for p. Assume that o{p) is not dense in
Z(1,). Then there exists f € Z(I,,) such that f is not in the (weak*) closure
of o{¢). By the regularity of A, there is ¢ € A such that (f,a) # 0 and
{g,a) =0 for all g € o{¢). Thus, ¢ - a # 0. By the assumption of condition
(2), o(p - a) # (. However, by Lemma 2.4(iii), we have o(p - a) = o(p) N
{g € 24 : {g,a) # 0}. So, there exists g € o(p) such that {g,a) 5% 0, a
contradiction. Therefore, o(p) is dense in Z(I,,).

(2)=(5). Suppose y satisfies condition (2). Let J = I,,. We need to prove
that J ={pez, ker f. Clearly, J © (e gy ker f. To prove (Ve gy ker f
S J, let @ € (e p g ker f. Then {f,a) = 0 for all f € Z(J).

We claim that - ¢ = 0. Otherwise, by condition (2), o(¢ -a) = {g €
D4 i {g,a) # 0} # 0. Thus, there is g € o(p) such that (g,a) # 0. But
o(p) € Z(I,) from Lemma 3.2. We have (g,a) = 0, a contradiction. Hence,
@+ a =0, that is, a € I, = J. Therefore, J = ner(J ker f. It follows that
I, is synthesizable. m

ReMARK 3.9. (i) Let E be a closed subset of X4. Define I(E) =
.ﬂfe gker f. Then I(E) is the largest closed ideal of A whose zero set is E.
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The set F is said to be a set of spectral synthesis (s-set for short) if I{E) is

the only closed ideal of A with zero set F (cf. Hewitt and Ross [24, §39)).

Let I be a proper closed ideal of A. By definition, if Z(I) is an s-set, then
= I{Z{I)) = ﬂfEZ(I) ker f is synthesizable.

The converse is not true even for A = A(R) and ideals of the form I,,.
It is well known that R has a closed subset E which is not an s-set for
A(R) (Malliavin’s theorem). Suppose (z,)n>1 is a dense subset of £ and
let @ = Z:":l 27", € span 2y (). By Proposition 3.8, I, is synthesizable,
but Z(I,) = o(p) = E is not an s-set. On the other hand, it is true that
each proper closed ideal of 4 is synthesizable iff each closed subset of X 4 is
an s-set.

(ii) Let G be an infinite compact group with unit e and the normalized
Haar measure A. Chou, Lau, and Rosenblatt [7] called & having property (A)
if A € M§(G) = 8pan 24 (g). Suppose that & has property (A} (for example,
G = S0(n), n > 3; see Chou, Lau, and Rosenblatt [7] (for n > 5) and
Drinfel’d [10] (for n = 3, 4), see also Chou [6]). The closed ideal Iy of A(G)
is {0} and hence I is synthesizable. However, ¢{2) = § (see Lemma 3.14
below), Therefore, the synthesizability of I, does not imply that o(y) # 0.

If, in the above, we take ¢ = A + &, then o{¢) = {e} # @ but o(p) is
not dense in Z(I,) (= G). If we further assume that G is separable with
dense subset (@n)n>1 and let p = A + 302 27™4, , then ¢ satisfies (2)
but not (1). Therefore, we do not have (4)=(3) or (2)=>(1). The implication
(1) = © € [}(Z4) is not true either; see the example given by Cowling and
Fournier in [8, pp. 64-65]. We do not know whether the implication (3)=(2)
is true. We are only able to show that [(3) and (5)] = (2).

However, as stated in the following corollary, (2), (3), and {4) are squiv-
alent if they hold for all ¢ € 5p&ii 24 \ {0}. This follows readily from Propo-
sition 3.8 and the proof is essentially included in that of Ulger [32, Theorem
5.5].

COROLLARY 3.10. The following assertions are equivalent:

(a) The algebra A has property (S).
(b) For all € spam X4 \ {0}, o)} is (weak*) dense in Z(1,).
(c) For all ¢ € Bpani £4 \ {0}, @ satisfies condition (2).

Let I be a proper closed ideal of A. Under the assumption that A has
property (S), Ulger [32, Theorem 5.5] proved that I is synthesizable with
(weak™) separable zero set iff I = I, for some ¢ € spaiX, \ {0}. This
generalizes De Vito’s result on synthesizable ideals of L'(R) (see [9]). We
observe that only condition (2) was used in Ulger’s proof (not the prop-
erty (S) on the whole algebra A). Therefore, we have the following slightly
stronger assertion.
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THEOREM 3.11. Let I be a proper closed ideal of A. Then the following
statements are equivalent:

(a) I is synthesizable and Z(I) is {weak*) separable.
(b) I =1, for some @  5pan L4 \ {0} satisfying condition (2).

Proof. (b)=+(a). This follows from Proposition 3.8 and Lemma 2.4(iv).
(a}=(b). Assume that the ideal I is synthesizable and Z(I) is weak™ sepa-
rable. Let (fu)n>1 be a weak* dense sequence in Z(1). Let p = S 27 f
Then ¢ € spanZy \ {0} and ¢ satisfies condition (1) (hence condi
tion (2)). Now o(p) = (fn)n»1 (by Lemma 3.1). By Proposition 3.8, I, is

synthesizable and Z(I,) = o(p) = Z(I). Therefore, I = [, 7 ker f =
ﬂer(I.,) kerf=1,. u

COROLLARY 3.12 ([32]}. Assume that the algebra A has property (S) and
T4 is (weak*) separable. Then a proper closed ideal I of A is synthesizable
if and only if I = I, for some p € 5pan 24 \ {0}.

In the rest of this section, we present some applications of the results
obtained so far to the Figa-Talamanca—Herz algebra A,(G). Let G be a
locally compact group with unit e and a fixed left Haar measure A. Let 1 <
P < oo. Recall that A,(G) is a semisimple commutative regular tauberian
Banach algebra with spectrum G (via Dirac measures) and span L4, =
Mg(é). Also, Ap(G) has the SBP. For = € G, the set of topologically
invariant means on A4,(G)" at z is defined by TIM,(z) = {m € 4,(G)** :
lml = (m,&;) = 1and (M, T -w) = (m,T) for all T € A(G)*, u €
Ap(G) with |lu|| = u(z) = 1} (see Granirer [18] and [19]). In particular,

TIMy(e) = TIM,(G), the set of topologically invariant means cn A (G).
It is well known that TIM,(G) # @ (see Renaud [31, p. 287] for p = 2 and
Granirer {17, Theorem 5] for general p). And, it is also easy to see that, for
all z € G,

TIMp(z) = {om € A,(G)™ : m € TIM,(G)},
where (am,T) = (m,,1T) and (,T,u) = (T, ,u) for all T € A,(G)* and
u € Ay(G) (zu denotes the left translate of u by ).

For A = Ay(G), concerning the functional ms in Lemma 2.3, we have
the following observation.

LeMmMa 3.13. Let A = A (G) (1 < p < o0) and 2 € G. Then, for each
m & TIM,(G), we can choose ym as the functional my in Lemma 2.3.

Proof Let m € TIM,(G) and © € G. Then ,m € TIMy(z). Thus,
(m; 8,) = 1. We only need to show that (am, 8y} = 0 for all y € G\ {z}. To
prove this, let y € G\ {z}. Choose a compact neighbourhood U of e such
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that U7 NyU = 0. Let,
1 .
= ')T*ij'lmy * lU S AP(G)
Then ||lul = u(z) = 1 and u{y) = 0. Now, 6, - u = ufy)d, = 0. Therefore,
<mma 5y) = (m'?’na 51; ’ u) =0. »
The following lemma will be useful in the sequel. It shows that, if 4 €

M (G)ﬂMg (@), then the norm spectrum o (u) of 4 is completely determined
by the discrete part of the measure yu and is independent of the number P

LeMMA 3.14. Let A = A,(G) (1 < p < o0) and m € TIM,(G).

(a) If p € M(G), then, for all z € G, {p,om) = u({z}). In particular,
if p € M(G) N MIG), then

o(p) ={z € G: p{{z}) # 0}.
(b) If G is nondiscrete, then a(p) =0 for oll p € PE(G)N Mg(@)

Proof. (a) Let » € M(G) and z € G. Then ;-1 € M(G) is the
measure given by ,-:u(F) = u(zE) for all measurable sets . By Granirer
[17, Proposition 10,

(K, 2} = (m) am1d) = o~ u({e}) = u({z}).
Ifue M(G) ﬂM%(@), then z € o () iff (i1, ;m} # 0 (by Lemmas 2.4(ii)
and 3.13) iff u({x}) # 0. The second statement follows.
(b) Suppose G is nondiscrete and ¢ € PF,(G) N M3(G). Then there

exists a sequence (fn)n>1 in L(G) such that f, — ¢ in the ||- | 4, ¢y* -norm.
For all z € &, we have

{psam) = Hm (fn,am) =0 (by part (a)).
It follows, from Lemmas 2.4(ii) and 3.13 again, that (@) =0. =

For any T € Ap(G)", the support of T' is defined as follows: for z € G,
we let z ¢ supp T iff there is a neighbourhood U of  such that (T, u) = 0
for all w € A,(G) with suppu C U. An equivalent definition for supp7 is
that = € supp T iff T+ u = 0 implies u(z) = 0 for all u € Ay(G) (see Herz
[23]). Let ¢ € Mg(@) By definition, I, = {u € 4,(G) : ¢ - u = 0}, and
hence Z(I,) = supp .

To conclude this section, we would like to present the following corollary
as a summary of the applications to A,(G) of 3.2, 3.5, 3.6, 3.10, 3.12, and
3.14.

COROLLARY 3.15. Let G be a locally compact group and A = A,(G)
(L<p < 00). Then the following assertions hold:
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Forall p € Mg(@), we have a{p) C supp¢.
Bach u in Ay(G) is (weakly) compact iff G is discrete iff o(p) =

(a)
{b)
supp ¢ for all € MI(G Q) iff Ap(Q) is an ideal in A,(G)™.
(¢) If G is dzsc'r'ete then Ap(G) has property (S).

(d) Ap{G) has property (S) iff o{y) is dense insupp  for all p € Mg(@)

(¢) Suppose G is second countable and Ay(G@) has property (S). Then
o proper closed ideal I of Ap(G) is synthesizable iff I = I, for some ¢ €
MIB)\ {0}, )

(f) If Ap(G) has property (S), then either MS(G) =
PFy(G) = {0}

REMARK 3.16. The equivalence of G being discrete and A, (G) being an
ideal in A,(G)™* was given by Lau [27] for p = 2 and Forrest [15] for all p.
The following characterizations for the discreteness of G are also known.

(1) Ap(G) has the bounded power property, i.e., for f € Ay(G), ||fllsp =
lim,, || /™1™ < 1 implies that sup,, || f*|| < 1 (see Granirer [16]).

(2) 4,(3)" has a unique topologically invariant mean (see Renaud [31]
(for metrizable G) and Lau and Losert [28] (for general G) for p = 2 and
Granirer [20] for all p).

Fo(G) or MYE)N

4. Property (8), faithful trace, and *-isomorphism. From the dis-
cussion in §3, we see that it would be interesting to consider when an alge-
bra A has property (S). In this section, we will investigate this question for
A = Ay(G). Recall that T4, (g = G and Span X g = MZI(G). See the
text after Lemma 2.4 for more information on the algebra A,(G).

Since M$(G) is a C*-algebra, we start our discussion with p = 2.

Let m € TIMs(B), a topologically invariant mean on VN(G). Tt is
known that (rn, u) = u({e}) for all u € M(G) (see Dunkl and Ramirez [13,
Theorem 2.12 and Section 8[). Let tr = |, g, the restriction of m to

ME(G). The functional tr has the following properties:

(1) tr{par) = tr{vp) = 3 e p{zPv{{z 1)) for p,v € My(G),
(2) tr(u*p) = Fpeq {zh)|? 2 0 for u € Ma(G).

Therefore, tr is the unique finite trace on the C*-algebra Mg(@’) with
tr(p) = p({e}), u € My(Q). The trace tr is said to be faithful on ML(G) if
tr(p*e) = 0 implies that ¢ = 0 for all ¢ € M%(a), where p* denotes the
adjoint of ¢ as a bounded operator on L?(G).

Recall that Gg denotes the algebraic group G endowed with the discrete
topology. Then Md(Gd) is the reduced group C*-algebra of G4. Dunkl and
Ramirez showed in [12, Theorem 2.1} that ”’*‘”Md(Gd) < “’-"”Md(G) for all

# € Ma(G). Thus, the map g+ g, for p € My(G) = Ma(G4), extends to
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a surjective *-homomorphism I : M$(G) — M$(G3). A natural question
is: when is I' a »-isomorphism (or M(G) == ME(G3))? We answer this
question as follows.

LemMa 4.1. Let G be a locally compact group. Then ME(G) & MI(G3)
if and only if the trace tr is faithful on M3(5).

Proof. Dunkl and Ramirez used Tr in [12] to denote the finite trace on
M (Ba) defined by Tr(p) = u({e}), for u € M(Ga) = M3(Ga) = Ma(G).
Then Tr is continuous because it is also the restriction of a topologically
invariant mean. It is known that Tr is always faithful on M3(&y) (see [12,
Theorem 2.3]).

Now suppose M3(G) = MZ(G3). Then r = Tr and hence tr is faithful
on MY(G).

Conversely, suppose tr is faithful on ME(G).

First, we observe that Tr{I'p) = tr(p) for all ¢ € M%(@) In fact, if
4 € My(G), then I'(1s) = p and hence Tr(I'p) = p({e}) = tr(w). The
assertion follows from the continuity of I", Tr, and tr.

Next, let ¢ € ML(E) \ {0}. Then

(D) (Tp)) = Te(D () = (") > 0.

Thus, I'p 5 0. It follows that I' : M3(G) — MZ{(Ga) is injective and hence
is a #-isomorphism. m

We show in the following that the faithfulness of tr is also intimately
related to property (S).

LEMMA 4.2. The trace tr is faithful on MS(G) if and only if A(G) has
property (S).

Proof. Suppose the trace tr is faithful on MI(G). Then MI(G) =
MZ(G3) by Lemma 4.1. Let ¢ € ME(G). According to the proof of Dunkl
and Ramirez [12, Theorem 2.3], there exists a square-summable function F,
on (#4 such that

Qaf m) d): € G,

> F(ay ™)), fel*(C
yeG
and
wp0) = D [Fe() .
2€G
In particular, (¢l )(x) = Fy(z) for all z € G. By Lemma 3.14(a), it is
easy to see that if ¢ € My(G), then

(o, ma) = p({z}) =

(pliey)(z), z€G,
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where ™, is the same functional as in Lemma 2.3. Hence, for all z € G and
for all ¢ € Md(G’) we have (@, mg) = F(z). Therefore,

=Y [{p,me)* for all g € M§(G).
nEG

Property (S) of A(G) follows readily from the above equality and Lemma
2.4(i).

Conversely, suppose A(G) has property (S).

Assume that the trace tr is not faithful on MZ(G). Then there exists
¢ € MUE) \ {0} such that tr(¢*@) = 0. By the assumption of property (8),
we can take an g € o(p). Let p, =3 . chds € span Zy ¢ and ¢, — .
By Lemma 3.1, we have lim,—,q ¢ # 0. Thus,

tr{p*e) = lim tr(phyp,) (where ) = Zcmc?m—
Tl OO
wed
= lim tr( Z ¢ cndy—1m> = lim Z %[ > 11m lcZ0|® > 0,

#ye@
contradicting that tr(*p) = 0. Therefore, tr is faithful on MZ(G). w

Combining Lemmas 4.1 and 4.2, we are ready to present one of the main
results of this paper.

THEOREM 4.3, Let G be a locally compact group. Then the following
assertions are equivalent:

(1) A(G) has property (S).
(2) The trace tr is faithful on M3(G).
(3) M3(G) = M3(Ga).

In particular, A(G) has property (S) if either G is discrete or Gq is amen-
able.

Next, we consider property (S) for A,(G) with 1 < p < . Let @ be
amenable and 1 < p < oo. Herz showed that the identification of functions
gives a contraction 4 : A(G) — A,(G); dually, there is a contraction i*
Ap(G)" — A(G)" (see Herz [22)). In this case, ¢*(MI(F)) € MY(B). If we
use a,(ip} to denote the norm spectrum of ¢ in A,(@)*, then op() € o2 (5%)
for all ¢ € M3(E) since A(G)NCro(@) is | - | 4,(cy-dense in A,(G). We can
further prove that op(p) = o2(i*p) as follows.

LeEMMA 4.4, Let @ be an amenable locally compact group and 1 < p < o,
Then op(p) = oa(i*¢) for all ¢ € MI(G).
In particular, if A(G) has property (S), then so does Ay{G).
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Proof We only need to prove that oa(i*p) C o,(y) for all € MG )

Let ¢ € MS(G ) and 3 € 02(i*p). Let m € TTM»(G). By Lemma 3.13,
we have (1"@,z,m) # 0, that is, {,5**(;;m)) # 0. It is easy to see that
i**(2sm) = 2, (4**m) and hence {, 5, (i**m)) # 0. Since i**m & TIM, (&),
by Lemma 3.13 again, g € o,{p). It follows that o3(i* ) C o, ().

The second statement follows from the above argument and the inclusion

P*(MI(G)) € MI(G).

Finally, we discuss the relation between property (S) and amenability.
As mentioned in the introduction, Bédos [1, Theorem 3] showed that G4 is
amenable iff G is amenable and M§ (@) = M3(G;) (see also [2]). Combining
this result with Theorem 4.3 and Lemma 4.4, we can conclude the following.

THEOREM 4.5. Let G be locally compact group. Then the following as-
sertions are equivalent:

(1) G4 is amenable.
(2) G is amenable and A(G) has property (8).
{3) G is amenable and AL (G} has property (3) for all1 < p < .

ReEMARK 4.6. (i} We know that, the Fourier algebra A(G) has property
(S) if either G is discrete or Gg is amenable (see Theorem 4.3). But the
converse does not hold in general. In fact, let Fy denote the free group on
two generators and let G be any nondiscrete locally compact group such
that A(G) has property (S). Then Fz x G is neither discrete nor amenable
(hence it is not amenable as a discrete group). However, by Theorem 4.3
and [2, Theorem 1], it is easy to see that A(Fz x G) has property (S).

(ii) Recall the property (A) mentioned in Remark 3.9(ii). Chou, Lau,
and Rosenblatt [7] proved, among other characterizations, that an infinite
compact group G has property (A) iff M(@) N PFo(G) # {0}. For any
nondiscrete locally compact group G, the fact that A(G) has porperty (S)
implies M$(G)N PFy(G) = {0} (by Corollary 3. 15(f)). Meanwhile, it is also
possible that ME(G) N PF(G) = {0} for some compact group G (ie., G
does not have property (A)) and A(G) also fails to have property (S) (hence
(4 is not amenable). See [7, Remark 1.4] for such groups. Therefore, the
converse of Corollary 3.15(f) is not true.

(iif) There was a gap in the proof of [32, Proposition 5.4]. It can be seen
that the scalar A there is equal to (i, ms). Generally, we were unable to
draw that A = 1 or even A % 0. It is clear now that Proposition 5.4 of [32]
may not hold when G4 is not amenable.

Since any abelian group is amenable as a discrete group, we have the
following result as a simple application of Theorem. 4.5.
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COROLLARY 4.7. Let G be a locally compact abelian group. Then Ay(G)

has property (S) for all 1 < p < co.

We conclude this paper with the following immediate consequence of

Corollary 3.15(e) and Theorem 4.3.

COROLLARY 4.8. Let G be a second countable locally compact group and

1 < p < oc. If G is either discrete or amenable as a discrete group, then
a proper closed ideal I of Ap(G) is synthesizable if and only if I = I, for
some @ € Mg(G’) \ {0}

We thank the referee for his valuable suggestions.
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