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Extremal perturbations of semi-Fredholm operators
by

THORSTEN KRONCKE (Berlin)

Abstract. Let T be a bounded operator on an infinite-dimensional Banach space X
and 7 a compact subset of the semi-Fredholm domain of 7. We construct a finite rank
perturbation F such that min[dim N(T 4+ F — A), codim B{T'+ F -~ \)] =0 for all A € 2,
and which is extremal in the sense that F? = 0 azd rank F = max{min[dim N (T' — X),
codim R(T — A)]: A € £2}.

0. Introduction. Let X and Y be complex Banach spaces and B(X,Y)
the space of bounded operators from X to Y. An operator T € B(X,Y) is
called semi-Fredholmn if its range R(T) is closed and its minimum index is
finite. That is,

min.ind(T") = min{dim N(T'), codim R(T)] < oo.

(Here N(T) denotes the kernel of T'.) In this case the index of T is well
defined as

ind(7") = dim N{T) — codim R(T').
For two operators 5, T € B(X, Y’} the semi-Fredholm domain is the set
osr(T:8) ={AeC:T - AS is semi-Fredholm}.

It is well known that gs.p(T : 5} is open and that on its connected
components the mapping A ~ ind{T" — AS) is constant. The mapping A —
minind(?" — A8), however, is constant on each connected component of
og-n(T 1 §) except for a discrete subset where its value jumps up (see [Ka66],
Chap. IV, §5). Those exceptional points are called Kato’s jumps or jumps of
A =+ minind(T" — AS). They are precisely the points of discontinuity of the
mapping A ~ y(T' — A8) in ge.pr(T : §); here v(T'— AS) = inf{|| (T — AS)z| :
dist[z, N (T'=A8)] = 1} denotes the minimum modulus of T~ A8 (see [Ka58],
Thm. 3 in §6 and Thm. 4 in §7).

An analytic, B(X, Y )-valued function A — A(X) is called uniformly requ~
lor on the open set D C Cif A — y(A(N)) is strictly positive and continuous
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on D. In particular, the function A — T'—AS is uniformly regular on the open
set D C psr(T : §) if and only if there are no jumps of A — min.ind (T~ AS)
in D. (Recall that ¥(T) > 0 if and only if R(T") is closed.)

Now let T € B(X) = B(X,X) and let £2 be a compact subset of
osr(T) = gsp(T : I). Then (see [Ze92]) there exists a finite rank opera-
tor F € B(X) such that

(%) minind(T + F—A) =0 forall A € £2.

There have been a number of efforts to profit from the freedom which one
has in the choice of F, in order to give additional extremal properties to K:

(I-W) l:l-"-”,-'gﬂ:|2 = (FT—-—TF)2 = 0, .
(1) rank F = max{min.ind(7 ~ X) : A € 2},
(M-S) F?=0.

If F has property (L-W), it can be considered as extremal in view of
property (), because in general it cannot be chosen commuting with T (gee
[LaWe82]). The authors of [LaWe82] further showed that if {2 consists of
one Fredholm point of T, then there exists F with (x) and (L-W). This
was extended by O Searcéid, Boulmaarouf, and by Mbekhta (see [O S88],
[Bo&8], [Bo90] and [Mb93]). Finally, Zemének proved in [Ze92] that for every
compact set 2 C psp(T) there is an operator F satisfying (+) and (L-W).

Condition (I) expresses that rank F' is as small as possible in view of
property (*). It was considered first by Islamov for finite-dimensional X and
for arbitrary proper (not necessarily compact) subsets 2 of C (see [Is87]).
Forster and Jahn found F with property (I) in the case where {2 is a com-
pact subset of a connected component of the Fredholm domain of T' (see
[F6Ja92]).

Condition (M-S) was first considered by Markus and Sementsul in
[MaSe78|. For infinite-dimensional X and a Fredholm operator T" with ind(T'}
= 0 they constructed F with T 4+ F invertible and with properties (M-S)
and (I). Note that this is not possible in a finite-dimensional space X if for
example T' = (.

All the three conditions can be satisfied simoultaneously for a compact
set 2 C osr(T) if A — T — X is uniformly regular on an open neighborhood
D of £2. This was shown in [Ze92]. However, it is not always true in the
non-uniformly regular case. Férster and Krause showed (see [F6Kr96]): For
each Banach space there is a Fredholm operator T such that there is no finite
rank operator F with min.ind(T' + F) = 0 which satisfies (L-W) and one
of the conditions (I) or {M-S). But for the remaining combination “(I) and
(M-8)” we have: If X is infinite-dimensional and if 2 is a compact subset
of a connected component of pg.p{T), then there is F' € B(X) with (x), (I)
and (M-8).
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Qur main isgue here is that in the above result we can remove the re-
striction that (2 has to be contained in a connected component (see Theo-
rem 2.1). This is new even for the condition (I) or { M-S ) alone. Theorem 2.1
rounds off the results obtained so far: For every compact subset {2 of the
semi-Fredholm domain gg.»(T"), the properties (1) or (L-W) or (M-8} can al-
ways be satisfied, except that (M-S) requires infinite-dimensions. The only
combination of several of these properties is possible with (I) and (M-S) in
the infinite-dimensional case.

Our proof is different from the methods used in [F6Kr96] which do not
work in the more gencral case. We construct the range and kernel of the
extremal perturbation by an inductive process which allows us to take care
of more than one connected component of ps.p(T) at the same time.

The paper is organized as follows: The first section concerns comple-
menting spaces for the kernels and ranges of a given family of semi-Fredholm
operators. We prove in Lemma 1.1 that the relation “R(A(A) NV = {0}
for all X € 12" is stable under small perturbations of the finite-dimensional
space V C Y if the B(X,Y)-valued function A(') is uniformly regular on a
neighborhood of the compact set {2,

The main result of the first section (see Theorems 1.4 and 1.5) is that
in Theorem 1 of [Ze92] we can drop the uniform regularity assumption if
we consider a family of semi-Fredholm operators; note that Theorem 1 of
[2e92] was an important tool when constructing F with properties (L-W),
(1) and (M-S) in the uniformly regular case, Roughly speaking, we prove
Theorem 1.4 by first complementing the ranges of the uniformly regular part
of the semi-Fredholm family using Theorem 1 of {Ze92]. The complement
obtained already has rather nice properties, It remains to manipulate it by a
suitable small perturbation, while Lemma 1.1 ensures that its nice properties
are preserved. Finally, Theorem 1.5 follows by induction.

In the second section the extremal perturbation is constructed (see The-
orem 2.1). We use our results on complementing subspaces to give an in-
ductive construction of two spaces which by Proposition 2.1 of [F6Kr96] are
suitable to be the kernel and range of an operator with the desired proper-
ties,

1. Construction of complementing subspaces. The following lemma
will be an important tool when in the proof of Theorem 1.4 we pass to the
non-uniformly regular case.

Lemma 1.1. Let X and ¥ be Banach spaces, D € C an open set and
A — A(X) € B(X,Y) uniformly regular on.D. Let vy, ..., Vs, U1, tr be
linearly independent vectors in Y, where r < s. If 2 is a compact subset of
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D and
R(A(N))Nspanfvy,...,vs] = {0} forall A€ &2,
then there exists ag > 0 such that for all a € C with |a| < ap we have

R(A(N) N spanfvy + o, . ., Up + 0Up, Upt1, -, 05| = {0} forall A€ 0.

Proof. Assume there is no such cg. Then there exist sequences (o Jnen
in C and (An)nen in 2 with lim, o, = 0 and

RAM NNV, # {0} forallneN,

where V,, = span[vy + ctpt1,. .., + Gnle, Upil,-. ., V] For each n € N
choose z,, € X with A(My)zp, € Vo, dist[z,, N(A(AR))] 2 1/2 and |[z4]| = 1;
this is possible, because for fixed n € N there is first z, € X with 0 #
A(Mp)z, € Vi and m € N(A(M,)) with 0 < d = dist[zn, N(A(An))] <
|20 —ml| < 2d. For z, := ||z, — m| (2, —m) we have

dist[Zn, N(A(A))] = |20 — m|| 7 dist[zn — m, N(A(\))] = (2d)"d == 1/2

and A(Ap)Zn = ||2n — m|| 7 A(An)2n € Vi Since we have sup,, [[A(A)] £
supyeq | A(X)|| < oo, the sequence (A(An)Tn)r is bounded in the finite-
dimensional space span[vi,...,¥s,u1,...,%s]. Moreover, {2 is compact,
hence (A{Ar)Tn)n as well as (An)nen have some accumulation points. We as-
sume without loss of generality that (A{An)®n)r and (An)nen are convergent
and that lim,, A\, = Ay for some Ay € £2. Let

ADw)zn =3 B i+ anu) + Y ANy foralln €N
i=1 i=r+1
Since vy, ..., Vs, U1,-.., U, are linearly independent, there are g; € C with

lim, 8™ = B; for i =1,...,s. This implies

1131)4()”)33” = Zﬁivi =V E Spa‘n['ulu s 1'”3]:

i=]1

because lim,, &, = 0. Since (z,)n is bounded and lim, A, = Ao, we have
lim,, A{A\p)z, = v. This yields v € R{A(M\o)) M spanfvy,...,vs] = {0}. On
the other hand, for large n € N we have

AR Znll 2 Y(AQ)) distlzn, N (A )] 2 37(A(N0))3 > O,

because y(A(-)) is continuous on D. Hence ||v|| = lim, ||A(As)zx]| > 0, and
we got a confradiction. m

If €2 is a finite set, the above result holds without any regularity as-
sumptions. This follows by induction from Lemma 1.2, but is not needed
here.
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Lemma 1.2, Let X be o vector space, let m € X and let R; C X be
subspaces with m & Ry fori=1,... . r. If z € X, then there are at most r
complex numbers 3 with z4+ /fm e Ry L., .UR,.

Proof. Assume the assertion is not true. Then for at least one of the
spaces R;, say Ry, there exist two different complex numbers 8 and v such
that z+@m and z-+yrn are in Ry. But then (8—v)m = z+8m~(z+vym) € R,
and, consequently, m & Ry, which is a contradiction. =

Our next aim is to prove Theorem 1.5, Its result is partly contained in
Theorem 1 of [Ze92] if a uniformly regular family is considered. Although this
is not explicitly mentioned, the argument in the proof of Theorem 1 in [Ze92]
and in the following remark goes through for operators T, 8 € B (X,Y) also
if X # Y. To sec this, note that by Theorem 2 of [S186] the following is
ensured:

If the B(X,Y )-valued function A — A(X) is uniformly regular on the
open, bounded and connected set D C C and if Ay € D, then there exists
an analytic function f with f(X) € N(A(N)) for all A € D and with f())
prescribed.

From this expanded version of Theorem 1 of [Ze92] we draw the following
corollary.

CoroLLARY 1.3. Let X and Y be Banach spaces and T, S € B(X,Y).
Let A — T — A8 be uniformly regulor on an open neighborhood of a compact
set 2 C C. If codim R(T — AS) = 1 for all A € §2, then there exists y € Y
such that

y& R(T-AS) forallde 2

Now we prove Theorem 1.5 in the special case n = 1, The proof of
Theorem 1.5 itgelf then goes by induction.

THEOREM 1.4. Let X and Y be Banach spaces, let T, 8 € B(X,Y) and
let 2C pg.o(T: 8) be compact.

(a) If Zy CY are subspaces with codimZ; 2 1 fori = 1,...,r, then
there exivts o subspuee V C YV with dimaV = 1 such that

ZiNVe={0} fori=1,...,7, and
R(I = ASYNV = {0}  for all A € £ with codim R(T ~ A8) 2 1.

(b) If Z; C X are subspaces with dim Z; > 1 fori=1,...,r, then there

ezists a closed subspace W C X with codim W = 1 such that
Zi+W=X fori=1,...,r, oand
NT - A8)+W =X jorall \ e with dimN(T— A5) > 1.
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Proof. (a) The jumps of A — min.ind(7T' — AS) form a discrete subset
of psp(T : §). Since £2 is compact, the set of jumps in 2 ig finite. Hence
if we iterate Kato’s decomposition theorem (see Thm. 4 of §7 in [Ka58]),
we obtain the “Kato decomposition corresponding to the finite number of
jumps in 2", That is,

T=Ty®T, S=585

with respect to some decompositions X = Xo@® X; and ¥ = Yp @ Y11,
where Xy and Y are closed and dim X; = dimY; < oo. In particular,
0s.r(T : 8) = g5 ¢(To : Sp). Here A — min.ind(Tp — ASp) has no jumps in £2.
Further, o (T : S1) := {A € C: Ty — S} is not invertible} consists of exactly
the jumps of A — min.ind(7 — AS) in £2. In particular, o(Ty : S1) is a finite
set.

From the punctured neighborhood theorem (see [Ka66!, Chap. IV, §5) it
follows that

2 = {\ € 2 : codim R(Tp — ASy) > 1}
is compact. Since A — minind(Ty — ASy)} has no jumps in {2, we know
that X — Tp — ASp is uniformly regular on an open neighborhood of {2. By
Corollary 1.3 we find vy € Yy with

(1) 70 ¢ R(Tg - )\So) for all A € £2y.
By [F6Ja92], Lemma 2.4, there exists vy € Y1 with
(2) v € R(T1 — AS1) forall A e o(Th: Sh).

Again by [F6Ja92], Lemma 2.4, there are mq € Yp and m; € Y1 such that
(3) mo +my & Z;
Applying Lemma 1.1 and using (1), we find ap > 0 such that

(4) vo +amp € R(Ty — ASp)  for all A€ £y if |of € ap.

According to Lemma 1.2, by (2) and (3), we can choose 0 £ a1 < ag such
that

fori=1,...,r.

(5) v +aimy & R(Tl ~AS81) forallde G'(T1 : Sl)
and

(6) (vo+v1)+ ar(mo+mi1) € Z1U...UZ.
Let :

v:i=(vg+v1) +ai{me+mi) and V= spanu].

By (6) we already know that v &€ Z; U...U Z,. Hence it is only left to
show that v & R(T —AS) if A € 2 with codim R(T'—AS) = 1. Pick such a A,
If codim R(Th — ASg) = 1, then A € {24, Since 0 < oy < oy, we know from
(4) that vy + eymg & R(To — ASp) and hence v ¢ R(T — AS). If on the other
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hand codim R(Ty — ASp) = 0, then we must have codim R(Ty — A8) > 1,
which means A € (T3 1 51). By (5) we have vy + aym; ¢ R(Ty — A51) and
it follows that v ¢ R(T — AS).

(b) follows by duality from (a). w

TemoREM 1.5. Let X and Y be Banach spaces and let T, S & B(X,Y).
Let 2 C gs.r(T: 8) be compact and let n & N,

(a) Let Z G Y and M C Y be closed subspaces with codim Z > n >
dim M, and let codim R(T ~ AS) = n for all X € 2. Assume that

ZNM={0}, end RT-AS)NM={0} forallle 2.
Then there exists a subspace V C Y with dimV =n, M CV such that
ZNV={0}, and R(T-X8)NV ={0} foralie N

(b) Let Z C X and M C X be closed subspaces with dimZ > n >
codim M, and let dim N{T — AS) > n for all A € 2. Assume that

Z4+M=X, and NT-2S)+M=X fordl e
Then there ewists o closed subspace W C X with codimW =n, W C M
such that

Z4+W=X, and NT -AS)+W=X forallAe 2.

Proof (a)Let d :=mn — dim M. We construct a sequence of subspaces
M=VWCV C...CV;CY with dimV; = dim M -+ such that

ZNVi={0}, and RT-AS)NV;={0} forall Aec .

Then the assertion is true for V = V.

We proceed by induction. Set V := M. Now suppose V; as above is
already constructed for some 0 < i < d. Let @ be a bounded projection of ¥
along V;. Then @, considered as an operator from Y to R{Q), is Fredholm.
Hence for A € 2 we know that Q(T — \9) is a semi-Fredholm operator from
X to R(Q). That is,

(1) Q¢ osr(QT: Q8)  with QT,QS € B(X, R(Q)).
Further, we have
(2) codimgg) QZ = 1.

Indeed, assuming Q[Z] = R(Q) we obtain ¥ = R(Q} + N(Q) = Q[Z] +
N(@) € Z + N(Q). Hence codim Z < dimN(Q) = dimV; = i + dim M <
d+ dim M = n. We got a contradiction,

Replacing Z by R(I' — AS) in the above argument we also obtain

@ - codimpg) R(Q(T' - AS)) =1 forall A€ £.
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By (1)-(3) we are just in the situation of Theorem 1.4(a), where Y, T,
§ and Z are replaced by R(Q), QT, @S5 and Q[Z], respectively. Therefore
there is a vector r € R(Q) such. that

r & Q[Z], and r¢& R(Q(T —AS))

Note that, in particular, r € N(Q) = V.
Set Vips = V; @ spanfr]. Obviously dim Viyq = dima M +4 + 1. We show

ZNVi = {0}

Let 2 € Z N Vigy. Since V; = N(Q) and r € R(Q), we get @z € spanfr].
But then Qz = 0 because of r ¢ Q[Z]. Hence by the induction hypothesis
we obtain z € ZNN(Q) = ZNnV; = {0}.

It is left to show that R(T — AS)NV;11 = {0} for all A € 2. But this can
be done by replacing Z by R(T — AS) in the above argument. Thus Vi is
constructed.

(b) follows by duality from (a).

for all X € {2.

2. Construction of the extremal perturbation

THEOREM 2.1. Let X be o Banach space with dim X = o0. Let T € B(X)
and let 2 be a non-empty compact subset of ps.p(T). Then there exists o
Jfinite rank operator F € B(X) with

minind(T'+F~XN) =0 forallde 2, F?=0 and dimR(F)=Max.
Here Max := max{min.ind(T' — ) : A € 12}.
Proof First we construct the kernel of our operator F. Namely, we
show that there exists a subspace W C X such that
W is closed with codim W = Max,
(0) WNN({T—AX)={0} for all X € 2 with dim N(T — }) < Max, and
W 4+ N(T — Xp) = X = W+ R(T — o) for some Mg € 2.

For this purpose we first choose Ay € {2 with min.ind(T — Ap) = Max.

Next we construct a sequence of subspaces Wyrgx S ... CWL S Wy = X
such that for i = 0,1,..., Max,
W; is closed withcodim W; =4, W; + R(T — Xp) = X, and

1
) Wi+ N(T — ) = X for all \ € 22 with dim N(T ~ A) > .

Finally, for W := Wiy we show the properties stated under (0).

Construction of the spaces W;: Set Wy = X. Now suppose W; as above
is constructed for some 1 with Max > ¢ > 0. According to the punctured
neighborhood theorem (see [Ka66], Chap. IV, §5), the set

iy ={Ae 2 dimN(T - zi+1}
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is a compact subset of gs.p(T"). Now the induction hypothesis shows that
Wi and R(T — Ao} are closed subspaces of X with dim R(T — M)z i+l >
codim W; and

R(T—AU)—FW':X:N(T“—)\)-FW' for all A e 2;44.

(Here we need dim X' = 00 fo ensure that the semi-Fredholm operator T—Aq
is not of finite rank and hence dim R(T ~ Ag) > 4+ 1.) Applying Theo-
rem 1.5(b) to Z = R(T ~ M), M =W, and n = { + 1, we obtain a closed
subspace Wi © W, with codita Wiy = 141 and

B(T = o) + Wir = X = N(T = A) + Wiy
Thus Wiy is constructed.

Now W = Wiy satisfies (0): From (1) it follows directly that W is a
closed subspace with codim W = Max and W + R(T — &) = X. Further,
W+ N(T = ho) = Watax + N(T ~ Ag) = X, becanse dim N(T — Ao} >
min.ind(7" — Ap) = Max. It is left to show that

WAN(T—X)={0} forall X €2 with dim N(T ~ )) < Max.

Pick such a A and let 4 := dim N(T'~ )). Then (1) yields W;+N(T—X) = X.
Since codim W; == 4 = dimN(T' — X), we have W; N N(T — ) = {0}. But
W = Wnmex © Wy and, consoquently, W N N(I" — ) = {0}. This shows that
W hag properties (0).

In particular, (0) implies X = W + R(T — ) = W + (T — Ag)[W].
Therefore, from codim W = Max it follows that there is a subspace

2) VCW with dimV =Max and X =W & (T = Xo)[V].
But then we even have
(3) X=W@(T~MNV] foraleC
Indeed, for arbitrary A € C we deduce from (2) that
X=Wa (T —X) V]S W (T~ N[V]+V W + (T~ A)[V]

But dim(7" — A)[V] € dim V = Max = codim W, This proves (3).
Now set

forall A e ‘Q'i-l-l'

Us{weW :TweW}=T"Y(W)nwW
Clearly U is a closed subspace of W. We have
4) U+V=W and codimlU < oo.

Indeed, for w € W we see from (3) that Tw = w' + Tw for some w' € W
and v € V, Since V' ¢ W, this yields w —v € W with T(w —v) =w’ € W.
Hence w — v € U, which proves U + V = W. Now codimU/ < co follows

from dim V = codim W < oo.
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We are going to construct the range of our operator IF. This will be a
space
(5a) LCW with dimL = Max
such that
(5b) (T—NW]NL={0} forall Ae?with ind(T - ) <0,
(5¢) (T—A[W]+L=X forall A€ with ind(Z'— A} > 0.

For this purpose let Ty, Sy : T — W be the restrictions of T" and Idy
to U, respectively. Then Ty and Sy are well defined, because T[U] € W
and U C W. Clearly Ty, Sy € B(U, W). Now by (4), U is closed with finite
codimension. Hence if A € ggp(T), then Ty — ASy has closed range by

Lemma 333 of [Kab8] and the minimum index of Ty - A5y remains finite.
This shows

2 C osr(T) C os.r(Tv : Sp).

By Theorem 1.5(a) there is a sequence of subspaces {0} =Ly S L; € ... C
Lnax © Wosuch that for 1 = 1,. .., Max we have

(6) dimL;=14, and R(Ty — ASy) N L; = {0} for all A € 2 with
codimy R(Ty — ASy) = 4.
Now I, = Ivax has the properties stated under (5): Obviously we have
L € W with dim L = Max. Hence (5a) holds. In order to verify properties
(5b) and (6c) we make the following two cbservations (7) and (8):
(N codimwy (T — A)[U] = codim (T" — \)[W] forall Ae C.

Indeed, from (3) we have X = W @ (T — A\)[V]. Hence codimy (T'— \)[U] =
codim{{(T' — A){U] & (T — N)[V]}. But U + V = W by (4). This proves (7).
Next,
(8)  codim (T — X)[W] = Max — ind(T — A)
if A € 2 with dim N(T' - A) < Max.

Indeed, let P be a projection of X on W. Since W is closed with codim W
< 00, we see that P is Fredholm with ind(P) = 0. If A € 2 with dim N(T"-A)
< Max, then it follows from. (0) that R(P)NN(T—A) = WNN(T-A) = {0}.
This implies N{(T" —~ A)P) = N(P). Now (8) follows from

ind(T — A) = ind[(T" — A\)P] = dim N[(T - \)P] — codim R[(T' — A).P]

= Max — codim (7' — A)[W].

To prove (6b) let A € £2 with ind(7 ~ A) € 0. We have to show that

(T - N)W]N L= {0}. Now dim N(T' — )\) € Max. Hence (7) and (8) yield

codimy (T — A)[U] = codim (T — X)[W] = Max —ind(T — )) > Max.
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We recall that by definition R(Ty; — ASy) = (T — A)U]. Hence (6) implies
(T =00 L= R(Ty ~ ASp) N Ltax = {0}.

Now (T = A)[U] ® L is a subspace of W by definition of I/ and L. Further,
W is disjoint from (1" — A)[V] by (3). Hence

{T-MUle LN (T - NV SWn(T-A)[V] = {0}
Since I7 + V = W by (4), this yiclds
(T=NWINL={T-NU]& (T -NV]}nL={0}.
This proves (5h).
To prove (5¢) let A & (2 with ind(T - A) > 0. We have to show that
(T~ )W)+ L= X. If dim N{T - ) < Max, then by {7) and (8) we get

codimp (T — A)[U] = Max —~ ind(T - A) < Max.

If on the other band dim N(T' ~ A\) > Max, then by (1) and W = Wyyay
we have W + N(T'— A) = X. By (7) we get

MN[U] = codim (T — A)[W] = codim R(T — A)
= minind(T - A) £ Max

codimy (T' —

Hence in any case
i == codimpy (T — A)[U] < Max.

By definition, R(Ty — ASy) = (T — A)[U]. Hence from (6) it follows that
(T - M[U]N L = R(Ty — ASy) N Ly = {0}. Since we have dim[; = ¢ =
codimyy (T' — A)[U] this means

(T-NUleL;,=W.
Now it follows from (3), from U + V = W and from L; C L that
X=W (T~ NV]= [T - NU+ L+ (T - )V € (T - W]+ L

This proves (5¢), and hence the space L has properties (5).

Since W is closed with coditn W = Max == dim L, we can choose an
operator F' € B(X) with kernel N(F) = W and renge R(F) = L. Then we
know from (0) and (5b) that for all A € £ with ind(T'— X) <0,

NI~ NNNF)=NT~ANNW={0} and
(T = NIN(F)| A R(F) = (T~ NIWIN L= {0},
From (Bc) it follows that for all A € 2 with ind(T — A) 2 0,
R(IT - XN+ R(F)=R(T~N+L=X and
N(E)+ (T = XN RE) =W + (T —A)"HL) = X.

The sets {X\ € 2 : ind(T - A) < 0} and {} € 2 : nd(T ~ ) = 0} are
compact, because the index is locally constant and because {2 is compact.
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According to Proposition 2.1 of [F6Kr96], there exists a large number p € C
such that min.ind(T + pF — A} = 0 for all A € £2. We have (uF)* =0,
because R(uF) = L C W = N(uF). Finally, dim R(uF) = dim L = Max.
Hence the operator uF has the desired properties. m
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On regularization in superreflexive Banach spaces
by infimal convolution formulas

by
MANUEL CEPEDELLO-BOISO (Sevilla and Paris)

Abstract. We present here a new method for approximating functions defined on
superreflexive Banach spaces by differentiable functions with o-Hélder derivatives {for
some 0 < a £ 1). The smooth approximation is given by means of an explicit formula
enjoying good properties from the minimization point of view. For instance, for any func-
tion f which is bounded below anc] uniformly continuous on bounded sets this formula
gives a sequence of A-convex C1* functions converging to f uniformly on bounded sets
and pregerving the infimum and the set of minimizers of f. The techniques we develop
are based on the use of extended inf-convolubion formulas and convexity properties such
a8 the preservation of smoothness for the convex envelope of certain differentiable func-
tions.

0. Introduction and preliminaries. This paper introduces an ex-
plicit, regularization procedure for functions defined on superreflexive Ba-
nach spaces. For any function f bounded below and Ls.c. (resp. uniformly
continuous on bounded sets) on a superreflexive Banach space X we give by
means of a “standard” formula a sequence of C1**-smooth functions converg-
Ing pointwise (resp. uniformly on bounded sets) to f (where 0 < & < 1 only
depends on X). Under some additional conditions, the convergence of the se-
quence of approximate functions is uniform on the whole space X. Moreover,
the approximate functions preserve the infimum and the set of minimizers
of f. These features cannot be casily obtained from regularization methods
like the smooth partition of unity techniques (for a detailed study of this
topic we refer to Chapter VIIL3 of [DGZ], the references therein and [Fy])
or other results that only ensure the existence of smooth approximants (for
instance, see [DFH]),

In Hllbert spaces, our work is closely linked with the LasrymLzons ap-
prozimation method (introduced in [LL] and subsequently studied by several
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