

Contents of Volume 130, Number 1

D. Drissi, On a generalization of Lumer-Phillips' theorem for dissipative oper-	
ators in a Banach space	1-7
K. K. Park, α-Equivalence	9-21
E. Albrecht and W. J. Ricker, On p-dependent local spectral properties of	
certain linear differential operators in $\hat{L}^p(\mathbb{R}^N)$	23-52
G. Marletta and F. Ricci, Two-parameter maximal functions associated with	
homogeneous surfaces in \mathbb{R}^n	53-65
G. Marletta, F. Ricci and J. Zienkiewicz, Two-parameter maximal functions	
associated with degenerate homogeneous surfaces in \mathbb{R}^3	67-75
J. LUDWIG, Hull-minimal ideals in the Schwartz algebra of the Heisenberg group	77-98
G. Goes, Corrigenda to: "Generalizations of theorems of Fejér and Zygmund on	55
convergence and boundedness of conjugate series" (Studia Math. 57 (1976),	
241–249)	99-100

STUDIA MATHEMATICA

Executive Editors: Z. Ciesielski, A. Pełczyński, W. Żelazko

The journal publishes original papers in English, French, German and Russian, mainly in functional analysis, abstract methods of mathematical analysis and probability theory. Usually 3 issues constitute a volume.

Detailed information for authors is given on the inside back cover. Manuscripts and correspondence concerning editorial work should be addressed to

STUDIA MATHEMATICA

Śniadeckich 8, P.O. Box 137, 00-950 Warszawa, Poland, fax 48-22-6293997 E-mail: studia@impan.gov.pl

Subscription information (1998): Vols. 127-131 (15 issues); \$32 per issue.

Correspondence concerning subscription, exchange and back numbers should be addressed to

Institute of Mathematics, Polish Academy of Sciences
Publications Department

Śniadeckich 8, P.O. Box 137, 00-950 Warszawa, Poland, fax 48-22-6293997 E-mail: publ@impan.gov.pl

© Copyright by Instytut Matematyczny PAN, Warszawa 1998

Published by the Institute of Mathematics, Polish Academy of Sciences
Typeset using TEX at the Institute
Printed and bound by

Та ставивана 8. <u>На стававана</u> 02-240 Worstowa, ul. Jakobinów 23, 1el: 846-79-66, 1el/fox: 49-89-96

PRINTED IN POLAND

ISSN 0039-3223

STUDIA MATHEMATICA 130 (1) (1998)

On a generalization of Lumer-Phillips' theorem for dissipative operators in a Banach space

by

DRISS DRISSI (Kuwait)

Abstract. Using [1], which is a local generalization of Gelfand's result for power-bounded operators, we first give a quantitative local extension of Lumer-Phillips' result that states conditions under which a quasi-nilpotent dissipative operator vanishes. Secondly, we also improve Lumer-Phillips' theorem on strongly continuous semigroups of contraction operators.

1. Introduction. Formally, $u(\cdot) = T(\cdot)f$ solves the initial value problem

$$u'(t) = Au(t), \quad u(0) = f, \quad t \ge 0,$$

where A is the generator of the semigroup $\{T_t, t \geq 0\}$. Thus, from the point of view of solving initial value problems (or abstract Cauchy problems), it is natural to ask: which operators A generate (\mathcal{C}_0) semigroups? Conditions on the behaviour of the resolvent of an operator A which are necessary and sufficient for A to be the infinitesimal generator of a (\mathcal{C}_0) semigroup of contractions were given by E. Hille and K. Yosida. A different characterization of the generator of a (\mathcal{C}_0) semigroup was also given by G. Lumer and R. S. Phillips in [7]. In this paper, we give another characterization which improves the latter result. In Section 2, the main result provides certain growth conditions on the iterates of T, which give a local extension of Lumer and Phillips' result on quasi-nilpotent dissipative operators defined in a Banach space X.

2. Results. Let A be a linear operator with domain D(A) in a Banach space X, and let $D(x, 1) = \{f \in X^* : f(x) = ||f|| = 1\}$. If for any $x \in D(A)$, there exists an $f \in D(x, 1)$ satisfying $Re(f(Ax)) \leq 0$, then A is called a

Research supported by the Kuwait University Research Grant SM154.

¹⁹⁹¹ Mathematics Subject Classification: 47B10, 47B15.

 $Key\ words\ and\ phrases:$ dissipative operators, local spectrum, semigroup of contraction operators.

dissipative operator. It is easy to see that A is dissipative if

$$||tx - Ax|| \ge t||x|| \quad (t \in \mathbb{R}_+, \ x \in D(A)).$$

Let us denote by $C_{n!}(A)$ the set of all vectors $x \in D(A^{\infty}) = \bigcap_{n=1}^{\infty} D(A^n)$ such that for some $\lambda_x > 0$, $||A^n x|| \leq \lambda_x^{n+1} n!$ $(n \geq 0)$. We have the following result.

THEOREM 1. Let A be a closed dissipative operator on a Banach space X. Suppose that $C_{n!}(A)$ is dense in D(A). Then A generates a strongly continuous semigroup of contraction operators.

Proof. For any $x \in \mathcal{C}_{n!}(A)$, let

(1)
$$S(t)x = \sum_{n=0}^{\infty} \frac{t^n}{n!} A^n x.$$

The series in (1) converges for all t such that $|t| < \lambda_x^{-1}$. Thus S(t)x is analytic as a function of t in the interval $(-\lambda_x^{-1}, \lambda_x^{-1})$. If $t_0 \in (-\lambda_x^{-1}, \lambda_x^{-1})$, we define

(2)
$$S_{t_0}(t)x = \sum_{n=0}^{\infty} \frac{(t-t_0)^n}{n!} A^n x.$$

The function $t \to S_{t_0}(t)x$ is analytic in $(t_0 - \lambda_x^{-1}, t_0 + \lambda_x^{-1})$. Clearly

$$(S_{t_0}(t)x)_{t=t_0}^{(n)} = A^n x = (S(t)x)_{t=t_0}^{(n)}$$

for $n \geq 0$. Hence for $t = t_0$,

$$(3) S_{t_0}(t)x = S(t)x.$$

By the principle of analytic continuation, S(t)x is defined for all $t \in \mathbb{R}_+$ as a real-analytic function having a local representation (2). Clearly S(t) is a linear operator defined on $C_{n!}(A)$.

If $x \in \mathcal{C}_{n!}(A)$, then $S(t)x \in \mathcal{C}_{n!}(A)$. In fact, if we denote by $x_N(t)$ the N-th partial sum of the series in (2), then $x_N(t) \to S(t)x$. Also

$$Ax_N(t)
ightarrow \sum_{n=0}^{\infty}rac{(t-t_0)^n}{n!}A^{n+1}x$$

if $|t-t_0| < 1/(2\lambda_x)$. But A is closed. Hence

(4)
$$AS(t)x = \sum_{n=0}^{\infty} \frac{(t-t_0)^n}{n!} A^{n+1}x$$

and, by induction,

(5)
$$A^{j}S(t)x = \sum_{n=0}^{\infty} \frac{(t-t_{0})^{n}}{n!} A^{n+j}x$$

for $|t-t_0| < 1/(2\lambda_x)$ and $j=1,2,\ldots$ Moreover,

$$||A^j S(t)x|| \le 2^j \lambda_x^{j+1} j!$$

for $|t-t_0|<1/(4\lambda_x)$ and j=1,2,... It follows that if $|t-t_0|<1/(4\lambda_x)$ and $|u-t_0|<1/(4\lambda_x)$, then

$$S(t)S(u)x = \sum_{j=0}^{\infty} \frac{(t-t_0)^j}{j!} S(u)x = \sum_{j=0}^{\infty} \frac{(t-t_0)^j}{j!} \sum_{k=0}^{\infty} \frac{(u-t_0)^k}{k!} A^{j+k} x$$

$$= \sum_{j=0}^{\infty} \frac{(t-t_0)^j}{j!} \sum_{n=j}^{\infty} \frac{(u-t_0)^{n-j}}{(n-j)!} A^n x$$

$$= \sum_{n=0}^{\infty} \left(\sum_{j=0}^{n} \frac{(t-t_0)^j (u-t_0)^{n-j}}{j! (n-j)!} \right) A^n x$$

$$= \sum_{n=0}^{\infty} \frac{(u+t-t_0)^n}{n!} A^n x = S(u+t) x.$$

We have thus shown that S(u)S(t) = S(u+t) locally on \mathbb{R}_+ .

We now proceed to show that this relation holds globally on \mathbb{R}_+ . For fixed t such that $|t-t_0| < 1/(4\lambda_x)$ and for any $x \in \mathcal{C}_{n!}(A)$, set

$$\phi_{x,t}(u) = S(u+t)x - S(u)S(t)x$$

$$= \sum_{n=0}^{\infty} \frac{(u+t-t_0)^n}{n!} A^n x - \sum_{n=0}^{\infty} \frac{(u-t_0)^n}{n!} A^n x.$$

The first series converges for $|u-t_0|<1/(4\lambda_x)$, whereas the second for $|u-t_0|<1/(4\lambda_{S(t)x})$. Thus $\phi_{x,t}(u)$ is locally analytic for all $u\in\mathbb{R}_+$. But $\phi_{x,t}(u)=0$ for all $|u|<1/(2\lambda_x)$. Hence $\phi_{x,t}\equiv 0$, i.e. for a fixed t such that $|t|<1/(4\lambda_x)$ and for all $u\in\mathbb{R}_+$, S(u+t)x=S(u)S(t)x. Similarly, if we put

$$\psi_{x,u}(t) = S(u+t)x - S(u)S(t)x$$

and reason as before, we conclude that $\psi_{x,u}(t)$ is analytic for all $t \in \mathbb{R}_+$. But $\psi_{x,u} = 0$ for all t such that $|t| \leq 1/(4\lambda_x)$. Thus S(u+t)x = S(u)S(t)x for all $u, t \in \mathbb{R}_+$.

Next, we show that S(t) is a contraction operator on $C_{n!}(A)$. We apply the reasoning of [7, Theorem 3.2] to our situation. Since

$$||S(u)S(t)x|| = \left\| \sum_{j=0}^{\infty} \frac{u^j}{j!} A^j S(t) x \right\|$$

$$= \left\| S(t)x + \sum_{j=1}^{\infty} \frac{u^j}{j!} A^j S(t) x \right\|$$

$$= ||S(t)x + uAS(t)x|| + O(u^2)$$

Lumer-Phillips' theorem

5

we have

$$\limsup_{u \to 0^+} \frac{\|S(u+t)x\| - \|S(t)x\|}{u} = \limsup_{u \to 0^+} \frac{\|S(t)x + uAS(t)x\| - \|S(t)x\|}{u}$$
$$\leq \theta(S(t)) < 0,$$

since A is dissipative, where

$$\theta(S(t)) = \sup \{ \text{Re}[Ay, y] : ||y|| = ||S(t)x||, \ y \in D(A) \}.$$

(For the notation [Ay, y], see [7].) Since the first derived number in the sense of Denjoy is negative for all $t \in \mathbb{R}_+$, it follows that ||S(t)x|| is a decreasing function of t. Hence

(6)
$$||S(t)x|| \le ||S(0)x|| = ||x||$$

for all $t \in \mathbb{R}_+$.

We now show that the generator B of this semigroup coincides with A. If $x \in D(A)$, then

$$\lim_{t \to 0^+} \frac{S(t)x - x}{t} = Ax.$$

This shows that the restriction of B to D(A) is A. If $x \in D(B)$, it is known that

$$S(t)x - x = \int_{0}^{t} S(u)Bx \, du.$$

For $x \in D(A)$, S(u)Ax = AS(u)x and since A is closed,

$$\int_{0}^{t} S(u)Ax \, du = A \int_{0}^{t} S(u)x \, du.$$

For each $x \in D(B)$, there exists a sequence $\{x_n\} \subset D(A)$ such that $x_n \to x$. Hence

$$S(t)x - x = \int_0^t S(u)Bx \, du = \lim_{n \to \infty} \int_0^t S(u)Ax_n \, du$$
$$= \lim_{n \to \infty} A \int_0^t S(u)x_n \, du = A \int_0^t S(u)x \, du, \qquad x \in D(B).$$

Thus

$$Bx = \lim_{t \to 0^+} t^{-1} [S(t)x - x] = \lim_{t \to 0^+} A \left[t^{-1} \int_0^t S(t)x \, du \right]$$

and, since $t^{-1} \int_0^t S(t)x \, du \to x$, we conclude that $x \in D(A)$ and that Ax = Bx; in other words $A \supset B$. However, A is dissipative and B is maximal dissipative and therefore A = B.

As a corollary, we get the following theorem of Lumer and Phillips:

THEOREM 2. Let A be a closed dissipative operator on a Banach space. Suppose that $||A^nx||^{1/n} = o(n)$ on a dense subset of $D(A^{\infty})$. Then A generates a strongly continuous semigroup of contraction operators.

A closed linear operator A on a Banach space X is called *skew-Hermitian* if A and -A are both dissipative (when $A \in \mathcal{B}(X)$, A is skew-Hermitian if and only if iA is Hermitian, see [3]). An obvious modification of the proof of Theorem 1 readily gives the following theorem:

THEOREM 3. Let A be a closed skew-Hermitian operator on a Banach space X. For any $x \in C_{n!}(A)$, S(t)x is an analytic function of t defined on \mathbb{R} , ||S(t)x|| = ||x|| and

$$\frac{d^n}{dt^n}S(t)x = S(t)A^nx, \quad n = 1, 2, \dots$$

Moreover, for all $t \in (-\lambda_x^{-1}, \lambda_x^{-1}),$

$$\left\| \frac{d^n}{dt^n} S(t)x \right\| = \|S(t)A^n x\| = \|A^n x\| \le \lambda_x^{n+1} n!.$$

Let $T \in \mathcal{B}(X)$ and $x \in X$. We define Ω_x to be the set of $\alpha \in \mathbb{C}$ for which there exists a neighbourhood V_{α} of α and a function u analytic on V_{α} having values in X such that $(\lambda - T)u(\lambda) = x$ on V_{α} . This set is open and contains the complement of the spectrum of T. The function u is called a local resolvent of T on V_{α} . By definition the local spectrum of T at x, denoted by $\mathrm{Sp}_x(T)$, is the complement of Ω_x , so it is a compact subset of $\mathrm{Sp}(T)$.

In general, this set may be empty even for $x \neq 0$ (take the left shift operator on l^2 with $x = e_1 = (1, 0, \ldots)$). But for $x \neq 0$, the local spectrum of T at x is non-empty if T has the uniqueness property for the local resolvent. That is, $(\lambda - T)v(\lambda) = 0$ implies v = 0 for any analytic function v defined on any domain D of $\mathbb C$ with values in a Banach space X. It is easy to see that an operator T having spectrum without interior points has this property (for more details see [2]). For operators with this property there is a unique local resolvent which is the analytic extension of $(\lambda - T)^{-1}x$ to Ω_x . Also in this case the local spectral radius $r_x(T) = \max\{|z| : z \in \mathrm{Sp}_x(T)\}$ is equal to $\limsup_{k \to \infty} \|T^k x\|^{1/k}$. In general, we only have $r_x(T) \leq \limsup_{k \to \infty} \|T^k x\|^{1/k}$.

In 1941, I. Gelfand [4] proved that if T is a linear bounded operator on a complex Banach space X which satisfies $\operatorname{Sp}(T) = \{1\}$ and $\sup_{k \in \mathbb{Z}} ||T^k|| < \infty$, then T = I. This result was generalized by E. Hille in 1944 (see [5] or [6],

D. Drissi

Theorem 4.10.1), who proved that if $\operatorname{Sp}(T) = \{1\}$ and $||T^k|| = o(|k|)$ for $k \in \mathbb{Z}$, then T = I. In [1] and in [8], the following generalization of Gelfand-Hille's result was proved.

THEOREM 4. Let $T \in \mathcal{B}(X)$ and $x \in X$. Suppose that

(i) $Sp_x(T) = \{1\},$

6

- (ii) $||T^nx|| = o(n^p)$ as $n \to -\infty$, and
- (iii) $||T^nx|| = o(n^q)$ as $n \to \infty$.

Then $(T-I)^{\max(p,q)}x=0$. However, if $\min(p,q)=1$, then we obtain Tx=x.

As a corollary, we get the following local version of G. Lumer and R. S. Phillips' theorem.

THEOREM 5. Let $S \in \mathcal{B}(X)$ be a locally dissipative operator (i.e. $||e^{tS}x|| \le 1$ for all $t \ge 0$) and let $x \in X$ be such that

- (i) S is locally quasi-nilpotent, and
- (ii) $||e^{tS}x|| = O(t^k)$ as $t \to -\infty$, for some $k \ge 0$.

Then Sx = 0.

Proof. Apply Theorem 4 with $T=e^S$. In fact, the condition (i) implies, using the Riesz–Dunford functional calculus, that $\operatorname{Sp}_x(T)=\{1\}$. Since S is locally dissipative, we have

$$||T^nx|| = ||e^{nS}x|| = o(n)$$
 as $n \to \infty$.

So the conditions of Theorem 4 are satisfied with $\min(p,q) = 1$.

Here we give another local extension of Gelfand's theorem which improves Theorem 4 as well as Lumer-Phillips' theorem.

THEOREM 6. Let $T \in \mathcal{B}(X)$ and $x \in X$. Suppose that

- (i) $Sp_x(T) = \{1\},\$
- (ii) $||T^nx|| = o(n^p)$ as $n \to -\infty$, for some integer $p \ge 3$, and
- (iii) $||T^nx|| = o(n^2)$ as $n \to \infty$.

Then $(T-I)^2x=0$.

Proof. By Theorem 4, we have $(T-I)^p x = 0$. Suppose that $(T-I)^r x = 0$ for some $r \ge 3$. Let $y = (T-I)^{r-2} x$. Then $(T-I)^2 y = 0$. So

$$\frac{M_n(T)y}{n} = \left(\frac{n-1}{2n}\right)(Ty - y) + \frac{y}{n} \to \frac{1}{2}(Ty - y) \quad \text{(as } n \to \infty)$$

where $M_n(T) = (I + T + ... + T^{n-1})/n$. On the other hand, from (iii), we have

cm

Lumer-Phillips' theorem

7

$$\frac{M_n(T)y}{n} = (T-I)^{r-3} \left(\frac{T^n - I}{n^2}\right) (T-I)x \to 0 \quad \text{(as } n \to \infty).$$

Hence (T-I)y=0, which implies $(T-I)^{r-1}x=0$. By induction, we obtain $(T-I)^2x=0$.

References

- [1] B. Aupetit and D. Drissi, Some spectral inequalities involving generalized scalar operators, Studia Math. 109 (1994), 51-66.
- [2] —, —, Local spectrum theory and subharmonicity, Proc. Edinburgh Math. Soc. 39 (1996), 571-579.
- [3] F. F. Bonsall and J. Duncan, Numerical Ranges I and II, London Math. Soc. Lecture Note Ser. 2 and 10, Cambridge Univ. Press, 1971 and 1973.
- [4] I. Gelfand, Zur Theorie der Charaktere der Abelschen topologischen Gruppen, Mat. Sb. 9 (1941), 49-50.
- [5] E. Hille, On the theory of characters of groups and semigroups in normed vector rings, Proc. Nat. Acad. Sci. U.S.A. 30 (1944), 58-60.
- [6] E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, Amer. Math. Soc., Providence, 1957.
- [7] G. Lumer and R. S. Phillips, Dissipative operators in a Banach space, Pacific J. Math. 11 (1961), 679-698.
- [8] J. Zemánek, On the Gelfand-Hille theorems, in: Banach Center Publ. 30, Inst. of Math., Polish Acad. Sci., 1994, 369-385.

Department of Mathematics and Computer Sciences

Faculty of Sciences, Kuwait University

P.O. Box 5969, Safat 13060, Kuwait

E-mail: Drissi@math-1.sci.kuniv.edu.kw

Received February 20, 1996 (3622) Revised version September 24, 1996