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STUDIA MATHEMATICA 130 (1) (1998)

On a generalization of Lumer—Phillips’ theorem
for dissipative operators in a Banach space

by

DRISS DRISST (Kuwait)

Abstract. Using [1], which is a local generalization of Gelfand’s result for power-
bounded operators, we first give a quantitative local extension of Lumer—Phillips’ result
that states conditions under which a quasi-nilpotent dissipative operator vanishes. Sec-
ondly, we also improve Lumer—Phillips’ theorem on strongly continuous semigroups of
contraction operators.

1. Introduction. Formally, u(-} = T(-) f solves the initial value problem
uw(t) = Au(t), w(@)=f, t>0,

where A is the generator of the semigroup {7}, t > 0}. Thus, from the point
of view of solving initial value problems (or abstract Cauchy problems), it
is natural to ask: which operators A generate (Cy) semigroups? Conditions
on the behaviour of the resolvent of an operator A which are necessary
and sufficient for A to be the infinitesimal generator of a (Cp) semigroup
of contractions were given by E. Hille and K. Yosida. A different charac-
terization of the generator of a (Cy) semigroup was also given by G. Lumer
and R. S. Phillips in [7]. In this paper, we give another characterization
which improves the latter result. In Section 2, the main result provides cer-
tain growth conditions on the iterates of T', which give a local extension of
Lumer and Phillips’ result on quasi-nilpotent dissipative operators defined
in a Banach space X.

2, Results. Let 4 be a linear operator with domain D(A) in a Banach
space X, and let D(z,1) = {f € X*: f(z) = [ f|| = 1}. If for any = € D(4),
there exists an f € D(x, 1) satisfying Re(f(Ax)) < 0, then A is called a

1991 Mathematics Subject Classification: 47B10, 47B15.

Key words and phrases: dissipative operators, local spectrum, semigroup of contraction
operators. ' )

Research supported by the Kuwait University Research Grant SM154,
“S\'TEQ
[ %% ™\



2 D. Drissi

dissipative operator. It is easy to see that A is dissipative if
Itz — Azi| = tiz||  (t € Ry, z € D(A)).

Let us denote by Cni{A) the set of all vectors 2 € D(A>°) = N2, D(A")
such that for some A, > 0, |A%z|| < A2+n! (n > 0). We have the following
result.

THEOREM 1. Let A be o closed dissipative operator on a Banach space X.
Suppose that Cpi(A) is dense in D(A). Then A generates a strongly contin-
wous semigroup of conlraction operators.

Proof. For any z € Cpi{A), let

(1) a:-"z A“

The series in (1) converges for all ¢ such that |¢| < A;*. Thus S(t)z is
analytic as a function of ¢ in the interval (—A71,A;1). It to € (=271, AN,
we define

o= (t—t)™ ..
(2) St (B = }:0 (‘%A
The function t — Sy, (t)z is analytic in (to — A;%, to + Ag1). Clearly
(St (D2){Z), = A% = (S(B)2){Z,
for n > 0. Hence for £ = 1y,

(3) Sio () = 8(t)a.

By the principle of analytic continuation, $(t)z is defined for all ¢ € Ry as
a real-analytic function having a local representation (2). Clearly S(t) is a
linear operator defined on Cn1(A).

If 2 € Cni(A), then S(t)z € Cy(A). In fact, if we denote by zn(t) the
N-th partial sum of the series in (2), then zn(t) — S(t)z. Also

Azt Z - t" G

n=0
if |t — to] < 1/{2);). But 4 is closed. Hence
(t - tU) n
(4) AS(tyx = ;TA tlp

and, by induction,

& A15(t)e = Z(t”t") An+ig

om0
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for {t —to] < 1/(2);) and j = 1,2, ... Moreover,
147 S()al < 2725 51

for |t — tp| < 1/(4Az) and j = 1,2,... It follows that if |t — tg| < 1/(4A;)
and |u— to| < 1/(4Az), then

o=y iy

F=0

= Kl

!
J: k=0

1l

&8

—t i — oy
(t 0 Z ( tO) Atz

n—JH

3
CJ

n=j

_ i (Z (t = to) (u “.tf’)n_j ) Ao

= -3

=0

We have thus shown that S(u)S(t) = S(u-+t) locally on R,..
‘We now proceed to show that this relation holds globally on Ry . For
fixed ¢ such that |t —tg| < 1/(4X;) and for any = € C,{4), set

¢,t(u) = S(u + t)z — S(u)S({t)z

o . n oo _ n
— Z (u+t tO) Atz — Z (U- fO) Atz
= ! opar n!

The first series converges for |u — tp| < 1/(4X;), whereas the second for
|u — to] < 1/(4Xg(sy,). Thus ¢z +(u) is locally analytic for all w € Ry. But
$ot(w) =0 for all ju| < 1/(2)\,;) Hence ¢, =0, ie. for a fixed ¢ such that
[t] < 1/(4A;) and for all w € By, S(u+t)z = S{u)S(t)z. Similarly, if we put

berult) = S(u+ )~ S(w)S(H)a
and reason as before, we conclude that ¥, ,(t} is analytic for all £ € R,

But 4, = 0 for all £ such that |t| < 1/(4A;). Thus S(u + t)z = S{u)S(t)z
for all u,t € Ry.

Next, we show that § (t) is a contraction operator on Cpi(A). We apply
the reasoning of {7, Theorem 3.2] to our situation. Since

[15(u}S ()] =

= HS(t)as + Zl ﬁAJS(t)m
J:

= [|S()z + udS(t)al + O(w?)
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we have
lim sup 15 (u + t)a| — 1S@)=]l _ lim sup |S(t)z + uASt)z| — ||S(t)z|]
-0t U w0 u

<B(S(t)) <0,

since A is dissipative, where
8(5(t)) = sup{Reldy, 1] : [lyll = |S(#)=ll, v € D(A)}.

(For the notation [Ay,y], see [7].) Since the first derived number in the sense
of Denjoy is negative for all ¢t € Ry, it follows that ||S(t)z| is a decreasing
function of ¢. Hence

(6) 158 < [|S(0)z] = ||=

forallt e Ry.
We now show that the generator B of this semigroup coincides with A.
If £ € D(A), then
L S =
t—0+ t
This shows that the restriction of B to D(A) is A. If x € D(B), it is known
that

z = Az,

St —z= §S(u)B:c du.
o

For z € D(A4), S(u)Az = AS(u)z and since A is closed,
t r
S S(u)dzdu= A S S{u)z du.
0 0
For each © € D(B), there exists a sequence {z,} C D{A) such that z, — «.
Hence
t t
S{t)a ~ o = | S(u)Bx du = Jim | S(u) Az, du
0 0
¢ ¢

= T}H&,AS S(u)z, du = ASS(u)m du,
0 0

z € D{B).

Thus
t

— e s—1 ol = T -1
Bz = lim t7[S(t)o— ] = lim Alt (S]S(t)m du]
and, since ¢ SE S(t)wdu — x, we conclude that x € D(A4) and that Az =
Bz; in other words A O B. However, A is dissipative and B is maximal
dissipative and therefore A = B.
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As a corollary, we get the following theorem of Lumer and Phillips:

THEOREM 2. Let A be a closed dissipative operator on a Banach space.
Suppose that ||A”:c||1/" = o(n) on a dense subset of D{A®). Then A gen-
erates a strongly continuous semigroup of contraction operators.

A closed linear operator A4 on a Banach space X is called skew- Hermitian
if A and —A are both dissipative (when A € B(X), A is skew-Hermitian if
and only if 74 is Hermitian, see [3]). An obvious modification of the proof
of Theorem 1 readily gives the following theorem:

THEOREM 3. Let A be a closed skew-Hermitian operator on a Banach
space X. For any x € Coi(A), S(t)z is an analytic function of t defined on R,
15z = ||zl and

dr ‘
—8(t)e = S(t)A"z, n=12,...
dtn
Moreover, for all t € (—A71, A1),
ar N
gy = M| = < ATHpl
| S50 = 1s@a7el = aral < 357

Let T € B(X) and z € X. We define £2; to be the set of & € C for
which there exists a neighbourhood V,, of « and a function u analytic on
Ve having values in X such that (A — T)u{}) = z on V,. This set is open
and contains the complement of the spectrum of 7. The function « is called
a local resolvent of T on V. By definition the local spectrum of T at =z,
denoted by Sp,(T), is the complement of 2, so it is a compact subset of
Sp(T)-

In general, this set may be empty even for = £ 0 (take the left shift
operator on 12 with z = e; = (1,0, ...)). But for z # 0, the local spectrum of
T at z is non-empty if T has the uniqueness property for the local resolvent.
That is, (A — T)u(A) = 0 implies v = 0 for any analytic function v defined
on any domain D of C with values in a Banach space X. It is easy to
see that an operator T' having spectrum without interior points has this
property (for more details see [2]). For operators with this property there
is a unique local resolvent which is the analytic extension of (A — T) 'a
to £2.. Also in this case the local spectral radius r5(I') = max{|z| : z €
Sp,(T)} is equal to lim supy_, .. ||7%z|*/*. In general, we only have 7, (T) <
lim supy, _, o | T%]|*/*.

In 1941, I. Gelfand [4] proved that if T is a linear bounded operator cn a
complex Banach space X which satisfies Sp(T’) = {1} and sup, ¢z || T%|| < oo,
then T' = J. This result was generalized by E. Hille in 1944 (see [5] or [6],
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Theorem 4.10.1}, who proved that if Sp(T) = {1} and ||T*| = o(|k|) for
k € Z, then T' = I. In [1] and in [8], the following generalization of Gelfand-
Hille's result was proved.

THEOREM 4. Let T'€ B(X) and ¢ € X. Suppose that
(i) 8p,(T") = {1},
(i) |T"z|| = o(n?) as n — —oo, and
(iif) | T™z| = o(n9) as n - oo.
Then (T — I)mexpdly = 0. However, if min(p,q) = 1, then we obtain
Tz = x.

As a corollary, we get the following local version of G. Lumer and R. §.
Phillips’ theorem.

THEOREM 5. Let § € B(X) be a locally dissipative operator (i.e. etSz||
<1lforallt>0) and let © € X be such that

(i) S is locally quasi-nilpotent, and
(i) le*Sz| = O(t*) as t — —o0, for some k > 0.
Then Sz = 0.
Proof. Apply Theorem 4 with T' = €. In fact, the condition (i) implies,

using the Riesz—Dunford functional calculus, that Sp,,(T) = {1}. Since § is
locally dissipative, we have

IT"z]| = [le**=| = o(n)

So the conditions of Theorem 4 are satisfed with min(p, q) = 1.

as 1 — oO.

Here we give another local extension of Gelfand’s theorem which im-
proves Theorem 4 as well as Lumer-Phillips’ theorem.

THEOREM 6. Let T € B(X) and z € X. Suppose that

(1) 8p,(T) = {1},
(ii) [|T"z)| = o(nP) as n — —oo, for some integer p > 3, and
(iti) [T™=2| = o(n?) as n — oo,
Then (T — I)’z = 0.

Proof. By Theorem 4, we have (T'—I)}?z = 0. Suppose that (7— I)"z =0
for some r > 3. Let y = (T'— I)"~?z. Then (T — I)?y = 0. So
M. (T)y n-1 | y 1

= ( o )(Tymy)Jr n 3Ty -y
where M, (T) = (I +T +...+T"')/n. On the other hand, from (iii), we
have : :

(as n — o0)
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™1
oY)

Mo(T)y _
n

(T — I)r~3(

Hence (T'—I)y = 0, which implies (T—I)"~'z = 0. By induction, we obtain
(T -1z =0.

)(TﬂI)m—>O (as n — o0).
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