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Two-parameter maximal functions associated with degenerate
homogeneous surfaces in R?

by

GIANFRANCO MARLETTA (Torino), FULVIO RICCI (Torino)
and JACEXK ZIENKIEWICZ (Wroctaw)

Abstract. We consider the two-parameter maximal operator

Mf(z)= sup | |f(z~(as,bI(s)))|ds
a,b>0|s|<1

on a homogeneous surface z3 = I'%1,z2) in R°. We assume that the curvature of the
level get I"(wy,x2) = 1 has a degeneracy of finite order k at a given point. We prove that
the operator M is bounded on L if and only if p > max{3/2,2k/(k -+ 1}}.

1. Introduction. This paper is a sequel to [MR], where maximal oper-
ators in R™ of the form

(L1) Mf(z)=sup | |f(z—(as,bI(s)))ds
a,b>018[<1

have been introduced. In (1.1}, s € R** and I'(s) is a function homogeneous
of degree d > 0 and smooth away from the origin. So the integrals in (1.1) are
averages taken over the surface z, = I'(zy, ..., 2,-1). In [MR] the range of
LP-boundedness for M has been determined under appropriate assumptions
on the curvature of the surface.

We review the general properties of M presented in [MR], restricting our
attention to dimensions n > 3. To avoid trivialities, we assume that I" is not
identically 0.

If d # 1, imposing the restriction ¢ = b in (1.1), we obtain a kind of
“spherical” maximal function associated with I". This shows that M cannot
be bounded on L unless p > n/(n — 1). By a different argument, the same
restriction on p holds when d = 1.
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68 G. Marletta et ol

Conversely, M is bounded on L? for p > n/(n — 1} when one of the
following conditions is satisfied:

(1) d # 1, and the Gaussian curvature of the surface x, = I'(zy,...,
%n—1) does not vanish away from 0;

(2) d = 1, I' does not vanish away from 0 and the level set I'(z) = £1
has non-zero Gaussian curvature in B!,

In this paper we extend this analysis to homogeneous surfaces in R? with
a degeneracy in the curvature of finite order & along a generating line. We
are forced to impose the restriction that this degenerate line does not lie
on the plane z3 = 0. Because of the special form of the operator (1.1), the
presence of degenerate points on the plane x3 = 0 would require a different
analysis.

Under the assumptions that will be made precise in Section 2, we prove
that the operator M is bounded on L? if and only if p > max{3/2,
2k/(k+ 1)}

We remark that, even though the surface has different geometrical prop-
erties in the cases d # 1 and d = 1, the final result is independent of the
value of d. However, as in [MR], the proofs for the two cases present some
differences.

It is interesting to observe that the critical exponent is always smaller
than 2. This means in particular that M is always bounded on L? in the
cases under consideration, regardless of the order & at which the curvature
vanishes. As a matter of fact, following a remark by J. Wright, we also prove
that for certain “fat” functions I' the corresponding operator M is bounded
for p > 2. This contrasts with the “completely flat” situation where I' is
linear, in which case a comparison with the Kakeya maximal function shows
that M can only be bounded for p = co.

2. The maximal theorem. We shall use consistently the following
notation: if z = (z1,%2,®3) is a point in B3, then z' denotes the point
(931, 5’52) in R2,

‘We localise our analysis near the degenerate line, which we make corre-
spoend to 21 = 0, We assume therefore that I is a C%-function defined on
an angle |z1| € exg in R?, where ¢ is chosen so that I does not vanish for
|z1| < cze. We can also assume that I'(0, 1) = 1.

Since

gﬂ(o, 1) = (0,1)-VI'(0,1) = dI'(0,1) = d # 0,
T2

if ¢ is small enough the level set B = {2’ : I'(z') = 1} coincides with the
graph of a C%-function 25 = 1 4 y(z1), with 7(0) = 0.
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We next perform a linear transformation in the plane z3 = 0 to reduce
ourselves to the sitnation where v is ¢ in a neighborhood of [-1,1], and
7'(0) = 0. Such a transformation induces a conjugation on the operator M
which does not alter its norm.

We can now express the degeneracy condition by requiring that
(2.1) crfsl*™* < |v(s)| € calsf*?
for some k > 2.

Then the points on the surface 23 = I'(z"} that lie above the z; axis
have one principal curvature vanishing of finite order k. The other principal
curvature is non-zero when d s£ 1 and identically zero when d = 1, i.e. when
the surface is a cone. Observe that we are requiring that these degenerate
points do not lie on the plane z3 = 0.

Parametrising the surface by

(2.2) (r,8) = (r, (14 9(8)), 7,
the maximal function we wish to consider is
11
(2.3) M f(z)= sup S S |f{zy — ars,mg — ar(L +(s)), s — br?)|r dr ds.
a,b>0 7y 5 .

The rest of the paper is devoted to the proof of the following result.

THEOREM 2.1. M is bounded on LP if and only if p > max{3/2,
2k/(k+ 1)}

We first prove the necessity of this restriction on the values of p. The
condition p > 3/2 appears already in [MR] in the case of a well-curved
gurface, and its necessity in the present context can be proved in the same
way. Hence we concentrate our atbention on the other condition.

For £ small, let f. be the characteristic function of the set {x : |z;| <
1,|ze! < &,|m3| < £}. The value of M f, at a point 2 such that |z;| < 1/2,
1 <2y < e~ V/=1 2, < x5 < 22, is not smaller than the integral

}

for a = 29 and

felwy — ars, g — ar{l + v(s)), zg ~ br¥)r dr ds

ot O

= g3. This integral is extended to the set where
oy — zars| < 1,
|1 = 7(1+v(s))] <,
z3]l ~ ¢ < e,
All conditions are simultaneously satisfied if we take r close to 1 and
ranging over an interval of length proportional to £/, and |s| smaller than
a constant times (¢/x2)!/*. Therefore at such a point we have

Mfe(z) > e(e/ma) TV,
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It follows that

M fellp
- p
S celtl/k S z; PAALR) o ey d:c3)
ooy | <1/2, 1<@g<e ™/ (=1, @a <y <L2mg
1/p
- k
=CE1+1/1:( S ) p(L+1/ )de)

1<my e/ (b1}

{51+%-n1—1(%~1—%) if p < 2k/(k+1),
(2 log e~1)1/P if p=2k/{k+1).
Since || fz|lp = c£2/?, this shows that M cannot be bounded on L7 for p <
2k/(k+1).

We now prove the sufficiency of the condition p > max{3/2, 2k/(k+1)}.
As in [MR], we can reduce matters to considering the operator

M f(z) = sup | “ Flzy—2'rs, zg — 20 (1 +(s)), 2a — brd)p(r)(s) drds
€Z,5>0
for some smooth cut-off functions v € C§°(1/2,3) and ¢ € C§°(—1~4, 1+6),

which are identically 1 on a consistent part of their support.
We then consider the multiplier corresponding to M,

(2.4) m(€) = SS6—Zwi(Elrs+£zr(1+'v(a))+ésr‘)(p(,.w(s) dr ds;

it is such that ~

(2.5) Mf(z)= sup |FH(m(2¢bEs)f(£))(=)i
i€2,b>0

We decompose m {and consequently M’) into three parts by means of
appropriate cut-off functions in the £ variable. The first, obtained by means
of a smooth cut-off which is identically 1 near the origin, gives rise to a
maximal operator which can be easily controlled by the strong maximal
function. This part will therefore be disregarded in the following discussion.

Next we take a cone ¢ in R? of the form

C={t:a<|gf/& < e}
which contains, in a proper subcone, the normal directions to the surface
(rs,r(1-+v(s)),r%) for r € [1/2,3] and s € supp 1. By means of a smooth cut-
off n which is homogeneous of degree zero, identically 1 on C and supported
on a small neighborhood of C, we split the remaining part of m into two
parts, one supported near C, the other, called 7, supported outside C.

LeMma 2.2. The operotor
Mf(z) = stlfo17’“1(7'71(2“'5’,bEs)f(E))(m)l
is bounded on L? for p > 6/5.
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Proof. The argument used in [MR] cannot be repeated here, because 7
does not decay sufficiently rapidly to allow a control of M by means of the
strong maximal function. Observe in fact that, since the phase function in
(2.4) is assumed to be only twice differentiable, the best we can say is that
m(€) = O(|¢|72) together with all its derivatives.

We take instead a smooth two-parameter partition of unity w;(€) =
w(2-9¢',27!€3) to decompose 7 as a sum of iy = Mw;y, in such a way that
4 is supported where |¢/| ~ 27 and |£;] ~ 2.

The congtants ¢1, ¢g in the definition of the cone C can be chosen so that,
for some n > 0, only the indices j,! > 0 such that |j — | > n intervene in
the decomposition of M. For such values of 4 and [, we have the estimate

(2.6) |aamﬂ{€)| < Ca2—2max{j,l},

for every multi-index c.

Let Mj; be the maximal operator defined by the multiplier ;. We apply
a variant of the argument used in the proof of Lemma 2.1 in [MR], based
on the following estimate: if g(a, b) is a C* function defined for ¢,b > 0 and
such that g{a,0) = g(0,b) = 0, then

s ota) <0 (T T oo 222)
(T o] 22)"
(T ] 22)”
X (ogog b9 (a,b) Qd”;fb)l/z)w.

Following the same lines as in [MR], this gives the L*-estimate
[ Mjt]]2,2 < C2m2mex(at),

In order to obtain an estimate for p near 1, consider the inverse Fourier
transform F~ iy = $y. By (2.6), for every multi-index o, we have

|z® jl(w)l < Stacxmﬂ (£) d¢ < C9%i+g—2max{il}

This implies that lTa;jg is controlled by the strong maximal function in
R® multiplied by a factor of the order of 22/ +i-2max{il}. 8o if g is near 1,
the norm || M|, is controlled by a constant times 2%/+!~2max{#{},
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If6/5 < p < 2, we can write 1/p = (1 —6)/s + 6/2 for some s > 1 with
1/(36) < 1. By interpolation,

HEIHP,P < 02(2j+l—2max{j,l})(l»—@)—-?@ max{j,l},

and it is a simple exercise to show that the series
Z o (2i+i-2max{s,1})(1-6)~20 max{},}
3d>0

converges for 1/(36) < 1. m

Since 6/5 < 3,2, this shows, as was to be expected, that the crucial part
of the maximal operator comes from ms), i.e. the restriction of the multiplier
to a neighborhood of the cone C.

We recall that n is homogeneous of degree 0, but since the part of the
multiplier supported near the origin has already been dealt with, we can
modify it by making it equal to 0 near the origin. In order to analyse this
part, we decompose dyadically the cut-off function n by introducing another
cut-off function, depending this time on ||, so that n can be written as
;507> Where n;(€) = 10(277€) and g is supported where 1/2 < ¢ £ 3.

We also introduce a dyadic splitting of the integral in ds in the definition
(2.4) of m. This is obtained by means of the cut-off function P(s) = Y(s) —
4(2s), which is supported away from 0 and is such that ¢(s) = 3,5 H{2ls).

After this double decomposition, m{&)m(£) = 37, 150 Mt (€) where

(2.7) ma(€) = n;(€) S S 8—2wi(«51rs+€zf(1+'v(a)J+Eard)(p(r){ﬁ(gis) drds.

We call M;; the maximal operator corresponding to my; and apply the
following result, which is essentially Lemma 2.1 of [MR].

LEMMA 2.3. Assume that m is o smooth multiplier supported on the set
where || ~ |€3| ~ 27 and satisfying the condition

(28) | (el + ] (€.6) )f?jwﬂer
Then the mazimal operotor
Mf@@) = sup |F Y (m(2'¢, b&s)F(€))(@)]

i€Z, b>
is bounded on L? and | M fila,2 € CA2™I/2,

At this point we have to consider d # 1 and d = 1 separately. In both
cases we shall obtain the estimate

(2.9) |Millz2 < Cmin{2*=2)2-972 971y,
where k is the type of the curve .
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In the case d # 1, (2.8) follows from the pointwise estimate
} S S ‘3"2”(51m+€zr(l-!*'r(-*))—kﬁsrd)w(.r).t;;(zis) dr ds

< Cmin{2" =272 j¢) 271/|g,11/7),

together with a similar estimate on the derivative in &3.

The first quantity on the right-hand side comes from the standard sta-
tionary phase estimate on the double integral, since the Hesslan of the phase
function is controlled from below by a constant times |4”(s)] ~ 27"*~2), The
other quantity iz obtalned by integrating first in 7, which gives us a bound
of the order of |£3|~%/2, again by standard oscillatory integral methods, and
then by integrating in s over an interval of length 271,

At this point (2.9) follows directly from Lemma 2.3,

In the case d = 1, (2.8) does not come from a pointwise estimate. We
have to use Plancherel’s theorem in the variable £3 instead, as in the proof
of Theorem 2.2 in [MR]. Bearing in mind that ¢(t) cuts off to about £ ~ 1,
we have

malt', &) |2ldfal = f’[ j| ezt 0 ninl ) f(als) drds|dés
? ’ (615 + Ea(1+7(5)) + Ea)( )ds’ dés
= S it femeatmonga af
C

21(.’0—2)
min { =, 2‘25}.
|f’| { €]

The first of the last two estimates follows by van der Corput’s Lemma,
the second by the trivial majorisation by the size of the interval of integra-
tion. A similar estimate holds for 8mj;/0¢3. Again, Lemma 2.3 gives (2.9)
immediately.

We now wish to interpolate the L? estimate (2.9} with a restricted weak-
type estimate at p = 1. We write M;,; as a convolution operator:

Myif(e)= sup |27 [ K27 (e~ o), b7 (ms — v))F (3) dy
i€#, b0

where K (2) = F~(my;)(z). By (2.7), Kji = p * (F~'n;), where p is

a positive measure, supported on the part of the surface corresponding to

r~1 and 2~ 9= and of total mass of the order of 27,

As F~ln; is a Schwartz function and (F~'n; Hz) = 2% (F ~Ipa)(2T), we
can write

|F~177j| S Z)\uiw-ja

vz
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where { ), } is a rapidly decreasing sequence of positive numbers and X, is the
normalised characteristic function of the ball of radius 2”. Correspondingly,

(2.10) Mj,gf(m)

<3 swp 27357 G Rumy) @70 1) 6N s — ) Fly) )
5o ELb>0

We estimate the size and support of the convolutions p * X,—;, in order
to compare each summand in (2.10) with the strong maximal function.

Ify—j < —1, the convolution is supported in |z1| < 271, |22 < 1, |za| < 1
and its size is controlled by 2~¥*7, The corresponding maximal operator is
then essentially dominated by A,27*+~! times the strong maximal function.

If ~1 < v — § < 0, the convolution is supported in |zy| < 2¥77, jza| < 1,
|zs| < 1 and its size is controlled by 2~2(*~9)~!, The corresponding max-
imal operator is again dominated by A,2~**/~! times the strong maximal
function.

Finally, if v — j > 0, the convolution is supported in |z} < 2¥~7 and its
size is controlled by 2-3(*~9)~! §o the corresponding maximal operator is
dominated by X,27! times the strong maximal function.

Summing over » we can conclude that Mj is of restricted weak type
{1,1) with “norm” controlled by

0(29'“1 a2 42 ZA,) < g2t
v<j v2j

Interpolating the above estimates at 1/p = (1 — 8) 4+ 6/2, we now want
to sum in 4, Because of (2.9), the estimate of the L? norm leads to two
separate sums:

X Mitflpp < G Y 20700700
5120 <tk
+C 3 QU0 3312
k<
The first sum converges if § > (k— 1)/k, i.e. p > 2k/ (k- 1), and the second

converges if § > 2/3, ie. if p > 3/2, and § > (k — 1)/k. This gives the
required result, |

RemARK, The proof of Theorem 2.1 can be adapted to certain flat sur-
faces, 1.e. surfaces defined by (2.2) with + vanishing of infinite order at s = 0.
We consider here the special case v(s) = e™I*I™" with ¢ > 0.

If |s| ~ 27, then |y (s)] > G212 +2)e~2" for some ¢ > 0. It follows
that, if Mj; is as above,

| Mji||2.2 < C min{2 e +D=i/2g(e/22" o1y
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We have

YoMz <0 Y 2
gtz i<edto g
+C Z g—l{o+1)~/2,(e/1)2'"
j>e2tr —2io

If 0 < ¢ < 1, both sums converge. The other arguments used in the proof
of Theorem 2.1 for what concerns the L*-boundedness apply with essentially
no change. We can then conclude that M is hounded if and only if p > 2.
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