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Hull-minimal ideals in the Schwartz algebra
of the Heisenberg group

by

J. LUDWIG (Metz)

Abstract. For every cloged subset ¢ in the dual space Hp, of the Heisenberg group
Hy we describe via the Fourier transform the elements of the hull-minimal ideal 5{C}) of
the Schwartz algebra S(Hy,) and we show that in general for two closed subsets (O, Cz of
#,, the product of §(C1) and j(C?) ig different from j(Cy N Cg).

0. Introduction. Let A be an algebra. We are interested in the structure
of some special ideals of A. In this paper an ideal of A is always a two-
sided ideal. Denote by Prim(A) the primitive ideal space of A, i.e. the space
of all the ideals J of A of the form J = ker(T") where (T, V) denotes an
algebraically irreducible (or simple) representation 7' of A on a vector space
V. We provide Prim(A) with the Jacobson topology. In this topology a
subset C' of Prim({A) is closed if it is the hull () of some ideal I of A, i.e.
if

C=h{I)= {J € Prim{A4) : J D I}.
For a subset C' C Prim(A4) let

ker(C)= (| JCA and I(C ﬂ I
Jed h(D)=

The hull of I(C) contains of course .

For certain algebras A, we have h(I{0)) = C, l.e. there exists a minimal
ideal 7(C) with hull C. That means that there exists an ideal j(C'} of A such
that the hull of (C) is equal to C and §(C) ¢ I for every ideal I of A whose
hull is contained in €. It has been shown in [LRS| and in [Lul] that 7(C)
exists for every closed subset ' in the primitive ideal space of the Schwartz
algebra of a nilpotent Lie group.
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In Section 1 we repeat the arguments used in these two papers and
we show the existence of j(C) for any semisimple symmetric polynomially
bounded Fréchet algebra A (see Proposition 1.8). Given now two closed
subsets C1, Co in Prim(A), what can be said about j(C1}-j(C2) or j(C1) N
§(C4)? Under what conditions do we have j(C1) - j(C2) = HCLUCy)? In
easy cases, for instance if A is abelian or if ¢ and C; are separated, the
equality does hold {see 1.12, 1.13 below).

In Section 2, we describe the ideals j(C) for the Heisenberg algebra
S(H,), where H, denotes the (2n + 1}-dimensional Heisenberg group. Al-
though this description is not very precise, it suffices to show that in many
cases j{C1) - §(Ce) # F(C1 U Ca) (see 2.9 below).

The paper finishes with open questions on the nature of j(C) in the
Heisenberg case; for instance, what is j(C1) * j(C2) in the general case?

1. Hull-minimal ideals in Fréchet algebras

1.1. As an example consider a completely regular semisimple commuta-
tive Banach algebra A. By Gelfand's theory, A is isomorphic to an algebra
of continuous functions vanishing at infinity on the dual space A “Regular”
means that for every closed subset C of A and every point ¥ € A \ C, there
exists @ € A such that @ vanishes on C, but not at . Then, given a closed
subset C of A, the ideal consisting of all the ¢ € A such that the support
of their Fourier—Gelfand transform @ is compact and disjeint from ' is the
minimal ideal of A with hull C (see [BD], §23 and [Rei], 1.4(iil)).

As a second example, let H be a Hilbert space and let A be the algebra
of all compact operators on M. The identity representation of A on H is
up to equivalence the only algebraically irreducible representation of A and
so Prim(A) consists of only one point. The subset j of A of all operators
with finite rank is a minimal dense ideal of A. It iz well known that every
C*-algebra has such a minimal dense ideal, the so-called Pedersen ideal.

Let now A be any complex algebra and let ' be a closed subset of
Prim(A). We recall a general condition for an element ¢ of A to be contained
in every ideal I with h({I) C C {see [Lul], 2.7).

1.2. LEMMA. Let C be a closed subset of Prim(A4). Suppose that there
exist a,b € A such that b € ker(C) and b-a = a. Then every ideal I of A
with h(I) C C contains a.

1.3. Hull-kernel reqularity

1.3.1. DEFINITION. We say that a semisimple algebra A is hull-kernel
regular (or h.k. regular) if for any closed subset C' of Prim(A) and for every
J € Prim(A) \ C there exist by,as € A such that by € ker(C),ay & J and
bj ay =ay. .
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1.3.2. PROPOSITION. Let A be a h.k. regular algebra. For any closed
subset C' of Prim(A), the minimal ideal j(C) ezists and is generated by the
elements oz, J ¢ C.

Proof The hull of the ideal I generated by the ay, J & C, is equal
to C, since for every J' ¢ C, ap = by -ay € ker(C) - ap C ker(C) and
ay ¢ J. By Lemma 1.2, I C (Vypnyao I’ = I(C). Hence I = I(C) and since
h(I) = C, we sce that j(C)=I. n

1.3.3. REMARK. If A is bk, regular, then the minimal ideal j(C) of a
closed set C C Prim(A) can be described in the following way:

i(C) ={Zw-arw:w,wex‘lﬂ@l@fh
JeFr
F a finite subset of Prim(4) \ C}.

1.3.4. ExaMPLE. In many algebras it is impossible to find elements a, b
such that b-a = a and a # 0. For instance, let A be the convolution algebra
LY(R,w), where the weight w is the function w(t) = e*"I!l, ¢ € R, and where

L'(®w) = {f € I'®) : |If]lw = fw®)lf (D]t < oo}
i

The primitive ideal space of this algebra is easily seen to be homeomorphic
to the subset R -+ 4[—1,1] of the complex numbers and A is isomorphic
to the subalgebra of continuous bounded functions on R + ¢[—1, 1] which
are holomorphic on R -+ 4]—1,1[. This isomorphism is given by the Fourier
transform f — f, where

f(a o ib) = S f(t)e—-z-rrz't(a-l-ib) dt,
: It

feA atibeR+4-1,1).

Hence, if g*f = f in A, then 3 f = f, which forces f to be 0, since otherwise
§ = constant 1, § being holomorphic.

1.4. DEFINITION, We say that an algebra A is a Fréchet algebra if there
exists a family {pp}ren of norms on A such that A is complete for the
topology defined by these norms and pg(a - b) < pe(a)pe(b) for all k € N,
and q,b € A.

We say that the Fréchet algebra A is involutive if it is equipped with an
involution .

1.5. DEFINITION. An element o in an involutive Fréchet algebra (A, {pa})
is called polynomially bounded if for every k there exists a constant c; =
a1 > 0 such that

pe(e(ira)) S e(L+ )%, VAeR, keN
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Here e(b), b € A, means
eb)=) 3 €4
k=1

1.6. The functional calculus

1.6.1. To a polynomially bounded a we can apply the functional calculus
of C* functions which has been developed in [Di2]. Let CG(R) denote the
space of all complex-valued C™ functions ¢ on R with compact support
such that ¢(0) = 0. The integral

1. :
p(a) = = | B(\e(ira) dA

27TR

(1.6.1.1)

converges in A for any polynomially bounded a. This functional calculus has
the following property. For every character x on a maximal abelian closed
subalgebra A(a) containing a € A we have
x(w{a)) = p(x(a))-
In particular, for ¢, ¢ € CZ4(R},
x((¥ - p)a) = x(1(a)} - x{p(a))-

Suppose now that A(a) is semisimple. Then
(1.6.1.2) ¥(a) - pla) = (¥ - ¢)(a),
Take 1 and ¢ such that 9 - ¢ = . We see that
{1.6.1.3) (a) - pla) = ¢(a).

1.6.2. REMARK. A polynomially bounded element « in a Banach algebra
(4, |I) must have real spectrum. Indeed, if the spectrum of a contains a
nonreal number p = o 4 i3, then there exists a character x on A{a) such
that x(a) = 1 and so

e = o] = |1+ x(e(iAa))] < 1+ [le(ira)

and so lie(iha)|| grows exponentially in A. In order to find polynomially grow-
ing elements we must look for symmetric algebras, L.e. involutive algebras
for which the spectrum of every selfadjoint element is real.

@, € Coy(R).

1.7. DEFINITION. We say that a Fréchet algebra A is symmetric if A has
a continuous involution and if there exists a continuous * homomorphism o
from A into a G*-algebra C such that for any a € A, spec 4(a) = specg(o(a)).
Here specg(z) denotes the spectrum of an element z in an algebra B.

Let A be a Fréchet algebra. We denote by A4 the space of all topologically
irreducible unitary representations (w, H) of A on a Hilbert space H.
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1.8. PROPOSITION. Let A be a symmetric Fréchel algebra. For every

algebraically irreducible representation (T, V) of A, there emists (w,H) € A
such that (T, V) is equivalent to o submodule of (m,H).

Proof. Since A is symmetric, so is A = Cl ® 4 and we may assume
that A and C have identities.

For any = € ker(o) and y € A, the spectrum of yx in A i reduced
to {0). Hence if for some @ € ker(o), T(x) # 0, then there exists v € V
such that T'(z)v # 0 and since T is simple, we can find an element y € A
such that T(y)I'(x)v = v, i.e. 1 i8 in the gpectrum of yz. This contradiction
tells us that ker(e) C ker(7"). The simple module (T, V) is equivalent to
the left regular representation of A on A/M, where M denotes a proper
maximal left ideal of A, The sum of Cl and o(M) i direct in C, since
otherwise 1 € M mod ker(e), which implies that 1 € M, since ker(o) C
ker(T') ¢ M. Hence we can define a linear functional ¢ on M = ¢(C1+ M) =
Cl + o(M) C € by setting

pAl+o(m))=24 MeC, meM.

Forez=A+me M, z—-A € M and so & — Al ig not invertible in A.
Hence A € spec, (x) = spece(or(z)) and so

(o (@)} = |A| < sup{|u] : u € spece(a(z))} £ |lo(z)]c.
Hence by Habn-Banach, there exists a continuous extension @ of ¢ to C of
norm < 1, Since ¢(1) =1 and ||@]lop < 1, @ is a positive functional (which
annihilates M ) and so, since M is maximal and @{c(M)} = (0), we have
M={ye A: §oly"y)) = 0}. In particular, M is closed. Therefore, we can
define a Hilbert-space structure on A/M by setting

(@+ M,y + M) = §lo(y*z)).
The left regular representation of 4 on A/M extends to a unitary represen-
tation 7 of A on the completion H of A/M (see [Dil], 2.4.4). Since we may
always assume that @ is a pure state, we even know that m is irreducible
(see [Dil], 2.5). m
1.9. DrFmNITION. We say that an involutive Fréchet algebra A is polyno-

mially bounded if the set Ay of selfadjoint polynomially bounded elements
of A is dense in the real subspace Ay of hermitian elements of A.

1.10. ProposITioN. Let A be o semisimple symmetric polynomiolly
bounded Fréchet olgebra. Then A is h.k. regular. In particular, for every
closed subset C in Prim(A), the minimal ideal j{C) ewisis and is generated
by the elements ay, J £ C.

Proof. Since A is symmetric, for any J € Prim(A) we may choose a
topologically irreducible unitary representation (my,Hy) such that ker(wr)
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= J. We fix J € Prim(A) \ C. There exists u € A such that u € ker(C) =
Nyecd and u g J, since O is closed. Hence my(u*u) =0 for all J' &€ C
and 7s{u*u) # 0. We may suppose, after having multiplied v = w*u with
a positive scalar, that ||m;(v}|lop = 1. Since o is continuous, there exists a
submultiplicative norm p on A such that

[ota)lle < pla),
Then for any unitary representation 7 of A, we have
Im(@)llop < llo(a)lle < ple), @€ A

We choose ag in Ag such that p(ap ~ v) < 1/10 and real C>° functions
¢, ¥ such that ¢ vanishes in a neighbourhood of [--2/10,2/10], ¢ = 1 on
19/10,11/10] and % - ¢ = . Hence, for by = ¢(ao) and ey = ¢(ac), we
see by (1.6.1.3) that by - ay = ay, since A is semisimple. Furthermore, for
J' e C,

a € A

np(by) = ¥(ry (@) = 0,

since §
7 (20)llop = l17 (0 = v)llop < Plao = v) < 1/10,
and
m1(ar) = pl(ms(ao)) # 0,
because '

7w (@o)liop ~ 11 = {ms{ao)llop — Ims(wlllos| < lims(ao = v)llop
< plag —v) <1/10. w

1.11. EXAMPLES. 1) If A is a C*-algebra, then for any selfadjoint element
a € Ad=ClaA ud) = exp(ira) = Yo, (iAa)*/k! is unitary and so
lu(M)|g+ = 1 for any A € R (see [Dil], 1.3.9). Hence A is a symmetric
polynomially bounded Banach algebra.

2) Let now & be a nilpotent locally compact group or more generally
a locally compact group of polynomial growth. That means that for any
compact neighbourhood U of the identity element e of G, the Haar measure
|U®| of the powers U* = {uy...up:u; € U, i =1,...,k}, k € N, grows at
' mmost polynomially in k. In [Di2] it is shown that for every f = f* in LH{G)N
L*(@) with compact support or more generally of exponential decroase, we
have

leG@Af)lln < e(L + |A)°
for some positive constant ¢ depending on f. Furthermore, for nilpotent or
connected groups of polynomial growth, we know that L*(G) is symmet-

ric (see [Lu2]). Hence L*(G), for G nilpotent, is a symmetric polynomially
bounded Banach algebra.
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3) Let now G = exp g denote a simply connected, connected nilpotent;
Lie group with Lie algebra g. For such a group, the exponential mapping exp
is a diffeomorphism, which allows us to identify the group G with the vector
space g as a manifold, and if we equip g with the Baker-Campbell-Hausdorff
product

XY = X4V + Y]+ S0 X Y]+ XD+ .

forall X,Y € g, then exp : (g,B.C.H.) — (G, -) is even a group isomorphism.
The Haar measure of G is just Lebesgue measure dX on the vector space g.

The Schwartz algebra 4 = 8(G) of G is by definition the space of rapidly
decreasing C°° functions on G and is in fact a Fréchet algebra under convo-
lation. It has been shown in [Lu2] that A4 is symmetric and in [Hu] that 4
is polynomially bounded. For more details see [LM].

The spaces Prim(S(G)), Prim(L*(G)), Prim(C*(G)) and G are homeo-
morphic (seelLu.‘Z]) and we shall identify them. Furthermore, for any closed
subset C' of G the minimal ideal 7(C)g(g) in S(G) associated with C' is of
course contained in §(C) g € L*(G) and in §(C)gx(g) C C*(G). Hence

i) = §(Chsie) + LHG) % §(C)s(e) * LN(G)
and
(Cer@ =(Cls(a) + C™(G) x §(C)s(e) * C(G).
4) It follows from 1.6.2 that in the algebra A = L' (R, w) no element f is

polynomially bounded. Indeed, since f is a complex analytic function there

always exists a + ib such that 4 = f(a +ib) & R. Also, this algebra does
not admit minimal ideals. Let C' be a nonempty closed subset of Prim(A)
such that ker(C) # (0). Then for any n € N, ker(C)™ is an ideal of 4 with
hull C. But

Ioo = () ker(C)"
nEN

is (0), since the Fourier transform of any element of I, vanishes to infinite
order on C.

1.12. Let A be a h.k, regular semisimple Fréchet algebra and let C1,Cs
be two closed subsets in Prim(A). We may ask what happens to the product
of §(Cy) with j{C2). It is clear that

(1.12.1) J(C1) - §(C1) = §(C)-
Obviously we always have
(1.12.2) h(4(C1) - 3(C)) = C1 U Cy,
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since any J € Prim(A) is a prime ideal. Hence
J(O]_) . _7(02) i 3(01 U Cz) and ker(Gl) . ker(O’z) - ker(C’l u Cg)

1.18. ProPOSITION. Let A be an abelian h.k. reqular algebra. Then for
any closed subsets Cy, Co of Prim(A), we have

§(C1) - 3(C2) = j(CL U Ca).

Proof. Since for any J; € Prim(A4)\ (C;), we can find by, ay, such that
by, € ker Gy, ag, ¢ ker(C;) and by, - ay, = ag,, t = 1,2, we see that for
b= by, +by, and a = ay, + ay,, we have b € ker(Cy U C3) and since 4 is
abelian,

b-a=by by, -ay oy, =braybpas =asay = a.
Hence a € j{C1UCy) and so §(Cy)-F(C2) € j(C1UCY), whence the assertion
follows.

‘We shall see in 2.9 that the situation is much more complicated if 4 is no
longer abelian. However, in the case where Cy, Oy are separated in Prim(A4),
i.e. if there exist two open subsets Uy, Uz in Prim(A) such that C; c U,
i=1,2, and U1 N Uy = 0, we can control j(Cy) - §(Ca).

1.14. PROPOSITION. Let A be a h.k. regular algebra. Then for any closed
separated subsets Cy, Cy of Prim(A), we have

F(C) - §(C2) = j(CLU Cy).

Proof Let K; =\ Prim(A)\ U;, © = 1,2, Then ¢y C K, C; C K;
and Prim(A) is the union of the two closed subsets Ky, Ky. For any J ¢
C1 U Cy choose by € ker(Ch UCs) and ay ¢ J such that by - ay = ay (i.e.
ay € j(Cy U Cq)); for any J € Cy choose by € ker(K;) and ay ¢ J with
br-ay=ay (ie. ay € j(Ki) C j(Ca)); and for J € C; choose by € ker{K3)
and ay € J with by - ay = ay (i.e. ay € §(K3) C 5(C1)). Then, for any
Q.GA, J1¢011J2¥021

ag -a-ay €J(C1UCY)  if Jyor Jy & CyUCh,
by the choice of a, or ay,. If Jy, 5 € C1UC, then ay, -a-ay, € ker(Ky U Ka)
= ker(Prim(A4)) = (0). Since j(C;), i = 1,2, is generated by elements of the
form
b-aj-a, abed JEC;,
we see again that §(C1) - §(Ca) C F(CLUCY). =

1.15. PROPOSITION. Let A be a h.k. regulor algebra. Then for any closed

subsets C1,Cy C Prim(A), we have

3(C1 0 Ca) = j(Cy1) + §(Cy).
If ¢, cC Co, then 3(02) < _7(01)
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Proof. The hull of §(Cy) + §(Ca) is obviously equal to C; N G and so
F{C1NCe) < j(C1) +7(C2). Hence it suffices to show the opposite inclusion.
But for closed subsets ' C B of Prim(A), and for J ¢ B, there exist
by,ay € j(B) such that by € ker(B) C ker(C), a; ¢ J and bya; = ay.
Hence also ay € j(C) by 1.3.2, and since the ay, J ¢ B, generate §(B) we
see that

(1.15.1) J(B) C 5(C)
and so j(Cy1) C J(C1 N Cy) and §{Ca) C HCL1NCy). m

2. The minimal ideals in the Schwartz algebra of the Heisenberg
group

2.1. We shall determine the minimal ideals j{C) in the Schwartz algebra
of the Heisenberg group H, by describing the Fourier transforms of the
elements of j{C'). This section is based on [Fo| and uses its notations.

As a manifold, H, is the space R?"*+!. We write (p, q,t) for the elements
of H,, where p,¢ € R™, £ € R, The group law on H, is defined by

@,¢.t) 0, ¢, t) = (p+2,a+ ¢ t+¢ + 3¢ -0 - ).
Here p - ¢ means the ordinary euclidean product on R*, i.e,
Pra=pgit...+ Pndn.
The center 2 of H,, is given by the last coordinate, i.e.
2= {0} x {0} x R,

and we observe that Z is also the first commutator [H,, H,] of Hy.

The Lie algebra by, of H, can also be identified with R2"*! and the
exponential mapping exp ig then the identity mapping. For j € {1,...,n}
we define the vectors

Xi= (8 j)i=1,.2n+1y Y5 = (i janli=1, 2ntly  Z = (Si2nt1)i=1,. 2041

We obtain the classical commutator relations
[X,;,Y:,'}:JMZ, 1<6,5 <,
and Z spans the center 3 of h,. We also identify the dual space b} of by,
with R*"1, An element (a,b,A) € Y acts on (p,q,t) by
{(ay b, A), (D g t)) =a p+ b g+ At

2.2. The dual space i, is the union of the set CHA of one-dimensional
representations and the set H2° of infinite-dimensional ones, The characters
X € CH.A are defined through the elements ¢ = (a,b) € R*™ ~ 3+ C py,

Xo(p, g, t) = e Hr@PTED  (p g t) € H,.
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The infinite-dimensional representations can be parametrized by R* = R\0.
For A € R*, we take the linear form I € b}, for which

X)) = 1a(Y;) =0, (Z) = A

The subalgebra b = span{¥;, Z : j =1,...,n} = {(0,q,t} : g € R", t e R}
is a polarization at Iy for any X and so if x) denotes the character

xa(0,q,2) = e~ ™ (0,q,t) € b =exp(b) = B,

then by the Stone—von Neumann theorem,

ji=1...,n

Ty = indg”m

is irreducible and every w & I?,?f is of this form. We can identify the Hilbert
space Hy of my with L?(R"*) and we obtain the following relations:

(D, g, t)E(v) = e~ BmAtTITleate =P £(y - p),
¢ € L*R™), veR™, (p,q,t) € Hy.

Hence I?n can be identified with R?" UR*. By Kirillov’s theory, g, is
homeomorphic to the space of the coadjoint orbits hn/Hy. The character
X(a,p) cOTresponds to the linear functional (,b,0) € R*™™ =~ b7, and the
representation 7wy, A € R*, to the functional [ = (0,0,}) € R**. The
coadjoint orbit £2) of I is the affine subspace R*" x {A}. Hence in the orbit
space,

; 2
lim 2y = B x {0} = | {(e,0)},
a,bcR?

and so in H,,

(2.2.1) Imm = {J x@n=CHA

a,bER™

Hence H, is not a Hausdorff space,

We now consider the Schwartz algebra S(H,) of H,,. The elements of
S(H,) are just ordinary Schwartz functions on R**+1 and S(H,,) is an al-
gebra for the convolution * and the involution *:

frgley=\ fWelv 'e)dy, f*(x)

Han

Flzh).

I

For every n € H, and [ € 8(H,), we can define the operator «{f) on Hy
by :
()= | fl@)n(z)dn.
Hn
Hence for (a,b) € CHA,
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—~

Xy () = Fla,,0) = | f(p,q,t)e= @ 2+00) gp g gy,
Hy,

For A € R*, ma(f) is a kernel operator with Schwartz kernel fy, i.e. for
¢ € L*(R"),

m(HEW) = | flv,p)E(p) dp,

m’n
where
(2.2.2) A, p) = v—p,3Ap+v),)), v,peR", AeR
and
F23(p,r, A) = S 0, g, ) @™ N dgdt, preR", Ak

R xR

We can thus define the group Fourier transform fof feS(H,) on I?,? by
letting

-~

f(A)':f), rAeR

In particular,
F(0)(v,%) = folw,v) = 1**(v 5, 0,0) = lim £ (2, ).

We see that for A # 0, F{)) € S(R* x R*) and v — fy(v,0) is a Schwartz
function on R™.
For f,g € S(Hy) we have

(f*xg)x=Frog
where for two kernels F', G ,
FoG(,p) = | Flv,u)G(u,p)du
]'Rﬂ
It is well known (and easy to verify) that the mapping f — fis injective
and it is easy to see that n mapping F : R — C(R™ x K" x R*) is in the
range of the Fourier transform if and only if the function

(2.2.3) ﬁmmnmﬁ(ﬁ+ﬂﬂ fg, (ru, A € R, A0,

AT

is the restriction to R” x R* xR* of a Schwartz function, since then the func-
tion f(p, q, t) = S]Rﬂ'}"f'- -F(p) Uy )\)emwwfu-q.—m) dhduisin S(Hn) and f)\ (%P) ==
F(’U,p, /\) for all ('u,p, )\) & ]Riln-}-l'

2.3. DEFINITION. We denote by S(H,) the range of the Fourier trans-
form of S(H,,). Hence

S(H,) = {F e C°[R" x B* xR*) : F ¢ S(R*1)}.
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2.4. Closed sets in H,, containing the characters

2.4.1. We now describe the minimal ideals of S(H,) asscciated with the
closed subsets €' containing the characters of Hy. This is a situation which
can also be understood in the general nilpotent Lie group case (for details
see [CG]). Let therefore G denote any nilpotent simply connected, connected
Lie group with Lie algebra g. We know that & is homeomorphic to the space
g*/G of coadjoint orbits of G and that G = Prim(LY(Q)) =~ Prim(8(G)).

We can describe g*/G and G explicitly in the following way. Let B =
{X,,..., X1} be a Jordan-Holder basis of g and B* = {ly,...,ln} beits dual
basis in g*. For every | € g* there exists an index set I(I) C {1,...,n} such
that if V(I) denotes the span of {l; : ¢ € I{I)} C g*, then the coadjoint orbit
{2; of | meets V(I} in a single point. Let us take the Vergne polarization p(}) =
pB (1) at | associated with B and let m = ind% P(yX: be the representation
induced from the character x; of the subgroup P(I) = exp(p()) of G. Then
7 ig irreducible and every irreducible representation 7 of G is equivalent
to some m;. For two elements [,p € g*, the representations m; and m, are
equivalent if and only if {2 = (2,

It has been shown in [L.Z] that there exists an index set I C {1,...,n}
and a Zariski open G-invariant subset denoted by gy, in g‘“, the set of ele-
ments in general position, such that I(l) = I for any [ € ggen- Furthermore,
for any ! € g}, there exists a Mal'tsev basis X
g relative to p(l) (ie.

g=RX;()®... 8 RX, () @ p(])

and Ej_ (D) + p(1) is a subalgebra for any 7), a Mal'tsev basis Y(I) =
{¥i{), ..., Yu(D)} of p(I) relative to the stabilizer g(I) of I in g and a Mal'tsev

basis Z{1) = {Z1(1},..., Zm (D)} of g(I) such that { — X;(I), I — Y;(1) and
L — Z;(1) are polynomial mappings. In particular, if U denotes the Zariski
open subset Ogen 11V of V, where V = span({l; : j ¢ I), then the mapping

U x RP x RP ﬁggm,

(HMMWXDHMWMWMW

=1 Tl

(T, 8) -

is a diffeomorphism.

If G = Hy, then gg,, corresponds to ﬁg", p = n and for the Jordan-
Hélder basis B = {X1,...,Xpn, Y1,..., Y0, Z} wehave V = RZ* and X;(I) =
X, Y1} = Y; for all I € (bn)gen-

Coming back to our general @, we can use for | € U the Mal’tsev basis
{9(1), Z(1)} of p(l) to write down the kernel f; of the operator m(f), f €

= {X10), . X, (D)} of
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8(G). Define first for | € U the polynomial diffeomorphisms

P
T~ [ [ explt;X;(p)),

Je=1

X1 :RP — G/P(1),

and

r m
Ep:RP x R™ - P(1), (S, U}~ H exp(sij(Z))Hexp(ujzj(l)).
Jual Gl
The operator 7 (f) = {, f{z)m(x) dx is a trace class operator whose kernel
fi € C°°(@ x () i given by the expression

filey) = | flapy™")e blose) gp
P()
= | f@B(S, Uy e BEBSUN 44U, 1€ gy, 3,y € G
&2 5 R

Let C™(U, 8,p) and C*{U, S,) be the spaces of all smooth mappings
from U into S(RP x R?) and S{R?), respectively.

Let S(G x G,1) (resp. S(G,1)) be the space of all smooth functions
F:Gx G — C (resp. £ : G — C€) such that

Flog,yq) = xi{@a(d)Fe,y)  (resp. £(oq) = x:(@)é(x))

for all x ,y € G qq¢ € P(I), and the function (T,T") — F(T,T") =
F(Xy(T), X(T") is in S(R? x R?) (resp. T — £(X(T)) is in S(RP)).

Then for f € §(G) and for a fixed | € gg,,, the function fi is in S(Gx G, 1)
and the mapping U 3 [ — f; from U into S(RP x RP) where

AT, T = f(X(T), X(T)), T.T' R,

is in C%° (U, Sap) (see [LZ]).

We obtain in this fashion a Fourier transform f f on S(G) by setting

(2.4.1.1) fy=f, leu
2.4.2, It has been shown in [[Z] that every mapping
F:U3 e F(l) e 8(GxG,I)

with compact support such that F e c~(U, Szp) 1s in the image of the

Fourier transform. In particular, if we choose two smooth functions 5,
U — S(IRP) with compact support, then there exists a unique fen, € S (G')

such that ﬁ;m = Fe .y, where
FE,W(Z:%U) 5(5 LL') (a
60, Xu(T)E(5,U)) = €
and similarly for 7.
2.4.3. DEFINITION, We say that the element fe,,, of S(G) is elementary.

), w,y e Gg i E‘E V!
T)e=iIoR(ESD)



a0 J. Ludwig

For g, h € §(G) we see that

g* fem ¥ b= Fy) himy
where
ﬁ(f)(l,ﬁ) = S gl(may)g(Ly) dy:
G/P()

Vo hilz,vin(l, =) de.
G/P(l)

A (ly) =

Therefore g * f¢ , * b is also elementary.

Let @gen be the (open dense) subset of G corresponding t0 gg,,,. Let aging
be its complement, @gen is homeomorphic to W and in particular every open
subset of G disjoint from @sing corresponds to an open subset of U.

2.5. THEOREM. Let C be o closed subset of G containing @ﬂing. Let
Ug = G\ C C U. The minimal ideal j(C) in S(G) is the vector space
spanned by all the elementary f »'s with support of E and of 7 contatned
in Ug and compact.

_ Proof Let e G\ C. There exists | € Uc such that m = m, Choose
o € S{RP) and ¢ € R (Ug) such that ||&y||z2 = 1, ¢(l) = 1 and supp(yp) C
Ug. Choose also ¥ € C(Ug) such that ¢ - ¢ = . Let

F=p®l, T=v8kel®WU,S,)

Then m,(frr) = 0 for every ¢ & supp(¢), hence «'(fr.) = 0 for every
7’ € C. Furthermore,

(Fror % fa,a)A(q) == W’|2 ’ |‘P|2(Q)(goia)>l"ﬁ§0(‘1) ®m
= lo*(0)¢0(a) 8 &(0) = fo.00)
for every ¢ € U. Hence

f’r,'r * fcr,cr = fo-,a

and so by 1.2, f;, € 7(C) and since f;,a(l) = £y ® £y # 0, we sce that the
ideal I generated by the f,, admits the set C as hull and hence by the
minimality of j(C), I = §(C). By 2.4.3, we see that all the eclements of I are
finite sums of elementary ones.

Let' now &,% € O (Ug,S,), with compact support. Take a function
@ € C*°(Ug) with compact support in U such that

pE=E =7
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By 2.4.2 there exist f, f' in S(G) such that
filz, v} = (el x)eo(l, v),
film,y) = @)l z)n,v),

Hence for fs. as above,

lel, x,y€@G.

(f * fao % F)Ma) = 0*(9) (€0, &0) 136 (0, @)1 (B, 9) = £ (v, )0(P, 0)
for all ¢ € U. Hence fpn = frfoox f' € §(C) and s0 §(C) = span({fen}). =

2.5.1. COROLLARY. Let C'y, Cq be closed subsets of G containing @sing,
Then

F(C1) * j(Ca) = §(Cr U Cy).
2.6. Closed sets in the dusl of H,, not containing CH.A

2.6.1. We now come to the case where the closed subset C of I’f'n does
not contain all characters. That means that there exists § > 0 such that
]-8,6[ N R* is not contained in C, since otherwise we can find a sequence
{M} € B* N C which converges to 0, and so all the imit points of this
sequence, i.e. the characters of H,, belong to C. Hence

(2.6.1.1) §=min{|A|: A€ CNR'} >0

and ¢ = Gy U Uy is the disjoint union of the closed set Cp = C NCHA =
CNR*™ and Coe = CNHX = CNR*.

In order to construct elements in §(C'), we first consider the 3-dimensional
Heisenberg group H; = R® whose Lie algebra b, is spanned by the vectors
X,Y and Z with the nontrivial bracket [X,Y] = Z. We use the heat kernel
{g:}+er, associated with the homogeneous operator I = X2 + Y2 on H;
(see [FS], 1.68-1.74). The functions g, are Schwartz functions of L'-norm 1
such that 8;(q:) = L(g;) for every ¢ € Ry and formally ¢, = exp(tL)dy. This
means that for any unitary representation = of Hy, we have

Zrla)t = dn(D)m(a)e

for any ¢ > 0 and any C®-vector £ of H, and so

(2.6.1.2) exp(tr(L)) = n(q:), te&Ry,
in the sense of functional caleulus. Now for A & R*,
2
dﬂ',\(L) = dTFA(X)Q -+ dTrA(Y)z s (%) — 411‘2)\2M3,

where M, denotes multiplication with the function v — v in L?(R). The
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Hermite functions h;, j € N,

gid 1N e d | ons
e = (e o e

form an orthonormal basis of L*(R) consisting of eigenvectors for dmy (L) =

v e R,

(d/dv)? — 4m> M2 (see [Fo]). In fact, for A =1,
dry(D)hy = ~27(2j + 1)hy, jE€N
(see [Fo}). Hence an easy calculation shows that
dra(LYhj = =2m (27 - 1)|Ahsn,  TEN,
where
hialv) = MM/ D), vER, jEN.

We can now write the kernel gy of the operator 7 (g) = exp(dm (L)) where
g = q1. From 2.6.1 it follows that

(2.6.1.3) malqr )Py =€ YA, 4,¢ > 0.
2.6.2. Going back to H,, it suffices to consider the Schwartz function

_21r|)\|(2j+1)thj N

g =q}*...xq} on Hy,, where g}, i = 1,...,n, ig the smooth measure defined
on Hy, by
(a1, £) = | Flexp(siXi+ 6iYs + uiZ))qn (sis b, ws) dss da dus,
B
f e S(H,).
For j = (j1,...,Jn) € N", let
hj,)\('v) = |)\’n/4hj1 (w1 |A]) - - - By, (v /N, weR",
and

gl=d 4.+ In
It follows from (2.6.1.3) that the kernel gx of ma(g) can be written as

3 e BB, (B (p),  vp €RT,
el

ga(v,p) =

and

g) - Z e-—2'rr|>\|(2|j|-|-=n)qd’}\
jEnn

is the sum of e "M+ times the one-dimensional orthogonal projec-
tions g;,» onto Chy; ». Since g is selfadjoint, we may apply the functional
calculus of C*° functions to ¢. Therefore if ¢ € C*°(R) and ¢(0) == 0, then

m{e(@) = p(mi(@) = D, p(e* EET)g, |

jENn
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and so

(2.6.2.1) p(@a(v,p) = Y p(e N, | (0)hy A (),

jENn

v,p € R*.

Let now x = Xas be a unitary character of H,. Multiplication with x
defines an automorphism of §(H,,) and we have

exf) = x(w(f))

for every selfadjoint f € S(H,,} and ¢ € C*(R) with ¢(0) = 0. Furthermore,
it follows from (2.2.2) that

(2.622)  (xfa(v,p) = e ¥TOB By —p (p 4 v)A/2 - B, N)

= g TRl £y (y — b/, p—b/X), w,pER,
for every f = f* € S(Hy). In particular,
(X (p,v) = Z e-27rIM(2EJ|+n)hx ('U)hx ®), vpeR",
JENn
where
(2.6.2.3) hia(v) = e "R (v - b/X), v eR"

2.7.1. DEPINITION. Let C be a closed subset of H, not containing CH.A.
For every x = (a,b) € K™\ C, let

d(x,C) =
where 4 is as in (2.6.1.1).

min{distance of x to Cp, ),

2.7.2. DEFINITION. We say that a function ¢ € C°(R) is adapted to
X € CHA if (1) = 1 and @(t) = 0 whenever |t| < e~ (®rd(x:C)*,

2.7.8. DEFINITION, We say that a function f € S(Hy) is elementary for
x if for any A € R*,

o=y ple e, @7,
jenr i

where  is adapted to x and & 7,075, AT Schwartz functions such that the
functions F, @ defined on R** x R* by

)\ 2 Z 6,\’2' ®hi"\’ ,:\ = E: HQX,A ®T,0g‘,),
Jemn JEnNn

ate in S(H,,).

A e R,

2.8. ProrosrTion. Let C be a closed subset of fIn not containing all
characters of H,. The minimal ideal j(C') is the span of all the f’s in S(Hy)
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which are elementary for some x € CHAN C or which are elementary in
F(C UCHA).

Proof. Let x = Xaps € CHA\ C and let o be adapted to x. It follows
from the definition of d(x, C) that for the Schwartz function ¢ of 2.6,

(0(%g)) () = (#(@) (u — 6,0 = b, 0) = (e~ Iemew=0ITy = g

whenever {u,v) € CNCHA, since ||(u-a,v ~)||2 > d(x, ¢')*. Farthermore,
(e~ ¥ MBI = 0 for every § € N" and [A| > d(x;, C)% Hence if we take
adapted to y such that y-ip = , then we sce that $(¥%q) € ker(CURs) where
R; = {t € R : [t| > 8}, p(%g)" (x) = (@(0)) = 1 and :(¥g) * 0 (Xq) = ¢(Xg).
Therefore ¢(%q) € j(C UR;) and so ¢(¥g) € j{C) and the elements »(xg)
generate §(C U Rs). The function ¢/(t) = (£)/t, ¢ € R*, extonds to an
element of Cg%(R), since ¢ vanishes in a neighbourhood of 0. Hence we can
write

©(%9)(p, v)
= (,DI(6"2WIA|(2IJE+H})3—2W|)\|(2|j|+ﬂ)h;;i;)\ ('U)h?:)\(ﬁ)), o p R,
jENn
and so _ | .
£ = e—zw\)\l(2lzl+ﬂ)h§c‘»n§,A - e”g”'“(?12"""‘“)17,5‘}‘

ie. )
F=G=7q

If £, g are in S(H,,) then

(F *xo(xg) % 9)"(A) = Fr o p(Xg)r 0 gx
= Z (p(e"z"r(2|j|+”l))€j|)\ ®ﬁj.)\
jENn
where
A = S -E;,A(“)QA(“: ) du, ﬁg,A i S ﬁ;;\(u)f;\(-,u) .
En i
On the other hand,
ey =Y faRiAP),  aalv,p)= Y QJ.A(P)@E:A(“)
JEN" B JGN“
where

fin() = | A5 0) dp = & (v),

]Rn
95,x(p) = SQA(U:P)’%,\(”) dv = n5,5(p),
R
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since (hz A)jen is an orthonormal basis of L?(R") and a basis of S(H,,) and
so F,G € S(H ).

_ Conversely, if F, G are as above, then there exist f, g € S(H,) such that
f=F g=Gandso

Z (P(e'"z"fi)\|(2|j|+ﬂ))§2,,/\ BT = (f * o(Xq) *)"(A) € F(O). w
jenn

2.9. COROLLARY. Let C, C" be two closed subsets of CH.A such that
CUC =CHA, C ¢ ¢ and C' ¢ C. Then j(C) % 5(C") # j(CUC") =
J(CHA).

Proof. Choose x in C'\ ¢ and X' in C'\ ¢'. Choose also ¢ € C5(R)
adapted to x and x'. We see that ¢(xq) € 7(C"), ¢(Xq) € 5(C) and
w(xa) 0 (XD
= Z e,o(e“z’fi"l(2fii+“))w(e-%lW'El“))(h;’{k,hng)Leh;,’.‘",A®h§fx

g rehn

Since h?‘", » I8 not 0, we see that (th,hﬂ\) L2 is not 0 for one k£ and so the

analytic function A — (h; e hg)\) 12, A € R*, is not 0. Hence the mapping
A (P(‘,_rzvrlkl(2lg'l+n))90(e—2wlkl(2I1c|+1))(hzﬁw R\ g hj“,x ®R¥,

is not 0 in any neighbourhood of 0. Furthermore, the functions hf)\, hi‘;

being linearly independent, we see that also the mapping ©(Xg)» o w(x'g)x
is not identically 0 in any neighbourhood of 0. Hence ¢(xg) * ¢(x'q) is in
J(C) * F(C") but not in j(C U C") = j(CHA), since for g € J([CHA), g
vanishes in a neighbourhood of 0 by 2.5. =

2.10. Questions and remarks

2.10.1. According to Mehler’s formula the function g, on Hj is equal to

zl)\’ 1/2
CIA(’U,p) = 22 — e—21X]

< exp (—ﬂ(ef"*' + e + ) + 4wmvp5)

21A — g=2[Al
— /T]2e ™ P/2 g X 0,

and so
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z ¥
( X*‘an)

2| 1/2
(32A| PR )

(—ZW(BQ'*' + e ) (P A4+ ¥?/1A) + 2(—2? |\ /4 + yz/f)\l)))
X eXp

eI _ g=2D)
_( VP
BRI Y
LI N A
xexP( ( g P g YV

= /1/2e™ 2 s ) 0,
2.10.2, By the Riemann-Lebesgue lemma for a nilpotent Lie group G,
for any f € LY(G) we have limy— oo ||7(f 1|0p =0 on G and so

w(p(f)) =
for any f = f* € S(G), ¢ € C*(R) vanishing in a neighbourhood of 0, and
7 which is far enough from the origin. Hence for every closed subset C' C G,
7(C) is contained in the ideal
Thoundedsupp. = {f € 8(G) : supp(f) is compact in G}
Since for every € H,,, the operators n(f), f € L*(G), are compact, we see
that j(C) is always contained in the ideal
Tsinite rank = {f € 8(@) : rank(n(f)) is finite for any = € G}.
2.10.3. Let C be a closed subset in the dual of a nilpotent Lie group
containing Gging. The description of 7(C') which we have given in 2.5 is not
vet intrinsic enough. It would be nicer if §(C') was just the ideal
Tnite (C) = {f € (@) : supp(]?) is compact and disjoint from C,
there exists M > 0 such that rank(#(f)) < M, Vr}.
Do we have Tgnu.(C) = j(C)?
2.10.4. Let C be a closed subset of H, which is contained in CH.A. Let
113 (C) be the ideal
I x(C) = {f € S(Hy) : rank(ma(f)) < const/|A|", ) & R*,
supp(f) compact and disjoint from C}.

It follows from the description of j{C) that Xg is contained in I /5, hence
also j(C) C I1;x(C) and so h(I1;,(C)) = C. Question: Is j(C) equal to
L (C)?

N)IH
f-c:

Schwartz algebra of the Heisenberg group 97

2.10.5. Let C' C CH.A be a closed subset not containing 0. The descrip-
tion of §(C) given in 2.8 is not very precise. Choose a real function ¢ & S(R)
such that supp(£) C [~1/4,1/4]. Choose ¢ € S(R) such that & is compactly
supported and vanishes on C' and ¢(0) = 1. For any X 5 0 let

ax(v,p) = 3 0(Ai)e2mNE-R) )\ e w)E p)
JEZ
= > ([Ap(A)e™ =P (rn)é (Ap)
FEZ
= B(v — p, NE(w)E(Ap),

where
M= @z +35/N.
iez
Hence
g (u/ A+ /2, uf/X —r/2) = P(r, \)e(u + Ar/2)E(u — Ar/2).
Therefore

Lim, ga(u/A+71/2,u/x - r/2) = (r)E*(u)

and since &(u + Ar/2)é(u ~ Ar/2) = 0 for any v € R whenever [Ar| > 1/2
we see that the function

Flryu, ) = Blr, Ye(u+ Ar/2)e(u— Ar/2)e(R), rv,)eR,

is a Schwartz function. Hence there exists f € S(H;) such that f = gy for
any A € R*. We see that for any A # 0, 7, (f) has finite rank and that

rank(my(f)) < C/A|

for any X # 0 and some constant independent of A.
Is f contained in j{(C)?

Thanks, Let me finally thank Carine Molitor-Braun, Gail Ratcliff and
Chal Benson for their careful reading of the manuscript and many valuable
comrnents.
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Corrigenda to: “Generalizations of theorems of Fejér and
Zygmund on convergence and boundedness of conjugate series”

(Studia Math. 57 (1976), 241-249)

by
G. GOES (Stuttgart)

Abstract. Proposition 4.1(i) of [1] is incorrect, i.e, the sequence of Cesiro-sections
{onz} of a sequence z in a translation invariant BK-space is not necessarily hounded.
Theorem 4.2(ii) of [1] and the proof of Proposition 4.3 of [1] are corrected. All other
statements of [1], including Proposition 4.3 itself, are correct.

1. Notations and definitions. We use the notations and definitions
of [1]. Two more definitions:

I? = {m €2zl = ( i |.’L’k|2)1/2 < oo},

=00

M= {z € Miz= L, i € My, is discrete}.

2. The error in Proposition 4.1(i) of [1]. The error in the proof of
this proposition consists in the assumption of the existence of the E-valued

Riemann integral Sg“ Kn(t)x - e(—t)dt, where 2 € F and K, is the nth
Fejér-kernel. This is pointed out in detail in [2].

A counterexample to 4.1(i) of [1] is B = M<. In fact, since 8N M¢ = {0},
evidently M ¢ (M%),5 = {0}.

A less trivial counterexample is E = M? + I? = {re:z=a
+b, a € M4, b e L2} with ||zl = itall 5 + [1bll3,- Through this example
Ulf Boettcher brought the incorrectness of 4.1(i) in [1] to our attention.
Evidently E is a translation invariant BK-space. If « € { M +. I? then o, €
L? foralln=0,1,2,... Hence E ¢ E,p = L?, since M4 ¢ I*.

3. Corrected version of Theorem 4.2(ii) of [1]. If E is o translation
invariant BK-space with E C E,p, then Eagp N E C Eap.
1991 Mathematics Subject Classification: 42, 40, 46.
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