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a-Equivalence
by

KYEWON KOH PARK (Suwon)

Abstract. We define the a-relation between discrete systems and between continuous
systemns. We show that it is an equivalence relation. o-Equivalence vs. even a-equivalence
is analogous to Kakutani equivalence vs. even Kakutani equivalence.

1. Introduction. Classification of ergodic dynamical systems has been
one of the central research areas in Ergodic Theory. Kakutani equivalence
which is stronger than Dye’s orbit equivalence and weaker than isomorphism
has been studied by many pecple [Kal, [ORW], [dJR]. The equivalences of
R-actions and Z-actions are defined using Ambrose’s representation of an
ergodic flow [Am)].

We say that two R-actions (flows), (21, L1, A1, 5%) and (£22, £2, A, S3),
are Kakutani equivalent if there exists a Z-action which is isomorphic to both
cross sections in Ambrose’s representations of the given two flows [Am)].
Two Z-actions, (X1, Fy,u1,T1) and (Xa, Fa, po, Ta), are Kokutani equiva-
lent if there exists an R-action which can be built under functions with
(X1, F1,pa,Th) and (X3, Fo, e, To) as cross sections.

This equivalence relation can be described via inducing and exducing.
Two actions (X, Fy,p1,Ty) and (Xa, 2, iz, T2) are Kakutani equivalent if
and only if there exist subsets 4; C X; and Az C X5 such that T} induced
on A; is isomorphic to Ty induced on A;. If A; and A; can be chosen to have
the same measure, we say that T} and T, are evenly Kekutani equivalent. It
is clear that if T3 and T% are evenly Kakutani equivalent, then they belong
to the same entropy class.

If (X, F,u,T) is a cross section in a representation of a flow (12, £, A, 5%),
we sometimes denote the flow by [X, F, u, T, f] where f is a ceiling function
in the representation. Given a partition P = {FPy, P,...,Pr—1}, we say
that the n-long P-name of @ point x satisfies the ergodic theorem within e if
In=* 27 xp, (T'z) — vP;] < e for each P; € P.
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We define two flows (21, L1, A1, 8%) and (22, L2, Ao, S8) to be evenly
a-equivalent if there exists (X, F, u, T) such that both flows can be rep-
resented under functicns taking values 1 and 1+ « only with (X, F, 4, T)
as a cross section. That is, (21, L1, A1, §1) is isomorphic to [X, F, p, T, fi]
and ({23, La, Ao, S%) is isomorphic to [X, F, u, T, fa] where each of f; and f,
takes values 1 and 1+ o only. We require { f1 du = S fa du for “even” equiva-
lence. Even a-equivalences between two transformations (X1, 7y, u1,73) and
(X2, Fy, pio, T2) are likewise defined. We say two Z-actions (Xq, 71, py, T1)
and (X, Fy, pia, T2) are evenly a-equivalent if there exists a flow (12, £, A, S*)
such that (2, £, ), S') is isomorphic to [X1, Fi, u1, T4, f1] and [Xo, Fa, o,
Ty, fa] where f1 and fs are functions taking values 1 and 1 + o only. This is
proven to be an equivalence relation, which is stronger than even Kakutani
equivalence [Pa3], [dJFR].

We will define a-equivalence of R-actions and Z-actions and prove that
it is in fact an equivalence relation. It will be clear that a-equivalence vs.
even a-equivalence is analogous to Kakutani equivalence vs. even Kaku-
tani equivalence. As in the case of even a-equivalence, it is not difficult to
show that Kakutani equivalence can be described via a- and S-equivalences.
That is, if (X1, F1,p01,T1) and (X2, Fa, pa, Tp) are Kakutani equivalent,
then there exists (X3, F3, ug,Th) such that (X, Fs, uz, T3) is a-equivalent
to (X3, F1,p1,T1) and S-equivalent to (Xo, Fy, pa, To) [Pa2).

2. a-equivalence

(I} Flow case. Even a-equivalence, in the case of an R-action, can be
described via the change of orbits in a measurable way through inserting
and/or cutting out intervals whose lengths are multiples of a. Two flows
having the same measure (the same integral of the ceiling functions) means
that the measure of the inserted set is the same as the measure of the set
removed.

By relaxing the condition that the measures of the sets being added
and being removed are the same, we get a different equivalence relation.
When we say a flow is a {1,1 + a}-flow, we indicate it is represented as a
flow under a function taking values 1 and 1 + @ only. We say that a flow
(£21, L1, M1, 51) is an o-change of another flow S§ if S% is isomorphic to a
flow whose orbits are obtained from orbits of §§ by inserting or taking out
intervals whose lengths are multiples of o. We note that S and S% may
not be represented as {1, 1 -+ a}-flows over the same base: Suppose S§ is an
{1, 1+ a}-flow over (Xz, Fa, pi2, To). If 5% is obtained from $% by removing
a set of measure greater than cu where u = u({z : f(z) = 1+ a}), then it
is clear that the induced flow S cannot be represented as a {1,1 + a}-flow
over (Xa, F2, ug, Th) because any {1,1+ a}-flow over (Xa, Fa, g, To) has to
have integral greater than g (X3).
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For the flow equivalence of this section, we assume that a flow acts on
a probability space. We need to fix the speed of the flow to discuss the
equivalence. We say that a measure fi on X is a rescale of y on X if LE =
ruk for a fixed real number r and for all E € F.

We say that a flow (2, £,}, S%) has a generalized a-flow representation
over (X, F,pi, T) if (£2, £, A, S*) is isomorphic to [X, F, p, T, f] where f(z) =
1+ ko for k= 0,1,2,... In particular, if {12, £, ,5%) is a {11 + a}-flow
over (X,7F,u,T), then it can be considered as a generalized a-flow over
(X, F, t, T}. Henceforth we assume that all ceiling functions only take values
of the form 1+ ko for k =0,1,2,...

We recall that an ergodic flow has a representation under a function
with values 1 -+ ke, k = 0,1,2,... (see [Rul]). Let (X3,F1,p1,T:) and
(X2, Fa, p2, Tz) denote the cross sections in generalized a-flow representa-
tions of ({21, L1, A1, 51) and (12, L3, Xe, S%), respectively. Motivated by the
observations above, we make the following

DEFINITION 2.1. We say that two flows (2,£;, A1, 5%) and (2, La,
A2, 5%) are a-related if there exists a flow ({2, £, 3, 5) which can be rep-

resented as a generalized a-flow over (X, Fy,7iy, T1) and (Xa, Fa, fia, Ts)
where i1 and [y are rescales of 4y and pg respectively.

REMARK 2.1. Note that z1({X;) and p2({X3) are less than 1, because we
assume A; (£21) = Ao ((22) = 1.

];}EMARK 2.2. Note that [ Xy, F1, [i1, T4, f1] is an a-change of [ X3, F1, fiy,
T, f1] and [Xy, Fs, fis, T3, f2] is an a-change of [XZ’FZ’EZLTE.’ )fg] where f;'s
denote the ceiling functions in the representations of ({2, Z, A, 5%).

We have the following theorem.
THEOREM 2.1. The a-relation is an equivalence relation.

Proof. Assume that (21, L1, M1, S) is o-related to (12, L2, Mg, S3) and
(25,L3, Az, SE) is c-related to ({23, L3, As, Sg) Let (X1, F1, 1, 1), (X2, Fa,
p2, Tp) and (X3, Fs, 3, T3) be the bases in the representations of (121, L4,
A, 81), (£22, £2, X0, 88) and (2, L3, A3, St) as generalized a-flows respec-
tively. Let (ﬁ, L, X, §‘) denote a flow which can be represented as a general-
ized o-flow over (X1, F1, fix, Th), (Xa, F2, Iz, T3). We denote by (2, £, X, 5*)
the flow which can be represented as a generalized a-flow over (Xq, Fo,
p2,T2) and (X3, Fs, fi3, T3) where [i; and Ji; are suitable rescales of the re-
spective measures. N R 5

Let f(z) = max{fz(z), f2(z)} where f; and f; denote the ceiling func-
tions of §¢ and §* over (X2, Fo, iz, Tb) and (Xo, Fa, fis, T), respectively.
We may assume J?z and f; are different. It is enough to show that the flow
on 2 = {(z,t) : x € X, 0 <t < f(z)} with a suitably rescaled measure
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Tip on X, satisfying { f dfi, = 1 has a representation as a generalized a-flow
over X7 and X3. We note that the values of f(z) are alsc of the form 1+ ka,
k=0,1,2,... We will also find the respective measures on X; and Xs.

We denote by @ the partition of X2 according to the heights of fg, Fa
and f. That is, = and y are in the same atom of the partition @ if and only
if flz) = fly), /(=) = fly) and f(z) = F(y). We now build a skyscraper
of Xy. We assume that the skyscraper is long enough so that the names of
the base of the skyscraper satisfy the ergodic theorem within small ¢ with
respect to the partition Q. We partition the base of the skyscraper according
to the {)-names along the tower. We call a tower over each atom of the base
a column. We sometimes refer to an atom of the base by the name of the
column. We also build a flow skyscraper of £2 using the base skyscraper of
Xo. A flow column is naturally defined. Each level set of X5, which we call
an Xa-cut, has height 1 4 ko for some & = 0,1,... By the height of a level
set, we mean the distance from the level set to the level set directly above
it in the fow column. .

Let ¢ be an isomorphism between [X1,Fy, 01, T, f1] and [Xo, Fa, fig,
Th, ]";] Without confusion we denote the image ¢(X1) of X1 in [Xa, Fa, fia,
Tg,f;,] by X;. We also refer to the level sets of X3 as Xj-cuts. By subdi-
viding the columns if necessary, we may assume that the 0th Xi-cut in a
column has a unique P-name where P is the partition of X; according to
the values of f,. Hence each Xj-cut in a column has constant height 1+ ko
for some k. We also assume that the skyscraper is long enough so that
the P-name of the Oth X-cut in each column satisfies the ergodic theorem
within &.

We also build the flow skyscraper of [X3, Fa, Ho, Tg,f;] using the skyscrap-
er of Xo. The difference between the tower of [X3, Fa, fia, T, f2] and the
tower of [Xg,fg,"ﬁz,Tg,fg} is the measure of the bottom level set of each
column of X,. That is, for each bottom level set B of the skyscraper of
X, Fa(B) = rfia(B) if Ty(X2) = rika(Xs). Since [Xi1,Fy, 0, Th, o] and
[Xa, Fo, Ha, TQL _fg} are isomorphic, there exists an isomorphisin between
(X1, Fryrfin, Th, f1] and [Xo, Fo, By, T, fa)-

Let [ denote the difference between the heights of the first flow columns
of (X2, Py, Ty, T2, f] and [Xo, Fo, in, T, _fz] Since the skyscraper satisfies the
ergodic theorem with respect to the partition @ within £ for sufficiently small
g, we may assume that the height of each flow column of [ X, Fa, pa, 1%, f]
is greater than the height of each flow column of [Xg,Fz,pg,Tg,fg} and
their differences are multiples of c. We raise the flow height by lya to the
first flow colunin of [Xa, Fa, By, Tb, f2] and push up the top Xi-cut by I1c.
The height of the X;-cut located right below the top .Xj-cut is raised by
[ya. ' We repeat this for each column and the new flow is isomorphic to
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[ X2, Fa, B2, T, f1 = (12, L, X, 8%). Now it is clear that the flow ({2, £, A, %)
has a generalized a-flow representation over (Xy, F1,rfiy, T1).

Likewise the flow S* can have a representation as a generalized a-flow
over the base (X3, F3, 7 i3, T3) for some 7. Hence 5S¢ and 8% are q-related.

REMARK 2.3. Although [; depends on the columns and the number
of columns may be infinite, we may choose a representation of St over
(X1, F4,rfi1,71) under a bounded function whose values are of the form
1+ka, k=0,1,..., K, for some K. We can do this by spreading out the
added extra height /;a to many different X-cuts in the column instead of
putting the whole extra height on the X-cut just below the top Xy-cut, We
accomplish this by successively pushing up the necessary X;-cuts by multi-
ples of a. Since we assume that each column satisfies the ergodic theorem
within e, {l;/g;} is bounded where ¢; denotes the height of the ith column
of the skyscraper of X,.

COROLLARY 2.2. (21, L3, M, 5%) and (2, Lo, Ay, S8) are a-equivalent if
and only if there exists a discrete action (X, F,p,T) such that 5% is iso-
morphic to o generalized a-flow (X, F, i, T, f1] and 8% is isomorphic to a
generalized a-flow (X, F, T, fa] where i and fi are rescales of .

Proof. We let (X3, 71, 41,T1) and (X3, Fa, pt2, To) be bases in the rep-
resentation of {2y, £1,A1,5%) and (§22, Ly, Az, 5%) as generalized a-flows,
respectively. We denote the ceiling functions by g; and g; respectively. Let
(2,2, 5t ) be a flow which can be represented as a generalized a-flow as
(X1, 71, i1, Tv, f1) and [Xa, Fa, fiz, T, fal-

Let [X, F, u, T, f] denote a representation of (ﬁ, X, §t) as a generalized
a-flow. We may choose the base (X, F, 4, T) so that

p( X} < min{fin (X1), f2(X2)}

(see [Rul]). We claim that (121, £y, A1, %) and ({25, L2, Mg, SE) can be repre-
sented as generalized o-flows over (X, F, T") with suitably rescaled measures.

We denote by P the partition of X according to the heights of the ceiling
function g1. We build a long enough skyscraper of (X1, Fy, p1, Tt ) and divide
it into columns so that each column has a unique P-name. We build a flow
skyscraper of (21, Ly, A1, 5%} using the skyscraper of (X1, Fi, p1,T1), and
also the flow skyscraper of (2, Z, X, §%) using the skyscraper of (X, 7,
fir, Ty). ~

‘We use an isomorphism ¢ : [X,F,u, T, f] — [X1, F1, 51,71, f] so that
[X,F,u, T, f] has an isomorphic image in the flow skyscraper of [Xi, Fi,
fa, Ty, fl] We subdivide each column, if necessary, so that the 0th X-cut
contained in each column has a unique J-name where () is the partition
of X according to the heights of f. Let h and . denote the heights of the
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first flow colummns of [X1, F1, 41,1, ¢1] and [X1,F1, b1, T, £, and let Lo
denote the difference h — k. We may assume I3 > 0. We denote the height of
the ith X-cut by 1 + e If 0 < 79 < I1, then we push down all the X-cuts
above the Oth X-cut by 0. We keep pushing down the X-cuts successively
above the 7th X-cut by o for¢ = 0,1,...,%;, where 4, is the largest integer
satisfying

i1
ZT@ < ll.

=0
Let 71 be the first X-cut above the ¢;th X -cut with Z?:o 72 .

We push down all the X-cuts above the jith X-cut by (I — 3 2 7i)a so
that the top X-cut now has height [, greater than before. We remove the
top section of length [y ev from the column. The height of the new flow column
is the same as the height of the first flow column of [ Xy, Fy, s, Th, g1]. If Iy <
0, then we add the extra height I3 to the first column of [ X1, 1, [, T1, fl]
so that the new flow column is the same as the corresponding flow column
of [X1, F1, fi1, 71, 91]- The top X-cut in the column has height I greater
than before.

We repeat this for each column so that the flow [X1, 7y, e, T, 01] is
represented as a generalized a-flow over (X, F,0,T), where iF = ruBE for
all B € Fif iF = (1/r}us F for all F € Fi.

In the case I; > 0, we need to check that we have enough X-cuts of
height greater than 1 so that we can reduce the height of the column by Iy a.
Recall that each cut has height 1 + ko for some k = 0,1,... Let m + na
denote the height between the Oth X-cut and the top X-cut in the column.
Let m; + mya denote the height of the first column of [Xy, Fy, T, fi1, fi)-
By our choice of ;:(X) which is smaller than i, (X1), we may assume that
n > ni. Since we reduce the height by at most n;c, we have enough X-cuts
whose heights can be reduced by multiples of .

For the other direction, we let the height be f(2) = max{f:i(z), fa(z)}-
Since (1, Fi, A1, 51) is isomorphic to [Xy, Fy, uy, Th, g1] and [X, F, &, T, fi],
it is not hard to show that [X,F, i, T, f] has a representation [Xy, Fy, py,
Ty, hy] where hy and g, differ by multiples of . Likewise [X, F, 7, T, f] has
a representation [Xa, Fa, ua, Th, ko] where ho and g» differ by multiples of .
If we choose a rescale i of i so that { f dfi = 1, then the flow [X, F, 7, T, f]
has representations [Xy, Fi, fiy, Th, b1 and [Xo, Fe, s, Tb, hs] where fi; and
po are rescales of y; and o respectively satisfying { hydfiy = 1 = { hy dfi;.

Before proceeding to the discrete case, we would like to compare -
equivalence and 2¢-equivalence. S¢ and S% are 20-equivalent if and only if
5% and S} are orbit changes of each other where insertions in and removals
from an orbit are done by means of intervals whose lengths are multiples
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of 2¢.. Clearly if S} and S} are 2c-equivalent, then they are a-equivalent.
We see that 2a-equivalence is finer than a-equivalence as follows: If S has
a periodic function with period 2e, that is, if there exists a function p(z)
such that $7°p(z) = p(52*z) = p(z) for all z, and S is 20-equivalent to S,
then there exists a periodic function ¢{z) under S% with period 2cr. However,
the existence of a periodic function of period 2¢ is not an a-equivalence
invariant.

REMARK 2.4. If 5] and % are a-equivalent and there exists f;(wy) such
that St fi(w1) = e/t f, (1) for all wy € 2y, then it is clear from our
Corollary 2.2 that there exists fo such that S%fa{ws) = e27/2)t £, (1) for
all wy € (2.

(TI} Transformation case. In this section we define a-equivalence of dis-
crete actions using the a-equivalence of continuous actions, and we charac-
terize these properties. A generalized o-cross section means a cross section
in a representation of a flow as a generalized a-flow. For this part (1T}, we
assume that (X, F;, u;) is a probability space for i = 1,2, or 3.

DEFINITION 2.2. We say (X1, F1,p1,T1) and (X, Fo, pg, Ta) are o-
related if (X1, Fy(,fi1,T1) is isomorphic to a generalized a-cross section of
(121, L1, A1, 5%) and (Xq, Fa, iz, Tp) is isomorphic to a generalized a-cross
section of ({23, L3, Az, 5%) where (21, L1, Ay, S) and (123, Lo, Ao, SL) are o-
equivalent flows.

REMARK 2.5. If (X1, 7,01, 1) and (X5, Fa, [i2,Th) are isomorphic to
generalized a-cross sections of a flow (¢2,L, A, §*), then clearly they are
a-related,

The following theorem is more or less ebvious from the definition,
THEOREM 2.3. The a-relafion is an equivalence relation.

Proof. Let (X, F1, 1, Ty) and (X, Fo, pz, 12) be isomorphic to gen-
eralized c--cross sections of ({21, £1, A1, St) and (22, L2, Ag, SE) respectively.
We also let (X, Fo,pz, To) and (X3, Fs,us, T3) be isomorphic to gener-
alized o~cross sections of (12, £4, 5, S) and’ ({23, C3, A3, S§). Note that
(Qz,ﬂg, }\2, Sé) and (.Qé, ’2, ’Z,Sé") are a—equivalent. Since (Ql,ﬁl, Al,Sf)
and (f29,Lq, A2, S%) are c-equivalent and ($24, C5, \b, S5') and (023, Ls,
Az, 8%) are a-equivalent, (421, L1, M1, S1) and (023, L3, A3, §5) are a-equival-
ent. Hence (X, Fi, py, T1) and (X3, F3, us, T3) are a-related.

COROLLARY 2.4. If (X1, F1, 1, Th) and (X, Fa, ya, Ta) are a-equivalent,
then there exists a flow (£2, £, A, St) which can be represented as a generalized
a-flow over both (X1, F1,ji1,Th) and (Xo, Fo, iz, Ty) where [y and [z are
rescales of py and pp respectively.
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Proof. This is a consequence of the definition of c-equivalence of flows.
Let (£, L1, A1, 5%) and ({22, L2, A2, 5%) be a-equivalent flows whose gener-
alized c-cross sections are (X1, Fi, 21, T1) and (X, Fa, o, T2) respectively,
By the definition of a-equivalence of flows, there exists a flow (12, £, A, §¢)
which can be represented as a generalized a-flow over each of (X7, 7y, i1, 1)
and (.Xg, .7'-2, ﬁg, Tz).

ReEMARK 2.6. If (X1, F1,p1,T1) and (X, Fo, pp, T2) are a-equivalent,
then min{k & Z : e?k/« = ?mi/(a/k) i5 in the point spectrum of T3} =
min{k € Z : €2™*/* i3 in the point spectrum of T}

THEOREM 2.5. If (X1, F1, p1,Th) and (Xo, Fa, p2, To) are a-equivalent
and h(Th) > h(Ty), then any generclized a-flow over Tb can be built as a
generalized a-flow over 1.

Proof. First we prove that the flow on {23 = X, x [0, 1) can be built as a
generalized a-flow over 1. Let (ﬁ L,x §‘) denote a flow which has a gener-
alized o-flow representation over each of (Xl, FL 1 i, Ty} and (X5, Fa, To, Tz)
We assume that the ceiling functions fi and f» are bounded. Let P =
{Po, Pl, PE} denote the partition of X according to the heights of fi,
and @ = {Qg,Ql, ,Q;!} denote the partition of X, according to the
heights of .

Build a skyscraper of X; and divide the skyscraper so that each column
has a unique (}-name. We build the flow skyscraper of {2 using the skyscraper
of X5. Let ¢ be an isomorphism from [Xy, 7,01, Ty, f1] to [Xz, F2, fa,
Ty, fg} We subdivide the columns, if necessary, so that the bottom X;-cut
in each column has a unique P-name.

Let my + noc dencte the height of the first flow column and my; + ma
denote the height of the section of the first column from the 0th X;-cut
till the top Xi-cut. Since A(T%) < k(T1), by Abramov’s formula we have
H1(X1) < Ea(Xs). If we assume that the skyscraper is sufficiently long,
since my and m, are the numbers of the respective cuts in the column, we
have mg > my. Hence we may assume ny > ns.

We move down the Xy-cuts one by one reducing the heights of Xz-cuts
to 1 until we have the top Xa-cut of height 1 + npa. We also push down
X-cutg by multiples of @ successively so that we have an at least 1 4 noo
long flow section at the top without Xi-cuts. We remove the top flow section
of height nyc. Note that when we move down a cut by 7a, the height of the
shifted cut becomes Ta greater,

If we repeat this for each column, then the new flow columns form a new
flow: skyscraper which is isomorphic to [Xz, 2, ia, Th, f ] where f = 1. Since
ny > ng, we have enough Xj-cuts to shorten the heights and the flow can be
built as a generalized o-flow over (X, Fy, %1, ). Hence [Xy, Fo, po, Th, f]
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can be built as a generalized a-flow over (X3, 1,71, T1), where fi; is an
appropriate rescale of [i;.

Let (2,£,),5%) denote a generalized a-flow over T and @ denote the
partition of X according to the heights of the ceiling function f. Using the
skyscraper of (Xy, Fa, ua, Th), we build the flow skyscraper of [Xa, F2, o,
Ty, f]. We subdivide each column so that the bottom Xs-cut in each column
has a unique @-name. We consider the isomorphic image of [X1, ’fl, g1, T, f ]

in the flow skyscraper of {Xa, %, pa, T3, f] Let m4 4 7?:201 = ET_’O ' F(Tix)
where z is a point in the 0th Xs-cut in a caolumn and my denotes the num-
ber of Xy-cuts in the column. The difference in the helghts of the first flow
columns of [X3, Fo; ua, Th, f] and [Xa, Fa, o, T, f] is nhe. By acldmg an
extra flow section of length nja to the first column of [Xy, Fo, po, 7%, f ], we
get the first flow column of [X;, F, ,u.z,Tg, f]. We lengthen the column by
nya by adding a flow section of length nho at the top.

If we repeat this for each column, then it is clear that the new flow
skyscraper is isomorphic to [X3, Fs, iz, T%, f]. By putting the added length
to the height of the top Xi-cut, the flow [X3, %o, pa, T, f] can be built as
a generalized a-flow over {Xy, 1, f, T1). Hence the flow [Xs, Fo, fia, T2, f]
where [iz is a rescale of o satisfying § f dfix = l can be built as a generalized

a-flow over (X3, Fi i i1, T1) for some rescale [i ,ul of f1.

REMARK 2.8. If we want to represent ({2, £, A, 5*) under a bounded func-
tion, then we need to spread out the added length of each column to more
Xi-cuts instead of putting the whole added length to the top Xi-cut.

REMARK 2.9. Given a transformation T, it is not hard to see that each
entropy class contains a transformation which is a-equivalent to 7.

REMARK 2.10. Since there are uncountably many evenly Kakutani equiv-
alent maps no two of which are a-equivalent, there are uncountably many
Kakutani equivalent maps no two of which are a-equivalent [dJFR].

Given two points z and y which are in an orbit equivalence class of T', we
let T(x,y) = n if y = T™z. We let [#] denote the nearest integer to f, and
13]] denote the difference between 3 and its nearest integer. We reformulate
the a-equivalence in terms of the orbit equivalence map.

THEOREM 2.6. The following are equivalent:

(1) Th and Ty are c-equivalent.
(2) For any € > 0, there ewist subsets A ¢ X; and B < Xo and a map
U:A— B such that

(%) é(Tl(m,y) ~TyolU(z, y))” <e foralzye A

where U is an isomorphism with suitably rescaled measures on A and B.

AN
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Proof. (1)=(2). Let (£2,£, A, 5%) denote a flow which can be built as
a generalized o-flow over (X, Fi, i1, T1) and (X3, Fo, fiz, Th). Without loss
of generality we may assume [i;(X;) < [2(X2). Let ¢ be an isomorphism
from [X5, Fo, fiz, Th, f2] to [ X1, Fi, 1, 11, f1]. We denote the w-image of X,
in [X1, F1, fa, T, f1] again by Xs. Given 6 < ag/2, find £y € R and a subset
A C X of positive measure such that

rx, (%) ST and  |rx,(z) —to| <6

where rp(y) = min{t > 0 : §%(y) € B} for any B and y. Then U(z) =
S7*32(=)(z) is an isomorphism between A and U(A) = B with the measure
t2 on B and fi; on A, which makes the map U measure preserving. By
the choice of A and the definition of U, for all z,y € A, if y = S*(z) and
U(y) = 8% (Uz), then |l — I'| < 26. Since both ! and I’ are linear sums of 1s
and o’s,

[1=V| = |(Tv(z,y) + na) — (Ta(Uz, Uy) + ma)|
= Ti(z,y) — T o Uz, ¥) + (n — m)al.

Hence

1 2
“ Lo <X o,
(84 &

|2 @0 -7 cvew)

(2)=(1). Although the proof is analogous to that of Proposition 2.2

of [dJFR], we reproduce it here for completeness. We may assume that

p1(A) = rus(B), where r < 1. We extend the definition of Ha to all elements

of 7o by fa(E) = ruz(E). Let [X1, F1, p1, T4, f1] be a generalized a-flow

where | f1 du1 = 1 + v for some number ~. We show that (X1, Fi,p1, T, f1
can be constructed as a generalized a-flow over (Xo, Fo, fiz, Th).

Let y =T @)z be the point of first return to A. We may assume that

ny)—1

(i) gi(@) = Y Alie) =Ti(z,y) +la=ny) + o,
i=0

where (v/e — e)nly) << (y/a +n(y).

Since we assume that uz(B) > pq(A4), we take a subset of A if necessary
and the corresponding subset of B so that

(11) TI (333 y) >Tpo U(ma y) = TZ(U"L': Uy)

Moreover, we may assume that

(3-1)a-9me v <Tie.0) - Do Uiay)

< (% - 1)(1 +e)T3 0 Ulz, y).
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By condition (), it is easy to see that

n{y)-1

o= |5 (L mn-nev)] = [2ae -]+
i=0

is a cocycle.
Let 7 be the integer satisfying

) () ()

We build a flow over (X3, Fa, uz, T2) by defining a ceiling function f; on X,

as follows:
£(T3(Uz))
1+ 270, | i< i:2(1'?@]
={1+ (c(w, y) - [C(;ﬂ;y)] 2T) % #= [C(;";y)] ,
1, “(;”;” t1si<TzoUlz,y).

To show that the flow is well defined, we need to check that

[9%;—"’)} +1<ToU(z,y).

It is easy to check that

dzy) o L [l(mflfl(i"fw) - oU(way))}

27 a\

I
b
=

IA

| — |

%(Tl(:v,y) +loa—-Tpo U(w,y))]
+e)(5-1) Do vu) + (2 +e)n))
a +E)(§ _ 1) (T 0 Ula, 1))

)(;+e)(Ton(x,y)))
- oroft ) () oo

< %TZ ° U(SC, y)'

A
¥l= ¥~ ¥

A

+

TN TN TN

RIR 21~ R~
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What is now left is to prove that [Xy, Fy,p1,T1, fi] and [Xa, Fo, fia,
T3, fo] are isomorphic where fiz is the given rescale of up. Note that [Xy, 7,
ta, 11, .fl] is iSO:’:HOI‘phiC to the flow [A: F HA: A""lJA) gl]? and [X27 Fa, ﬁQa Ty, f2]
is isomorphic to [B, Fz |8, iz] s, T2| B, g2] where

92(Uz) = e{z,y)a + T o U{z, y).

By our construction of g, we have

n(y)—-1
l91(z) — g2(Uz)| = | Y ATr) - clz,y) a — Tyo U(s, y)[
i=0
ny)—1 '
=1 Y AlTie)-ToUlw,y) - c(z,y) - a{
i=0
1 n(y)—1 ‘
= E( ; fi(Tiz) - Tho U(m,y)) —c(z,y)| - o
< EQ.

That is, g1(z) — g2(Uz) is a bounded cocycle, hence g; and g, are coho-
mologous. Therefore [A, F1|4, 111|4,T1]4, 1] is isomorphic to [B, Fu|5, a5,
Ta|p, go]. We know that [Xy, F1,u1, T4, fi] is isomorphic to [Xa, Fa,
Ty, fo]. If we take a rescale Ziy of py so that §fuding = 1, then [Xq, 7y, [y,
T3, f1] is isomorphic to [X3, F2, iz, Tb, f2] where fiz is a rescale of [y so that
{ fadfiy = 1. |

Hence (X3, F1, 4y, Th) and (X2, Fa, po, Ts) are c-equivalent.

We denote the unit circle by 7 and the rotation by 8 on the circle by
Rj. We have the following corollary whose proof we omit (see [dJFR]).

COROLLARY 2.8. (X3, 1,11, Th) and (Xo, Fa, pia, Th) are o-equivalent
if and only if there erist subsets A ¢ Xy and B C Xa, not necessarily of
the same measure, such that there erists an isomorphism ¢ between T} X
Ra—lle“- and Th x Ra—llgxﬂ- Of the form

(P(w:t) = (U‘t:a(a’P) + t)

where U is an isomorphism between A and B with rescaled measures and o
i & map from A to . '

REMARK 2.11. Let (X, F, 4, T) be a Z-action and let .S, denote the point
spectrum. It is easy to see that the following are equivalent.

(i) ka~? € 8,5* where St is a generalized a-flow over (X, F,u,T).
(if) kot € ST where T* is the flow on X x [0, 1).
(i) e¥™*/* g §,T.
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