

STUDIA MATHEMATICA 130 (2) (1998)

Remarks on the Bergman kernel function of a worm domain

by

EWA LIGOCKA (Warszawa)

Abstract. We use a recent result of M. Christ to show that the Bergman kernel function of a worm domain cannot be C^{∞} -smoothly extended to the boundary.

1. Introduction. The present paper is motivated by M. Christ's work [6] devoted to the study of the Kohn-Neumann operator and the Bergman projection on the so-called worm domains in \mathbb{C}^2 constructed by Diederich and Fornæss in [7]. M. Christ proved in his important paper that for each worm domain D its Bergman projection does not preserve $C^{\infty}(\overline{D})$.

An important condition in the study of biholomorphic mappings is the so-called *condition* A: for every $t \in D$, the Bergman kernel function K(z,t) extends to a function from $C^{\infty}(\overline{D})$ (see [12], [11], [4]). The regularity of the Bergman projection on $C^{\infty}(\overline{D})$ implies condition A ([11], [4]).

We shall use M. Christ's result to prove that condition A is not valid for worm domains.

2. Preliminaries

Definition 1. A worm domain in \mathbb{C}^2 is an open bounded domain defined by

$$D = \{z : |z_1 + e^{i\log|z_2|^2}| < 1 - \Phi(\log|z_2|^2)\}$$

where the function Φ vanishes identically on some interval [-r,r] of positive length.

Diederich and Fornæss proved in [7] that Φ can be chosen such that

(*) D is pseudoconvex bounded with C^{∞} -boundary, and strictly pseudoconvex at every boundary point except those in $E=\{z:z_1=0,\ |\log|z|^2|\leq r\}.$

Let $L^2_{(0,k)}(D)$, k=0,1,2, denote the space of square integrable (0,k)forms on D. On each worm domain this space decomposes as the direct

¹⁹⁹¹ Mathematics Subject Classification: Primary 32F20.

orthogonal sum $\bigoplus_{j\in\mathbb{Z}} L_{k,j}^2(D)$, with $w\in L_{k,j}^2(D)$ iff $R_{\theta}w=e^{ij\theta}w$ where $R_{\theta}(w)=w(z_1,e^{i\theta}z_2)$ for k=0,2 and $R_{\theta}(w_1d\overline{z}_1+w_2d\overline{z}_2)=(R_{\theta}w_1)d\overline{z}_1+(R_{\theta}w_2)e^{-i\theta}d\overline{z}_2$ for k=1.

For each $s \leq 0$ and each k the Sobolev space $W^s_{2,(0,k)}(D)$ decomposes into the direct sum $\bigoplus_{j\in\mathbb{Z}}W^s_{2,(0,k),j}(D)$ of forms satisfying $R_\theta w=e^{ij\theta}w$.

The above decompositions imply in particular the following decomposition of the Bergman kernel function:

$$K(z,t) = \sum_{j=-\infty}^{\infty} z_2^j k_j(z,t) \overline{t}_2^j$$

where $z_2^j k_j(z,t) \bar{t}_2^j$ is the reproducing kernel of the Hilbert space $L_{0,j}^2(D) \cap \text{Hol}(D)$ (compare Kiselman [9]). The functions $k_j(z,t)$ depend locally only on z_1 and t_1 . Note that if $f(z_1,|z|^2)$ is holomorphic on D then $\partial f/\partial z_2 = 0$.

Note that if for some t the function $K(z,t) \in C^{\infty}(\overline{D})$ then also $k_j(z,t)$ is in $C^{\infty}(\overline{D})$ for each j.

Similar facts hold for harmonic functions. The Laplace operator maps $W^s_{2,(0,0),j}(D)$ into $W^{s-2}_{2,(0,0),j}(D)$ and therefore we have the decomposition $L^2(D) \cap \operatorname{Harm}(D) = \bigoplus L^2_{0,j}(D) \cap \operatorname{Harm}(D)$.

Thus the reproducing kernel G(z,t) for the space of harmonic functions can be written as

$$G(z,t) = \sum_{j=-\infty}^{\infty} G_j(z,t)$$

where $G_i(z,t)$ is a reproducing kernel of $L^2_{0,i}(D) \cap \text{Harm}(D)$.

If D has a C^{∞} smooth boundary then for every $t \in D$, G(z,t) and each $G_j(z,t)$ belong to $C^{\infty}(\overline{D})$.

DEFINITION 2. A function h harmonic on D is said to be of polynomial growth if there exists m > 0 such that $h(z) \operatorname{dist}(z, \partial D)^m$ is bounded on D. The space $\operatorname{Harm}^{-\infty}(D)$ is dual to $\operatorname{Harm}^{\infty}(D) = \operatorname{Harm}(D) \cap C^{\infty}(\overline{D})$ (see [2]).

In the sequel we denote by N_1 the Kohn operator solving the equation $u=(\overline{\partial}\,\overline{\partial}^*+\overline{\partial}^*\overline{\partial})N_1u$ on (0,1)-forms ([8]), by N_2 the operator solving the Dirichlet problem and by P_0 the Bergman projection $P_0f=\int_D K(z,t)f(t)\,dV_t,\,f\in L^2(D).$ We have $P_0=1-\overline{\partial}^*N_1\overline{\partial}$ ([8]). The operator $P_1=1-\overline{\partial}^*N_2\overline{\partial}$ is the orthogonal projection onto the space of $\overline{\partial}$ -closed (0,1)-forms.

The projection P_1 is regular with respect to the Sobolev norms $\|\cdot\|_2^s$. D. Barrett proved in [1] that the operators N_1 and P_0 are not regular with respect to $\|\cdot\|_2^s$ if D is a worm domain satisfying (*) and s is sufficiently large.

The operators P_0, P_1, N_1, N_2 each map an appropriate $L^2_{k,j}(D)$ space onto itself for k = 0, 1, 2.

3. The main theorem

THEOREM. Let D be a C^{∞} -smooth pseudoconvex worm domain satisfying (*). Let K(z,t) be its Bergman function. Denote by A the set of all $t \in D$ such that $K(z,t) \in C^{\infty}(\overline{D})$. Then there exists a function h $h \not\equiv 0$ harmonic on D with polynomial growth near the boundary such that

$$A \subset \{z \in D : h(z) = 0\}.$$

Proof. M. Christ proved in [6] the following:

PROPOSITION. Denote by V_j^s the space of (0,1)-forms $w \in C_{(0,1)}^{\infty}(\overline{D}) \cap W_{2,(0,1),j}^s(\overline{D})$ such that $N_1w \in C_{(0,1)}^{\infty}(\overline{D})$. There exists a discrete subset $S \subset \mathbb{R}^+$ (depending on D) such that for every $s \in \mathbb{R}^+ \setminus S$ and $j \in \mathbb{Z}$ there exists a constant C_{sj} depending only on D, s, j such that

$$||N_1 w||_2^s \le C_{sj} ||w||_2^s$$
 for $w \in V_i^s$.

We shall always assume in the sequel that $s \notin S$.

Let us denote by $C_{1,j}^{\infty}(\overline{D})$ the space $C_{(0,1)}^{\infty}(\overline{D}) \cap W_{2,(0,1),j}^{s}(\overline{D})$. The results of D. Barrett [1] imply that N_1 cannot map $C_{1,j}^{\infty}(\overline{D})$ into itself for any j.

It follows from the formula (4) of Boas–Straube's paper [5] (see also below) that if $w \in C^{\infty}_{1,j}(\overline{D})$ and w is orthogonal to all $\overline{\partial}$ -closed forms then $N_1 w \in C^{\infty}_{1,j}(\overline{D})$.

Recall that $P_1 = 1 - \overline{\partial}^* N_2 \overline{\partial}$ maps $C_{1,j}^{\infty}(\overline{D})$ into itself.

Let A be the set of all $t \in D$ for which

$$K(z,t)\in C^{\infty}(\overline{D}), \quad K(z,t)=\sum_{j=-\infty}^{\infty}z_{2}^{j}k_{j}(z,t)\overline{t}_{2}^{j}.$$

For each j and $t \in A$, $z_2^j k_j(z,t) \overline{t}_2^j \in C^{\infty}(\overline{D})$.

Let us now consider the reproducing kernel of the space of square integrable harmonic functions on D:

$$G(z,t) = \sum_{j=-\infty}^{\infty} G_j(z,t)$$
 (see Preliminaries).

We have $P_0(G_j(z,t)) = z_2^j k_j(z,t) \overline{t}_2^j$. Suppose now that the set $\{G_j(z,t): t \in A\}$ is linearly dense in $C_{1,j}^\infty(\overline{D}) \cap \operatorname{Harm}(D)$. Then the set

$$B = \{ \overline{\partial} G_j(\cdot, t) : t \in A \} \cup \{ \overline{\partial} h : h \in C_{0,j}^{\infty}(\overline{D}) \text{ and } P_0(h) = 0 \}$$
$$\cup \{ w \in C_{1,j}^{\infty}(\overline{D}) : w \perp \ker \overline{\partial} \}$$

is linearly dense in $C_{1,i}^{\infty}(\overline{D})$.

This can be proved in the following way:

Let $w \in C^{\infty}_{1,j}(\overline{D})$. Since P_1 maps $C^{\infty}_{1,j}(\overline{D})$ into itself we have $w=w_1+w_2$, where $\overline{\partial}w_1=0$ and $w_2\bot\ker\overline{\partial}\in B$. By the result of J. J. Kohn [10] there exists $u\in C^{\infty}(\overline{D})$ such that $\overline{\partial}u=w_1$. Since $w_1\in C^{\infty}_{1,j}(\overline{D})$ we can take $u\in C^{\infty}_{1,j}(\overline{D})$. The orthogonal projection Π onto the space of harmonic square integrable functions given by $\Pi u=\int_D G(z,t)u(t)\,dt$ maps $L^2_{1,j}(D)$ into itself and $C^{\infty}(\overline{D})$ into itself (see [2]). Thus $u=\Pi u+(u-\Pi u),u-\Pi u$ is orthogonal to the holomorphic functions and $\overline{\partial}(u-\Pi u)\in B$. Since $\Pi u\in \overline{\operatorname{span}}\,G_j(z,t)$ we have $\partial\Pi u\in \overline{\operatorname{span}}\,\overline{\partial}G_j(z,t)$. The formula (4) of [5] and the ellipticity of N_2 ensure that N_1 maps B into $C^{\infty}_{1,j}(\overline{D})$, as follows.

The above-mentioned formula for (0,1)-forms says that

$$N_{1} = P_{1}w_{\tau}N_{\tau,1}[w_{-\tau}P_{1} + \overline{\partial}w_{-\tau} \wedge (I - P_{0})\overline{\partial}_{\tau}^{*}N_{\tau,1}P_{1}]$$
$$+ (I - P_{1})\overline{\partial}_{\tau}^{*}N_{\tau,2}P_{2}w_{\tau}\overline{\partial}N_{\tau,1}[w_{-\tau}(I - P_{1})].$$

The symbols $N_{\tau,1}$, $N_{\tau,2}$, $\overline{\partial}_{\tau}^*$ denote the Neumann operators and the adjoint operator for $\overline{\partial}$, constructed with respect to the weight $w_{\tau}(z) = e^{-\tau |z|^2}$. J. J. Kohn proved in [10] that for each s > 0 there exists τ_0 such that $N_{\tau,1}$ and $N_{\tau,2}$ are regular in the Sobolev norm $\|\cdot\|_2^s$ if $\tau > \tau_0$. Since $D \subset \mathbb{C}^2$, we have $P_2 = I$ and N_2 is regular in Sobolev norms (elliptic). Thus the projection P_1 maps $W_{2,(0,1)}^s(D)$ into itself for each s > 0. If $w = \overline{\partial} G_j(z,t)$ then $(I - P_0)\overline{\partial}_{\tau}^*N_{\tau,1}P_1w = G_j(z,t) - z_2^jk_j(z,t)\overline{t}_2^j$; if $w = \overline{\partial} h$, $h \in C^{\infty}(\overline{D})$, $P_0(h) = 0$ then $(I - P_0)\overline{\partial}_{\tau}^*N_{\tau,1}P_1w = h$, and if $w \perp \ker \overline{\partial}$ then $P_1w = 0$. Hence N_1 maps B into $C_{1,j}^{\infty}(\overline{D})$.

Since B is linearly dense in $C_{1,j}^{\infty}(\overline{D})$ we have

$$||N_1 w||_2^s \leq C_{si} ||w||_2^s$$
 on $\overline{\operatorname{span}} B = C_{1,i}^{\infty}(\overline{D}).$

We got a contradiction with Christ's and Barrett's results.

Hence $\{G(z,t): t \in A\}$ is not linearly dense in $C_{1,j}^{\infty}(\overline{D}) \cap \text{Harm}(D)$.

By Bell's result [2] on duality between $\operatorname{Harm}^{\infty}(D)$ and $\operatorname{Harm}^{-\infty}(D)$ there exists a non-zero $h \in \operatorname{Harm}^{-\infty}(D)$ such that h = 0 on A.

It could also be proved that h can be taken from the space of harmonic functions of polynomial growth which depend only on z_1 and $|z_2|$.

4. Open problems

PROBLEM 1. The Theorem implies that $K(z,t) \notin C^{\infty}(\overline{D})$ for t belonging to an open dense subset of D. However, we do not know how bad the function K(z,t), $t \in D \setminus A$, can be. Results of [9] suggest that K(z,t) may not be in the Hölder class $\Lambda_{\alpha}(\overline{D})$.

PROBLEM 2. The proof of the Theorem suggests the following conjecture: A C^{∞} -smooth bounded pseudoconvex domain D has property A if and only if the Bergman projection maps $C^{\infty}(\overline{D})$ into itself.

As far as we know the best result in this direction is due to Bell-Boas [3]: The Bergman projection maps $C^{\infty}(\overline{D})$ into itself if for each $k \in \mathbb{N}$ there exist $m \in \mathbb{N}$ and C_k such that

$$\left|\frac{\partial^{\alpha}}{\partial z^{\alpha}}K(z,t)\right| \leq C_k \operatorname{dist}(t,\partial D)^{-m} \quad \text{for each } z,t \in D \text{ and } |\alpha| = k.$$

PROBLEM 3. Do Christ's a priori estimates hold for every smooth bounded pseudoconvex domain? Do they imply similar a priori estimates for the Bergman projection?

References

- [1] D. E. Barrett, Behavior of the Bergman projection on the Diederich-Fornæss worm, Acta Math. 168 (1992), 1-10.
- [2] S. Bell, A duality theorem for harmonic functions, Michigan Math. J. 29 (1982), 123-128.
- [3] S. Bell and H. Boas, Regularity of the Bergman projections in weakly pseudoconvex domains, Math. Ann. 257 (1981), 23-30.
- [4] S. Bell and E. Ligocka, A simplification and extension of Fefferman's theorem on biholomorphic mappings, Invent. Math. 57 (1980), 283-285.
- [5] H. Boas and E. Straube, Equivalence of regularity for the Bergman projection and the $\bar{\partial}$ -Neumann operator, Manuscripta Math. 67 (1990), 25-33.
- [6] M. Christ, Global C[∞] irregularity of the ∂-Neumann problem for worm domains,
 J. Amer. Math. Soc. 9 (1996), 1171-1185.
- [7] K. Diederich and J. E. Fornæss, Pseudoconvex domains: an example with non-trivial Nebenhülle, Math. Ann. 225 (1977), 275-292.
- [8] G. B. Folland and J. J. Kohn, The Neumann Problem for the Cauchy-Riemann Complex, Ann. of Math. Stud. 72, Princeton Univ. Press, 1972.
- [9] C. O. Kiselman, A study of the Bergman projection in certain Hartogs domains, in: Proc. Sympos. Pure Math. 52, Part 3, Amer. Math. Soc., 1991, 219-231.
- [10] J. J. Kohn, Global regularity for \(\overline{\partial}\) on weakly pseudoconvex manifolds, Trans. Amer. Math. Soc. 181 (1973), 273-292.
- [11] E. Ligocka, Some remarks on extension of biholomorphic mappings, in: Analytic Functions (Kozubnik, 1979), Lecture Notes in Math. 798, Springer, 1980, 350-363.
- [12] S. Webster, Biholomorphic mappings and the Bergman kernel off the diagonal, Invent. Math. 51 (1979), 155-169.

Department of Mathematics, Informatics and Mechanics

Warsaw University

Banacha 2

02-097 Warszawa, Poland

E-mail: elig@hydra.mimuw.edu.pl

Received March 14, 1997 Revised version October 13, 1997