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On (C,1) summability of integrable functions
with respect to the Walsh—-Kaczmarz system

by
G. GAT (Nyfregyhsza)

Abstract. Let G be the Walsh group. For f & I} (@) we prove the a.e. convergence
onf — f (n —r 00), where om is the nth (G, 1) mean of § with respect to the Walsh—
Kaczmarz system. Define the maximal operator o* f 1= sup,, |on f|. We prove that o* is
of type (p,p) for all 1 < p < oo and of weak type {1,1). Moreover, ||o* fll1 < </|ifl[lz.
where H is the Hardy space on the Walsh group.

Introduction and the main results. This paper is devoted to the
problem of a.e. convergence of the (C, 1) means of integrable functions with
respect to the Walsh-Kaczmarz system. The Walsh system in the Kacz-
marz enumeration was studied by a lot of authors (see [SCH1], [SCH2],
[SK1], [SK2], [BAL], [SWS], IWY]). In [SH] it was pointed out that the be-
havior of the Dirichlet kernel of the Walsh-Kaczmarz system is worse than
of the kernel of the Walsh—Paley system considered more often. Namely, for
the Dirichlet kernel .Dp{z) of the Walsh-Kaczmarz system the inequality
limsup,_, ., Dn(z)/logn > C > 0 holds a.e. This “dispersion” of the sys-
tem makes it easier to construct examples of divergent Fourier series [BAL].
A number of pathological properties are due to this “dispersion” property
of the kernel. For example, for Fourier series with respect to the Walsh-
Kaczmarz system it is impossible to establish any local test for convergence
at a point or on an interval, since the localization principle does not hold
for this system.

Omn the other hand, the global behavior of the Fourier series with respect
to this system is similar in many respects to the case of the Walsh~Paley
system. Schipp [SCH1] and Wo-Sang Young [WY] proved that the Walsh—
Kaczmarz system is a convergence system. Skvortsov proved, for continuous
functions f, that the Fejér means converge uniformly to f. In this paper
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we prove for integrable functions that the Fejér means (with respect to the
Walsh-Kaczmarz system) converge almost everywhere to the function.

Let P denote the set of positive integers, N := PLU{0} the set of nonnega-
tive integers and Z; the discrete cyclic group of order 2. That is, 23 = {0,1},
the group operation is addition mod 2 and every subset is open. The Haar
measure is such that the measure of a singleton is 1/2. Let

G = X Zz
k==0

be the complete direct product. Thus, every € G can be represented by
a sequence z = (3,1 € N), where z; € {0,1} (# € N). The group operation
on G is coordinatewise addition (which is the so-called logical addition),
the measure (denoted by u) and the topology are the product measure and
topology. The compact Abelian group G is called the Walsh group. Let
¢; = (0,0,...,1,0,0,...) € G have all coordinates zero except the ith which
is 1.

A neighborhood base for & can be given as follows:

Io(z) =G, L@)={y=(yiteN)eG y, =z fori<n}

for z € G and n € P. Let 0 = (0,4 € N) € G denote the null element of G
and I, := I,(0) (n € N). Let T := {I,(z) : z € G, n € N}. The elements of
7T are called the dyadic intervals of G. Furthermore, let L?(G) (1 < p < o0)
denote the usual Lebesgue spaces (and || ||, the corresponding norms) on G,
Ay, the o-algebra generated by the sets I, (z) (z & @) and E,, the conditional
expectation operator with respect to A, (n € N).

Define the Hardy space H' as follows. Let f* = sup, y |Enf| be the
maximal function of the integrable function f € LY(G). Then

HYG) = {f e LMG): /" e LN G}

endowed with the norm ||f|| g« = ||f*|1, H' is a Banach space. Another
definition is common: a € L*(Q) is called an atom if either a = 1 or a has
the following properties: suppa C I, |6l < 1/u(l.), SI“ a = 0, for some
I, € I. We say that the function f belongs to the Hardy space H(G) if f
can be represented as f = 3.2 Aa;, where q;'s are atoms and the scalar
coefficients A; (¢ € N) satisfy Y o0 |A| < oo, It is known that H(G) is a
Banach space with respect to the norm

| Flle = nf Y il

1=
where the infimum is taken over all decompositions f = 3772 Asa; as above.
Moreover (cf. Theorem 3.6 of [SWS)), HY(G) = H(G) and

£ e ~ 1S
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In the proof of some lemmas we will use the following. Let f € H and
z € G. Then f(- +2) € H and |[flizn ~ |[f(- + 2)||zn. Indeed, if f =
Yoi=o Aiai € H, where the a; are atoms, then so are the functions ai(- + 2).
That is, f(- + 2) = 372 Mai- + 2) € H, which after some elementary
considerations gives || fllx = || f(- + 2)|| 5. Thus,

Iz ~ [1F (- + 2) ]| g

for all z € G.

Let n € N have base 2 expansion n = 372 ;2%, where n; € {0,1}. De-
fine |n| ;= max(j € N : n; 3 0), that is, 21" < n < 2I41 The Rademacher
functions are defined as

ra(z) = (~1)%

The Walsh-Paley system w := {w,,n € N) is defined as the set of Walsh—
Paley functions

(zx € G,n eN).

wn(2) = [[ @)™ = (-DT™ (€6, neN).
k=0

The nth Walsh—-Kaczmarz function is

fn]—1
(@) = 7in) (). [T (rinjmrs @) = iy (@) (1585 vt
k=0

for n € P, and kg(z) := 1, 2 € G. The Walsh-Kaczmarz system k :=
(kn,n € N) can be obtained from the Walsh-Paley system by renumber-
ing the functions within the dyadic “block” with indices from the segment
[27,2"%! — 1]. That is, {Kn : 2* <n < 2%} = {w, : 2% <n < 25+1} for all
keN, mg=wp.

By means of the transformation 74 : @ = G,
Ta(z) = (Ta=~1,24-2,- .., 71,20, T4, TAL1s-..) € G,

which is clearly measure-preserving and such that 74(74{z)) = z, we have
Kn () = | () (Tn(2)) (R EN).

Let us consider the Dirichlet and Fejér kernel functions:
f—1 1 T
Da :zgak, K :=EE;1D§, Dg,Kg =0,

where « is either & or w. The nth Fourier coefficient, the nth partial sum of
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the Fourier series and the nth (C,1) mean of f € LY(G) are, respectively,

F2(n) = | fl@)on(z)dp(z) (n€N),
G
n—1
Sef) =y ko) = | fla+y) DR} du(s)  (neP, SF =),
k=0 &
1 n
2H) = 2 SEFW)
7 nkzl *
= S fle +)KS(z)du(z) (neP off=0,yeq),
G
where « is either & or w. Define the maximal operator

o*f i=suplaf]  (f € I(G)).
nelP

We say that the operator T : L' — L% is of type (p,p} if |T'f|lp < cpllfllp
for some constant ¢, for all f € LP(G) (1 < p < oo); T' is of type (H*, L) if
1751l < clifl|lz for all £ € HY(@); finally, T is of weak type (1,1) if there
exists a ¢ > 0 such that u({y € G: TF(y) > A}) < cfif|lu/A for all A >0
and f € LYGQ).

Set S*f := sup,p |52 f| for f € L, where a is w or % or any piecewise
linear rearrangement of the Walsh—Paley system (x is of this kind; for the
notion of piecewise linear rearrangement see [SWS]). Then S™ is of type
(p,p) for all p > 2 and for f € LP (p > 2) it follows Spf — f a.e. [SWS,
Theorem 6.10]. Moreover, if @ = x and f € Ll(log+L (in particular,
if f € L? for any p > 1), then the Walsh-Kaczmarz—Fourier series of f
converges to f a.e. on G {cf. Theorem 6.11 of [SWS]).

The main aim of this paper is to prove

THEOREM 1. o f — f (n — oo) alrost everywhere for oll f € L}G).

THEOREM 2. The operator o* is of type (p,p) for all 1 < p < co and of
weak type (1,1). Moreover, |o* {1 < cf|fll .

Theorems 1 and 2 for the Walsh-Paley system can be found in [SWS,
Corollary 6.2]. Corollary 6.2 of [SWS] states for the Walsh-Paley system
even more. Namely, the maximal operator o* is of type (H', L!), ie.
lo*fllx < el fllm (f € HYG)). Skvortsov [SK1] proved the uniform (C,1)
summahility of the Fourier series of a continuous function with respect to
the Walsh—Kaczmarz system. For more details on the systems w and x see
e.g. [WY, SK1, SK2, SWS, SCH1].

In this paper ¢ denotes an abgsolute constant which may not be the same
at different occurrences, and similarly for ¢, which depends on p (p € R).
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The proofs. In order to prove Theorems 1 and 2 we need some lemmas.
Lemma 3. Let f € LY(G) and 1 € N. Then the operator

Ty f(y) == sup |24~ | fla+y) du(z)

{eeGa=n 1 y=.. =24 1=0}

sup
A3l

(y € G) is of type (H*, L"), (p,p) for all 1 < p < oo and of weak type (1,1)
(uniformly in 1).

Proof. Set
g(z) i =2"" Z flageo+ ... +aj_ 16114 2), ze@.
a:e{0,1},4€{0,1,...,1~1}
Then
Bngly) =2" | gz +y) du(z)
Tn
= gt Z S flogent . .. +ai—1ei 1 +a+y) du(x)

aiE{O,l},iE{O,l,...,l—l} I,
— 2”“! S
{mEG:wg=m1+1=...mmn_1=D}

flz +y) dpfa).

This implies
Ty} =sup|Eng(y)| < g*(u)-
n>
Since the operator f*(y) := sup, . | En f(y)| is of type (p,p) forall 1 < p <
00, and of type (H', L') and weak type (1,1) (see e.g. [SWS)]), we have

[T flls < 115" ]lp < coligile < coll £l
172l < Ng™lh < ellgllms < el fllas
forall 1 < p < o0, and
M(If > A) < g™ > A) < cllglia/A < | fla/A m
LEMMA 4. Let f € LMG) and I,t € N, | <t. Then the operator

T f(y)
= gup 24 S flz+y) dp(z)
At {meGim=gi 1= =0 1=0,m=1,mp1=...=xa_3=0}

(¥ € G) is of type (H*, L), (p,p) for all 1 < p < 0o, and of weak type (1,1)
(uniformly in 1,t).

Proof By Lemma 3 the inequality T}, f(y) < 11 f(y+e:) and the equal-
ity of the appropriate norms of f and f(- + e;) {equivalence in the case of
the H' norm) we have

1T f ()l < ol FOMl
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for each 1 < p < o0,
T f Ol < elf Ol and p(Tief > A) S ellFO)l/A

It is well known that ([SWS, p. 28])

. o ifxel,,
(1) ;“n (.’17) - Dzﬂ (-’.U) = DQ“’ (ﬂ'.:) = {D Otherwise’
(2) D {z) = walz Z ng (Dywr () = Do ()

z) an(-wwzk ()

k=0
forn e N and 2 € G. Set

a+b~1
= Z D¥  (a,beN, o K w)

and nl®) 1= S 02 (n,s € N). Recall that for n € N, |n| := max{j €
N : n; # 0), that is, 2I"l < n < 2+ (and e.g. n@ =n, pinl+1) 0). By
elementary calculat1ons we have

Inl
(3) nKS = K%, +Df  (@=rw, nep)
s={)

LEMMA 5. Suppose that s,t,n € N and € I\ Lirq. If s <t < |n|, then
K%y 00 (2)| < 27, while if t < s < |nl, then

0 if o~ avey & I,
W —
Kﬂ(""'”ﬂ" (.’E) - {wn(g+1) (m)2"+t—1 ‘Zf o — zpep € Iy,

Proof If s <t then for all k € N by (1) and (2) we have |Df(z)| £
35 o 29 < 2, thus in this case | Ky g0 ()] < 0257,
Now, let |n| > s > t. Then by (2) and (1),

Dn(’+1)+.7($) = Wret1) 45(2) Z(n(”“ + Drr(z)Das ()
k=0

= wn(a+1)+3 (23k2k —_ Jt2t>

This implies that
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2°—1
-n,(ﬁ+1 28 Z Dn(5+1)+3
2°—1 t-1 2°-1

= W (a41) (.’E) Z Wy (:C) ij2k — W (s+1) (.’E) Z wj(:c)jt?.
j=0 k=0 =0
1 2
~y-y

We now prove that Z = 0. The proof is based on the fact that w0 (z),

E jk2 and HI—O e~ 1)7t* do not depend on j,, while E;tzo( 1)z
=0 for z: = 1. We have

Zl=wn(a+n($) Z wj(m)ijﬂk

le-":jE—l
1 51
S DRI ) o e et
ji=0, 'L?‘-‘ i=0,...,8—1 E:ﬂ,l#t 41=0
since
1 1
Z Wy (z) = Z (_1)j0u"-‘0+--.+jt~»1$t—1+jtmej'z+1ww1+m+j,_11:,_1 =0,
Jr=0 Je=0
That is,
Ky 28 (z)
201 0 £ ¢
e ()it = its —mie ¢ I,
nla+1) (.’)3) Jzzo wy (ﬂ:)Jt {wn(s+1) (m)23+t~—1 if g — Tie; € Is- -

Cororrary 6. Let A,t € N, A > ¢, Suppose that © € i \ L1, Then
SAORS PN S ey
If © € I4 then K (z) = 2471 4 1/2.
Proof. If € I4 then for j < 24 we have D¥(z) = j, thus K5, (z) =
Ay j—4-tp),
Ifz € L\ I, for some t < A, then the assertion follows from

241

2K, (z) = ZD;’(.T) = 3 D¥(e) + Diulz)
i=1

j=1
= Kga(2) = K(%A)(A+1),2A (2)
(Da(z) = 0 since ¢ & I4) and from Lemma 5 (with s = A). m
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LEMMA 7. Set
Lf(y) = sup | | £(o -+ y)ral@)Ks (7a(2)) di()
el

(y € G, f € LY@)). Then the operator L is of type (p,p} for all 1 < p < o0,
of weak type (1,1}, and | Lflly < efl |flllzs-

Proof. For a given A € N, the integral over G splits into the sum of
integrals over I4 and G\ I4. Since by Corollary 6,

sup | | £(@+ y)ra(@)K3a(ra(e)) dp(o)
AeN' p

= sup(2471 + 1/2)| | f(o +v)ra(@) du(s), < olfI"(w)
AcN Is
we need to consider the integral over G \ I4 only. We have

A1
G\ Iy = |J &\ L),
$==()

Next, we decompose the set I \ I;4.;. For an integer T > 1 set
F={zeG:my=sp=1andz; =0fori < T, it}

Then I, \ I;+1 can be represented as the disjoint union

(o]
It \ It_|_1 = U I;r U {Gt}.
T=t+1

Fix t < Aand 2 € IT for some T > .

KT < A, then among (74(2));, ¢ =0,1,...,4—1, there are at least two
indices equal to 1. Namely, ; = (74(%)) a~1~ = 1 and o = (74(z))a_1_7
= 1. Corollary 6 gives K54 (74(2)) = 0 in this case. (More specifically, set
l'=max(j EN:z; =1, j<A). Thenl>T > ¢ Consgequently, z; = 1,
=1, 241 = ... = g4-1 = 0. This gives 74(z) € Igwjmn \ {aniny, but
(a(2)) 441 = 1 and consequently 74(z) — (74(2)) Ato10Ai-1 & L4

IET > A, then z — 2ie4 € T4, which means 74(z) — (74(2)) 4118411t
€ I4 and consequently, by Corollary 6, we have 2 (Talz)) = 2412 Tt
follows that for each y € G,

Lf(y) < iléﬁ ' ISA e +y)ra(@) K (ra(z)) du(z) ’

A-1
ranl 3 e @R (e du(z)
<dff@+3 sw| | o+ v)ra@K(ra()) duo)|

A>t
=04~ Ii\NIpy
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@+ y)ra(@)Kga(ra (a)) du(a)

o+ y)ra(@)2* = du(a)

P+ 2 sup2t | £z + )] du(z)
P A>i Ia (e.‘;)

<clf" () +e Y 27 Tl Fl(w)-

te=0
Lemma 4 now gives

£l < eolll "1l + ¢ 27" To,el £l

tew()

00
S epllfllp+ep 3 270N fllp S ell Fllp-

t=0
Mereover, also by Lemma 4,

IZfll < elll £ +e 27 Toul £illa

t=0
< clllflllen+ed 27N e = el e
t=0

Finally, for A > 0,

LT > eX) S pfI* > o)) + (e 27 Toulf] > )
tex)

< ellflla/n+ u( Tl ] > 2%e})

ta=(

o0
< el flle/A+ Y u(Toslf] > 2¢7eN)
t==0

< el flls/A+ e 27 /A < el flla/A

1=
by an application of Lemumna 4. w
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For f € L}(@) define the operator M as follows:

Mi)= s |{fatira@ERia@)due)| e ).
nA€EN, [n|24 ' 4
LEMMA 8. The operator M is of type (p,p) for all 1 < p < co, of weak
type (1,1), and [|Mf]z < clif{]|m-

Proof. Since [n~2D¥| < 1, from (3) it follows that we have to consider
the modified kernel

|7}

=Y mK

A1) 24
g=0
and
Miy)= sw | [ flaturate D) Ra(ra(@)) dulz)| e ).
n, AEN, [n|<A
For AteN, A>t>1,set JA ={2€G 241 =..=24-:=0,

2a_y1 =1} and J§ := {z € G: w4_1 = 1} for A 2 1. Then for every
1< A€ N we can decompose G as the (disjoint) union

A-1
G=Is0 ]
$=0
Namely, if ¢ € G\ I4, then there is an index j € {0,1,. — 1} for which
z; = 1. Let A — ¢ —1 be the maximal such index (t E {0,1,..., -1}

Then € JA. Split @ as G = T4 U(G\ I4). If & € I4, then by the definition

of &, and (3) we have | K% (74(z))| < cn < c24. That s,
(0 s o § £+ ora@Rs (rale) au()|
AN, [n|<a 471 7

N ot S |f(z + )| du(z) < 1FI" (W)

< sup
nAeN, nj<4 24

By (3) and Lemma 5 we have

sup oA ] flz+ y)m(w)ff;’ (Talz)) d,u(m)’
n,AeN, in|<a 2% o5

In|

P+ DI 1K g (T4 ()] dus(2)

1
< s o |
G\Ia =0

n,A€N, [nj<4

< sup
n,AcK, |n]<A

A-1 |n|
Z S F @+ )} [ Koy ge (Ta(2))] dp()
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A-
< 13
T o, AeN |n|<A 24

> 1 1F @+ )25 du(z)

[

0 a=0 yA

A A

>, Slf(m+y
(2

i

t=

=

1
+ sup 5
n,AEN, |'n.|5A .
=: § 4+ 82,
Moreover, for | := A — ¢ we have
Al

22t-—A . d
nyAEN, (1< A ; } 1/ +3)|dp(e)

K s g0 ()| dui(e)

) g==

(5) S < sUup

I
ot o0
<N ot gup 24 4+ )| du(z) =Y 275!
> s S et vl due) =3 2t
A=l -
Since J{ |, ={z € G: w41 =...=x =0, 31—y = 1}, the definition of
the operator 1) gives
2470 {1 (e + )l dule) < TF| ).
T4

Thus by Lemma 4 and (5) we have ||S%|, < ¢ fllp for all 1 < p < co,
151 < €| f]ligr and w(S* > A) < ¢|| fll1/A for all X > 0.

It remains to discuss S2. Suppose that © € JA, s > t. This means that
Ta(z) € Iy \ Tpeq. Then from Lemma 5 it follows that K:(,H) g0 (Ta{z))
differs from O only in the case when 4.1 = ... =244 =0, 2441 = 1,
Tqgo2=...=L4_, =0, that is, when m(w) (m(m)),et S I If  has this
%;)perty, then also by Lemumna 5 it follows that [K7. 1) 5 (Ta(z))| = 28+,

us,

A-1 A
1
§* < sup = Z £ (z + 9|24 du(x)
A !
AgN 24 £ a;“ fh
where J#, = {2 @G 2p = =Ty = 0 Bhepet =1, Tawp-2 =0,
ey amg =0} Set = A — 9 and m = 4 —t, Then
1 A m~1
§? < sup 2,1 3 }: A=t e+ y) du(e)
Agn 24 Lt " ‘
Ay M=l
A oo m-—1
Sesup Y 22 M- [FI ) ¢ D 2 Tmes 1),
ACN yrpme ) L) mez=1 1==0

Since by Lemma 4 the operator T} m-1 18 of type (p,p) forall 1 < p < o0
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uniformly in I, m and of type (H',L*), it follows that

oo m—1
(6) 12, < S 3 2™ Tim-tfllle < cplil fllx
m=1 =0
where X = p for 1 < p < co and X = H* for p = 1. Moreover,
oo m—1
u(S? >eA) < u(c Z Z 2" m-1| | > c)\)
mel =0

m~1

S wlTrmenlf] > A2™2)
1=0

m

<

i
-

272 £l < ell Flla/

IA
1 iDe 1Me
>io

1 (=0

Now, (4)-(6) show that M is of type (p,p) for all L < p < o0, of weak
type (1,1), and || MF]1 < ¢l||f||lzr. The use of the definitions of M, M and
|D¥|/n < 1 completes the proof. m

Skvortsov [SK1] proved that for n € P and z € G,

[n|~1 |re}~-1
(1) nKie)=1+ 3 2Dx(z)+ Y 2'7i(@)Ks5(n(x)
i=0 =0

+ (n = 2P0 (Dyin (&) + 7ny (2) K,
Proof of Theorem 2. By (7) we have

r—atn M7 (2))-

Io* 1o < |[sup | § £(e + ) du(e)
nel | o n p
Inj—1 oi
+ || sup Z Sf(m+ Dy (%) d,u(:c)\
nEP Ty G P
[n|—1 9i
e 2 —7; (5? Ha+ ri@) Kz (a)) duio)| |
+|5ue (1 -— ‘CS;J'(W'F ) Datwi () dpt w)[
ol
+ |l sup (l - ——)[CS;J”(H i) (@)K g1 ) (i) ( ))d,u(w)}

P
=:4y + iz + 143 + 44 + i5.
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Let 1 < p < oco. Then, evidently, i1 < || f|,- For the maximal function
f* we see that the I* norm (1 < p < o0) of f* is bounded by ¢|| f||,. This
implies
In|~- 1

sup Z —|f* < el £ llp-

nelp
»
By the definition of the operator L and Lemma 7 we get

ig <

Inl-1 o

s — L

ig S

< el Fllp-
P

The definition of f* obviously gives
< &l fllp-

9in| X
sup (1- 221770
nel n p
Finally, we apply Lemma, 8 to get an upper bound for é5. Since

| § £+ rin (@)K i) (1 () dia(a)| < M5,
e

s <

we have

. alnl
io < [Jsup (1- 22 )220 <ol
nel n P

That is, ||o* fllp < ¢pl| fl|p for all f € LP(G) and 1 < p < o0, If p = 1, then
the same considerations as above give ||o* f||1 < ¢|||f]|| g2 for all f € Hl(G)

On the other hand,

plo™ f > ed) s,u,(sup%‘ Sf‘ >c)\)

[r|=1 Ini=1
-|-u(2 2—If |>c/\)+u(z 2Lf>c)\)

gm0

20

4l sup {1~ -«-->|f* > c)\)
nER T
piid

- p| sup (1 - ————-)Mf > c)\)
neP n

< eflflla/A

Proof of Theorem 1. The proof is based on the fact that the maximal
operator o is of weak type (1, 1) and on the standard depsity argument. Let
f € LMG). Let ¢ > 0 be arbitrary. Then there exists a Walsh-Kaczmarz
polynomial P ( 2 oGk, for some ap,...,ap € C, k € N) for which
If =Pl <e. Oonsequently, since limy, o "P P everywhere, the fact that
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o* is of weak type (1,1) implies for § > 0 that
W o5 ~ 11> 6) < p(Tmlosf = eXPI > 619
+ (T 3P - P > 5/3) + w(ERIP — 1] > /9
< 2If = Pl + o (f = P) > §/3)
c c
<%if- Pl 3o

Letting ¢ — 0 we have
p(limsup loff — f| > &) =0

for any 6 > 0. This means that ofif — f a.e. (n — 00). m
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Almost 1-1 extensions of Furstenberg—Weiss type
and applications to Toeplitz flows

by
T. DOWNAROWICZ (Wroctaw) and Y. LACROQIX (Brest)

Abstract. Let (Z,Ty) be a minimal non-periodic flow which is either symbolic or
strictly ergodic. Any topological extension of (Z,T) is Borel isomorphic to an almost 1-1
extension of (Z,Tz). Moreover, this isomorphism preserves the affine-topological struc-
ture of the invariant measutres. The above extends a theorem of Furstenberg-Weiss (1989).
As an application we prove that any measure-preserving transformation whicl admits in-
finitely many rational eigenvalues is measure-theoretically isomorphic to a strictly ergoedic
Toeplitz Aow.

Introduction. In 1989, Furstenberg and Weiss proved a theorem [F-W,
Theorem 1] which can be informally expressed as follows: every topologi-
cal point-transitive How (X, Ty) which is an extension of a minimal non-
periodic flow (Z,T) is in some sense equivalent to a minimal flow (Y, 7y)
which is an almost 1-1 extension of (Z,Tz). The equivalence is given by a
Borel measurable injective map ¢ defined on a subset X' € X whose mass
is 1 for any Tx-invariant probability measure carried by X. Such a Borel
embedding provides a 1-1 affine map ¢* (defined as the adjoint map on mea-
sures) from the set P{X) of all Tx-invariant probability measures carried
by X into the set P(Y') defined analogously for the flow (Y, Ty ). Moreover,
for every pu € P(X), ¢ is a measure-theoretic isomorphism between the
measure-preserving transformations (X, By, p, Tx) and (Y, By, ¢*(1), Ty)
(here By and By denote the o-fields of Borel measurable sets in X and ¥V,
respectively).

In this paper we improve the Furstenberg-Weiss theorem. By the meth-
ods of symbolic dynamics we obtain a stronger isomorphism under even
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Key words ond phrases: nlmost 1-1 extension, invariant measure, isomorphism,
Toeplitz Aow. .
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