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o* is of weak type (1,1) implies for § > 0 that
W o5 ~ 11> 6) < p(Tmlosf = eXPI > 619
+ (T 3P - P > 5/3) + w(ERIP — 1] > /9
< 2If = Pl + o (f = P) > §/3)
c c
<%if- Pl 3o

Letting ¢ — 0 we have
p(limsup loff — f| > &) =0

for any 6 > 0. This means that ofif — f a.e. (n — 00). m
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Almost 1-1 extensions of Furstenberg—Weiss type
and applications to Toeplitz flows

by
T. DOWNAROWICZ (Wroctaw) and Y. LACROQIX (Brest)

Abstract. Let (Z,Ty) be a minimal non-periodic flow which is either symbolic or
strictly ergodic. Any topological extension of (Z,T) is Borel isomorphic to an almost 1-1
extension of (Z,Tz). Moreover, this isomorphism preserves the affine-topological struc-
ture of the invariant measutres. The above extends a theorem of Furstenberg-Weiss (1989).
As an application we prove that any measure-preserving transformation whicl admits in-
finitely many rational eigenvalues is measure-theoretically isomorphic to a strictly ergoedic
Toeplitz Aow.

Introduction. In 1989, Furstenberg and Weiss proved a theorem [F-W,
Theorem 1] which can be informally expressed as follows: every topologi-
cal point-transitive How (X, Ty) which is an extension of a minimal non-
periodic flow (Z,T) is in some sense equivalent to a minimal flow (Y, 7y)
which is an almost 1-1 extension of (Z,Tz). The equivalence is given by a
Borel measurable injective map ¢ defined on a subset X' € X whose mass
is 1 for any Tx-invariant probability measure carried by X. Such a Borel
embedding provides a 1-1 affine map ¢* (defined as the adjoint map on mea-
sures) from the set P{X) of all Tx-invariant probability measures carried
by X into the set P(Y') defined analogously for the flow (Y, Ty ). Moreover,
for every pu € P(X), ¢ is a measure-theoretic isomorphism between the
measure-preserving transformations (X, By, p, Tx) and (Y, By, ¢*(1), Ty)
(here By and By denote the o-fields of Borel measurable sets in X and ¥V,
respectively).

In this paper we improve the Furstenberg-Weiss theorem. By the meth-
ods of symbolic dynamics we obtain a stronger isomorphism under even
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weaker assumptions: dropping transitivity of (X, Tx) we construct (¥,Ty)
and ¢ such that in addition to all previous properties, ¢* is a homeomor-
phism between P(X) and P(Y") for the weak* topology of measures. This
is partially achieved by obtaining the image ¥’ = ¢(X'} of mass 1 for every
v € P(Y), and partially by controlling the frequencies with which blocks oc-
cur in sequences. This kind of isomorphism (which we call “Borel*”} is prob-
ably the best one can expect to exist between a nearly arbitrary topological
flow (the only restriction is that it admits a minimal non-periodic factor) and
a minimal one. Clearly, obtaining a topological isomorphism is impossible,
nevertheless, our isomorphism behaves like one at the level of invariant mea~
sures. In particular, in virtue of the variational principle, topological entropy
is preserved (this was not guaranteed by the original version of the theorem).

Our proof is based on combinatorial constructions for symbelic flows
(subshifts). Most operations have their direct translations to the general
topological case, for instance observing repeating blocks along a sequence
correspends to finding return times of an orbit to a fixed open set. Some
tricks, however, like replacing each occurrence of a block by another block
of the same length, or permuting certain letters within a block, might lead
to a rather complicated description when translated to the general topolog-
ical language. This is why we decided to state the main result for subshifts.
Later we discuss the possibility of extending it to the general case. An addi-
tional advantage of such a formulation is that obtaining (Y, Ty ) symbolic in
case of (X, T’x) symbolic (and transitive) does not follow directly from the
original Furstenberg-Weiss theorem (it can be derived from it via a theorem
of Denker—Keane [D-K, Theorem 20], but then it works for a fixed measure
on (X,Tx) only).

At the end of the section devoted to the symbolic case we make a digres-
sion on the special type of codes we exploit.

In the last section, as an application of the results obtained, we present
a measure-theoretic (and Borel*) characterization of Toeplitz fiows. In par-
ticular, some previous results on possible point spectra of Toeplitz flows
obtained in [I-L], [I], and [D-L] are recovered.

The symbolic theorem. By a topological dynamicol system (flow) we
mean & pair (X, Tx), where X is a compact metrizable space and Tx is a
homeomorphism of X onto itself. We will denote by P(X) the collection of
all Tx-invariant Borel probability measures on X. It is known that this set
is convex (even a simplex) and compact for the weak* topology of measures.
A Borel subset X’ C X is called a full set if every measure u € P(X) assigns
mass 1 to it.

By a Borel* isomorphism between two flows (X,Tx) and (Y, Ty) we
understand a Borel measurable invertible map ¢ : X/ — ¥’ between full
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gets X' C X and ¥’ C Y such that ¢ o T'x = Ty o ¢ and the adjoint map
¢* : P(X) — P(Y), defined by

¢"(1)(4) = ue™(A))
{for any Borel set A C Y'), is an affine homeomorphism for the weak* topol-
ogy. Obviously, a composition of Borel* isomorphisms is a Borel* isomor-
phism.

In symbolic dynamics one considers subshifts, i.c., flows (Z, S), where
S denotes the shift transformation on A% and Z is a shift-invariant closed
subset of A%, The set A is called the alphabet. Unless otherwise specified, we
agsume the alphabets appearing in this paper to be finite.

A block over the alphabet A is a k-tuple B = (Ag, Ay,. .., Ag-1) € AF.
We denote by || the length k € N of the block B. We say that B occurs in
a sequence z € A% if (z(n),z(n+1),...,2(n-+k - 1)) = B for some n € Z.
The integer interval [n,n + k) = {n,n+ 1,...,n +k — 1} is then called
the domain of the occurrence. Given finitely many blocks By, ..., B, we can
build their eoncatenation, i.e., the block B = B ... B,. We say that a block
C starts with B if C = B or C = BD for some block D.

It is well known that for a minimal subshift (Z,5) every block which
occurs in some z € Z occurs in each element of Z syndefically, ie., it oc-
curs arbitrarily far in both directions and the distances between consecutive
occurrences are bounded. We say that a block B has non-overlapping cccur-
rences if for any z € Z the domaing of any two different occurrences of B in
z are disjoint:

z=..B..B..B.B.B.B.BB...B.B.BB.B.B...B..

Clearly, all blocks of length 1 have this property. If B has non-overlapping
occurrences then by a B-block we mean any block B... which starts with B,
and such that:

e B... cannot be written as a concatenation involving two occurrences of
B, and
s B...B occurs in some z € Z.

By minimality, the lengths of all B-blocks are bounded, hence the col-
lection of all B-blocks is finite. Every z &€ Z can be represented in a unique
way a8 a concatenation of B3-blocks,

The following fact is the starting point of our construction:

LemMa 1. Assume (Z,5) is a minimal non-periodic subshift. Let B be- o
block having non-overlapping occurrences in Z. Then there exist arbitrarily
long blocks starting with B and having non-overlapping occurrences.

Proof. Let B... denote a fixed B-block. Suppose B...B has overlap-
ping occurrences. This implies that B...B...B occurs in Z. If the last block



152 T. Downarowicz and Y. Lacroix

has overlapping occurrences then B...B...B...B occurs in Z, and so on. By
minimality and non-periodicity, some block C = B..B..B......B..B (es-
sentially longer than B) hag non-overlapping occurrences. Repeating the
same argument for £, and so on, we can obtain arbitrarily long blocks of
the required form. m

Tt is important to note that

(1) if C starts with B and is sufficiently long then it starts with a con-
catenation of B-blocks, while
(2) each C-block is a concatenation of B-blocks.

Recall that a factor map between two flows (X, Tx) and (Z,T%) is a
continuous surjective map 7 : X — Z such that 7 o Ty = Ty omr. For
a given factor map w, its fibers are the preimages of points. We say that «
provides an almost 1-1 extension if the subset of points of Z having one-point
fibers is residual. If (Z,T%) is minimal then to establish that the extension
is almost 1-1 it suffices to show that a one-point fiber exists, Almost 1-1
extensions play an important role in topological dynamics. Many topological
properties pass to almost 1-1 extensions (for instance see [A] for topological
disjointniess).

The main result of this paper is the following symbolic version of the
Furstenberg—~Weiss theorem:

THEOREM 1. Let (Z,5) be a minimal non-periodic subshift over an al-
phabet A, and let (X,85) be a subshift over an alphabet X. Suppose there
erists a factor map wx : X — Z. Then there exists a minimal subshift
(Y, 8} (over a new alphabet Z) and a commutative diagram

¢

X<~

X Ty

where ¢ is a Borel* isomorphism, and my provides an almost 1-1 extension.

Proof. By Lemma 1 and by (1), we can choose inductively two sequences
of blocks By and C; (over A) appearing in Z such that for each ¢ > 1,

(8)  B; and C; have non-overlapping occurrences in Z,

(4)  Ci starts with a concatenation of 2I; + 2 B;-blocks, where I, is the
length of the initial By-block in Gy,

(5)  Biy1 starts with a concatenation of Cy-blocks so long that every ex-
isting Cy-block (in Z) is used in it at least ry = (FI(H T + 1))™
times, where m; is the maximal length of a Cy-block.

icm

Almaost 1-1 extensions 153

We denote by By::: the By-block with which C; starts (hence each Cy-
block also starts with By:::).

2042 By-blocks
A N e o e e e
Bt Z::‘Bg... Bt ..... Bt.. Bt.... Bt.. B;Bt ....Bt..Bt...
C.

Ci~block

For fixed # 2 1, every z € Z can be represented in a unique way as an
infinite concatenation of Cp-blocks, each decomposing into at least 20, + 2
B;-blocks.

Let & = X x (¥ U {0}) x 4, where [1 is an additional symbol. By
letters we mean the elements of . We view the elements of 5 as columns
of height 3, hence the sequences over = are represented as three sequences
(rows): the top row containing letters, the central row containing letters and
squares, and the bottom row containing elements of A. The positions in the
central row will be called cells. A cell can be occupied or empty depending
on whether it contains a letter or a square. To start the construction, we
treat each element x & X as the top row and we add two rows below it; the
central row consisting entirely of ernpty cells, and the bottom row identical
with mx (). Since 7wx is continuous, this procedure yields a topologically
isomorphic representation of (X, §) as a subshift over the alphabet Z. From
now on (X, 9) stands for this representation.

e gy O O Oy s +—  top row, letters,
z=... O 0O 0O O ... — middle row, cells
Al Ap A1 Mg —  bottom row, mx(z)

Consider a block over the alphabet Z such that its bottom row is a
Cy-block. We call every such block a #-frain. Observe that

(6)  there exist not more than r; different #-trains with a common bottom
Tow.

We have the following decomposition of the t-trains:

(7)  cach t-train decomposes into a concatenation of a locomotive having
Byt in the bottom row (hence of length I, ), followed by at least 2l+1
wagons (having further By-blocks in the bottom row).

locomotive at leagt 21y 1 wagons
o

B T I A I O A O O O T

..........................................

t~-train
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We must remember that, except for t =1,
(8)  the locomotive and the wagons are concatenations of {¢t — 1)-trains.

Tt follows immediately from the representation of (X, S) as a subshift over
= that for each ¢ > 1 every z € X can be decomposed in a unique way
as an infinite concatenation of t-trains. Obviously, by the construction, the
positioning of the component ¢-trains, their locomotives and wagons is de-
termined by the third row 7x (z). The t-trains occurring in X will be called
eriginal t-trains.

We will soon define a sequence of maps ¢; on X into some subshifts over
5. Fach of the maps ¢, will be obtained by a code replacing congecutively
the original i-trains by other t-trains. At most coordinates, Orr1{z) coin-
cides with ¢ (). The only differences are due to the modifications described
below. The idea is to introduce certain syndetically repeating new blocks
(modification (B)) without forgetting the letters which these blocks would
overwrite. To achieve this goal we first have to “memorize” these letters by
copying them into the empty cells in the middle row (modification (A)).

STEP 1. Let Wy be an arbitrary block over the alphabet 5 (Wi need
not occur in X) having By:: in the bottom row (hence of length I1). The
1-code is defined as a transformation of the original 1-trains by applying the
following two modifications:

(A) using consecutively all the letters occurring in the top row of the
locomotive we fill in the terminal empty cells in each of the next I wagons,
(B) we replace the locomotive by the new locomotive W;.

By regular 1-trains we mean the images of the original 1-trains under the
1-code.

locomotive
— iy
0’10'2...0‘;1 ......................................................
O..oovre (I R 0.0 | 0o a..0! Q.o 0o
Bliit B]_.... B1 ...... Bl ..... Bl-- B;L.... Bl... Bl..
OriginaTlrtrain
W, Iy wagons
............ ooy || Doz | ... | Doy, | 103 || 0.0 | 0.0 |00
By By.. By By... By..{| By...| | By...|| B1..

regula;rl-train
Note that the 1-code does not affect the terminal wagon of the 1-train and

thus the terminal cell of each regular 1-train remains empty. Next, since W1
has By::: in the bottom row, the entire bottom row of each 1-train remains
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unchanged. Finally, observe that the original 1-train can be reconstructed
from its image by removing the upper two rows of the locomotive and flling
the top row by the letters occupying the terminal cells of the next I wagons
(at the same time we empty these cells). Thus, it is clear that the 1-code is
a 1-1 correspondence between the original and regular 1-trains.

INDUCTIVE ASSUMPTION. Let ¢ € N and suppose that

(9)  at-code has been defined as a 1-1 correspondence between the orig-
inal f-trains and their images called regular ¢-tradns,

(10)  the bottom row is unchanged by the t-code,

(11)  the terminal cell of each regular ¢-train is empty.

SteP t + 1. We create a block Wiy over the alphabet & (W1 not
necessarily oceurring in ¢, (X)) so that:

(12)  the bottom row of Wy is Byiq:u,

(13) Wiy is a concatenation of regular ¢-trains,

{14)  every regular ¢-train is used at least once in the above concatenation
{this is possible by (5) and (6)).

We define the (¢ + 1)-code on the original (£ + 1)-trains in the following
way: we first replace all the original ¢-trains into which the given original
(t + 1)}-train decomposes (see (8)) by their images under the #-code. The
(t + 1)-train go obtained will be called the -coded (t+1)-train. Next we
apply the following two modifications:

(A) using consecutively all the letters and squares occurring in the top
and middle rows of the locomotive of the t-coded (t+1)-train we fill in
the terminal empty cells in each of the next 2l,4; wagons (by (7) there
are enough wagons; observe that each wagon of a t-coded (¢ + 1)-train is a
concatenation of régular ¢-trains, hence, by (11) its terminal cell is empty),

(B) we replace the locomotive by Wi.1.

Note that the above modifications do not affect the terminal wagon of
the t-coded (£+1)-train. Thus the terminal cell remains empty, as required in
(11). Clearly, by (12), the bottom row is unchanged, as required in (10). We
can reverse the modifications (A) and (B) by emptying the two upper rows of
the locomotive and filling them back with the letters and squares appearing
in the terminal cells of the next 21,1 wagons (at the same time we empty
these cells). Next, the original (f+1)-train can be recovered from the t-coded
(t-+1)-train by reversing the t-code (use the inductive assumption (9)). Thus
the (t+1)-code is a 1-1 correspondence, as required in (9).

Enp oF mpucTioN. The following obvious observations are important:

(16)  the modification (B) replaces regular t-trains by other regular i-
trains preserving the bottom row (see (13) and (12)),
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(16)  the modification (B} preserves all the locomotives Wy with s < ¢
introduced by the t-code

(because the distribution of these locomotives within a regular ¢-train de-
pends only on the third row, and after step ¢ there are no locomotives other
than Wy).

During the modifications (A) and (B) in step ¢+ 1 each (regular) t-train
of the t-coded (¢ + 1)-train can be either left unaffected, or replaced by
another regular ¢t-train (modification (B)), or it can happen thai a letter
will be inserted into its terminal cell (modification (A)). A #-train differing
from a regular one by having the terminal cell occupied will be called an
irregular {-train, Thus,

(17} every regular (t+ 1)-train is a concatenation of regular and irregular
t-trains.

Later we also use a reverse procedure. A given regular ¢-frain can be
t-decoded, i.e., replaced by its (unique) preimage under the t-code. More-
over, we can also t-decode an irregular #-train simply disregarding the letter
occupying the terminal cell. For instance, we can t-decode a regular (or ir-
regular) (£ + 1)-train by f-decoding all component t-trains. Comparing the
t-decoded (% + 1)-train with the original ((¢ + 1)-decoded) (£ + 1)-train we
can see that the differences result from applying or not applying the reversed
modifications (A) and (B), hence

(18)  the t-decoded (¢ + 1)-train differs from the original (¢ 4+ 1)-train only
in having a different locomotive

(in the first case we have t-decoded the component ¢-trains of Wy..;, while
in the second case W;1 has been removed and the original locomeotive has
been recovered from the terminal cells of the wagons—these cells have been
ignored in the first case).

The maps ¢;. Fix x € X and ¢ > 1. As noticed before, 2 decomposes in
a unique way into an infinite concatenation of original ¢é-trains. We define
$¢(x) as the sequence obtained from z by replacing each original t-train in
by its image under the t-code. Note that the locomotives of all the t-trains
of ¢¢(x) are Wy, hence

(19) W, occurs in ¢4(z) syndetically.

It is easily seen that ¢, is continuous, injective and commutes with the ghift
transformation. Thus ¢, provides a topological isomorphism between (X, 5)
and ($:(X), §). We will be using the following facts:

(20)  ¢:(z) is a concatenation of regular t-trains,
(21) for each s > ¢, ¢,(x) is a concatenation of regular and irregular
t-trains.
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The last statement is obvious for s = ¢ + 1 (see (17)). For larger s use
an inductive argument and the observation that the modification (B) re-
places regular (s — 1)-trains by other regular (s — 1)-trains (see (15)), while
modification (A) inserts letters into terminal cells of some wagons of the
(s — 1)-trains, and these cells are terminal with respect to {-trains, so some
more irregular ¢-traing are produced.

The map ¢ and s domein X', Let
Zin = {z € Z :n € the domain of the starting B,-block By
in a Cy-block of z}.

Estimating the mass which an invariant probability measure assigns to a set
by the maximal frequency at which this set is visited by some trajectory, we
can see that cach such measure assigns to 2, a mass of at most 1/(2[;). It
follows easily from the construction that I; and r, grow exponentially, hence

(22) D 1k <oo and 3 1/r < oo
t i

Thus
z=z\|J U2z~
neZs2ltza

is a full set. This implies that X’ = m3*(Z") is also a full set in X. On the
other hand, it is easily scen that

X' = {z € X : each coordinate falls into the domain of a locomotive
of a -train for at most finitely many indices ¢}.
Observe that

(23) if € X' then every block of z is subject to at most finitely many
modifications during the construction of the sequence (¢¢(z)) (see
argument below).

Modification (B} affects only the locomotives. Modification (A) in step ¢t + 1
alters the terminal letters of some wagons. By (8), every such letter is fol-
lowed by a locomotive of a t-train, Thus if a letter were modified infinitely
many times, then this or the following coordinate would fall into the domain
of a locomotive for infinitely many indices.

. It is now clear that the maps ¢, converge (coordinatewise) on X'. Thus
the map

¢ = limdy

Is well defined on the full set X'. Obviously, ¢ is Borel measurable and
commutes with the shift. Note that, by (21),
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(24) for each x € X' and ¢ > 1, ¢(z) is a concatenation of regular and
irregular t-trains.

Minimal almost 1-1 estension. We first need to prove that ¢ provides a
Borel isomorphism between (X, S) and a subshift (¥, §) which is a minimal
almost 1-1 extension of (Z, 5).

Consider an z € X'. Set y = ¢(z). Let B = y{n,m) be a block of y. By
the definition of X', we can find ¢ large enough so that

(25)  [n,m) does not intersect any domain of a locomotive for any s >t
Moreover, by (23), we can assume that
$r41(2)In, m) = ¢(x)[n, m) = B.

It is now seen that B is a part of a regular (t+1)~train in ¢4 (), thus, due
to (14), it occurs as a part of Wiyo. This implies that B is introduced in
a syndetic way in ¢u.2(z) (see (19)). By (16), all these occurrences remain
unaltered in further steps, so they oceur in . We have proved that o satisfies
the well known criterion for having a minimal orbit-closure. Moreover, by
the above argument, any block occurring in y also occurs in y' = ¢(z') for
any =’ € X' (because it occurs in W; for some ¢). Hence ¢(X') is contained in
one minimal subshift (¥, §) over the alphabet =. It is obvious (by (10)) that
each element y of (Y,5) has an element of (Z, 5) in the bottom row, thus
(Y, S) is an extension of (Z,5). Denote by 7y : ¥ — Z the projection on
the bottom row in Y. By minimality of (Z, §), this projection is surjective.

At this point, we can note that the diagram in the assertion of the
theorem commutes, because ¢ preserves the bottom row.

We now prove that my provides an almost 1-1 extension. Let y = ¢(z)
(z € X') and let z = 7wy (y). Note that every block of y having C; in the
bottom row starts with W;. By minimality of (¥, §), this property passes
to all elements of ¥. Recall that C} occurs many (more than 3) times in
Bipa:n Thus we can find a zg € Z such that for each ¢ > 1 the zero
coordinate is contained in the domain of a non-extreme (neither initial nor
terminal) occurrence of Cy in the starting Byyq::: of some occurrence of Cyyg
n zp.

0 coordinate

L L Y Jum———

Oy Oy Oy Oy

By

~~ g ~ ~ a
Ciy1 Cig1 Ciy1 Crta

'

Bygai

It is now seen that any preimage by mry of 2z has the block Wiy around
zero coordinate, and the domains of these blocks expand in both directions
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as £ - 00. This determines that the preimage is unique, and the almost 1-1
extension is established.

Define Y = =y (2'). Being the preimage of a full set, ¥/ is a full set in
(Y, §). We show that ¢ is an invertible map from X’ onto Y’. To prove this
we construct a map 1 inverse to ¢ on Y', First note that

(26)  #(X') is dense in Y

Obviously, since ¢ preserves the bottom row, we bave ¢(X') Cc Y. Letye Y
be such that Ty (y) € Z’. For cach £, y can be decomposed as a concatenation
of regular and irregular f-trains (use (24) and (26)). For cach ¢ > 1 define
74 a8 the element obtained by {-decoding all t-trains of y. Compare z; with.
2¢+1. The differences may occur only in the locomotives of the (t + 1)-trains
(see (18)). On the other hand, since the bottom row is an element of Z/,
and since the distribution of the locomotives depends only on the bottom
row, y satisfles the condition that every coordinate n falls into the doemain
of a locomotive for at most finitely many indices . Combining the last two
statements we find that

(27) =z converges coordinatewise to some z.

We define 1(y) = 2. Consider an interval [n,m}. For { large enough, [n,m)
is contained in the domain of a single ¢-train (satisfying (25) is possible
whenever the bottom row belongs to Z’). Thus the corresponding block of
2y occurs in X (as a part of an original ¢-train). This implies that z € X,
because X iy closed. The bottom row of z is the same as 7y (y) € Z’, hence
ze X'

Now, check ¢(z) at a coordinate n. As before, by the definition of Z’, we
can choose ¢ so large that:

(28)  for every ¢ > t neither n nor n+1 are in the domain of the locomotive
of an s-train.

Thus the regular é-train of ¢q(z) whose domain C contains n (see (20))

coincides with the corresponding é-train of ¢(z), except perhaps for its last

cell (by (28) this regular t-train is not a part of a larger locomotive, hence

when applying the s-codes for s > ¢ only modification (A) can affect it).

Hence

(29)  the original t-train of 2 with domain C can be obtained by ¢-decoding
the corresponding (regular or irregular) t-train of ¢(z).
On the other hand, let # > ¢ be so large that
(30) @y coincides with = on C.
By the definition of @y, the t-train of zy whose domain contains C' is

obtained by #-decoding the corresponding #'-train of y. Since C' is not in
the domain of any locomotive for any indices between ¢ and ¢, the ¢'-decoded
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#/-train of y coincides on C with the ¢-decoded t'-train of y (see (18)). But
the part with domain C of the above t-decoded t'-train of y is simply the
t-decoded t-train of y whose domain is C. In view of (30), we have shown
that

(31)  the i-train of y whose domain is C, except perhaps for its last cell,
can be obtained by #-coding the corresponding t-train of z.

Combining (29) and (31), we conclude that the t-train of y coincides with
the £-train of ¢{z) except perhaps for the last cell. But the coordinate of the
last cell cannot equal n (in which case n + 1 would fall into the domain of
the following locomotive, contradicting (28)), hence y and ¢(x) agree at n.
We have proved that ¢ o ¢» = identity on ¥”.

Summarizing, ¢ provides a Borel isomorphism hetween (X, §) and (Y, 9).
‘We will soon prove that in fact it is also Borel*.

Homeomorphism of measures. By the proved properties of ¢, the map
¢* : P(X) — P(Y) is affine, and invertible. By the elementary properties
of the weak® topology, it is seen that ¢* = lim¢}. We prove that this
convergence is uniform. Because all the maps ¢f are continuous, this will
prove the continuity of ¢*. The wealk™ topology of invariant measures in case
of a subghift is metrizable by the following metric:

(32) Fln)= 3 oslu(Us) - v{Us),
BeB

where B is the set of all finite blocks over the alphabet =, cp is a fixed
summable normalized (i.e., with sum 1) sequence of positive coefficients
indexed by the countable set B, and Uy is the closed and open cylinder
defined by the block B, i.e., Up = {z € X : z[0, |B|) = B}.

It is well known (by the Birkhoff Ergodic Theorem) that for each ergodic
measure 4 on X, p-almost every point # € X is generic for this measure,
which, in case of a subshift, can be expressed as follows: for every B € B,

(33) w(Ug) = Dg{n : z[n,n+|B|) = B}

(Dg, denotes the density in Z of a subset). In other words, a point z is generic
for u if and only if the mass assigned by p to each cylinder Up coincides
with the frequency with which B occurs in z. Since for each t > 1, ¢ is a
topological isomorphism, the point ¢,(z) is then generic for ¢} {1).

Fix an € > 0. We can divide B in two parts: a finite set B® and B\ B*
such that the sum of the coefficients cg over the latter set is less than . Let
k(e) = max{|B|: B € B°}. By (22), we can find ¢ so large that
)PP

re  kie)

C ezt
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For every 8 > ¢ the upper density of the set of coordinates where P ()
differs from @4(z) is hence less than &/k(g) (because ¢y.i(z) differs from
¢i(x) along abt most 3!,y coordinates within the domain of each (t+1)-
train and the length of each (£ -+ 1)-train is at least Ti4.1041}. This implies
that

(34)  the frequencies with which a block B € B® occurs in ¢;(z) and in
¢s(2) may differ by at most k(e)(e/k(e)) =¢.

Combining (32), (33), the definition of B%, and (34), we obtain
d* (e (1), s (1)) < 2e.

This yields the desired uniform convergence for ergodic measures, which, by
convexity of the metric d*, extends to all invariant measures. The map ¢*
has been proved continuous, hence, as an invertible map between compact
sets, it is a homeomorphism. This completes the proof of Theorem 1, =

Remarks on reducing the alphabet. The size of the alphabet used to define
the flow (¥, 8) is #Z(#X + 1)#A. It might be interesting to note that
the flow (¥, 5) can be represented as a subshift over the same alphabet
2 as originally used by (X,S). This is possible thanks to the power of a
Borel* isomorphism, more precisely, by the fact that it preserves topological
entropy. Namely, we have the following

LaMMA 2. The subshift (Y, S) of Theorem 1 is topologically isomorphic
to a subshift over the alphabet X.

Proof. Set p = #X. Consider the following two cases:

(a) the topological entropy h{X) of (X, §) is equal to Inp,
(b) A(X) <Inp.

The case (a) is trivial: the flow (X, 8) is the full shift over X' (apply
[D-G-8, Theorem 20.11] and some standard argurnents). Such a flow contains
fixpoints, thus it admits no minimal topological factors except for the one-
point flow, hence our theory does not apply.

Assume (b). By a well known formula, we have

h(Y) = lim 2B
n T

where B, denotes the collection of all blocks of length n occurring in V.
Because h(Y) = h(X) < Inp, an casy calculation shows that
(35) #Bng <P ~1 and #Bpypn S p™H

for some sufficiently large ng. Let to be such that |Be,| = np and |Cyy| > nd
(we refer to the ohjects defined in the proof of Theorem 1). Then every
Cy-block has length at least nf. Every block that long can be decomposed

as a concatenation of subblocks whose lengths are either ng or ng+1. Fix one
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such decomposition starting with a subbleck of length ng for each Cy,-block,
so that all Cy,-blocks of the same length are cut in the same places. This
induces a decomposition of all tg-trains of ¥. The starting subblock of each
to-train consists of the initial ng symbols of the locomotive Wy, hence is
common for all tg-trains. By (35), there exist 1-1 corresponcences ¥ from
By, into all blocks of length ng over the alphabet &, and ¥y from By,
into all blocks of length ng -~ 1 over X. Moreover, there remains at least one
block By of length ng over & unused as a W-image.

The desired topological isomorphism between (¥, 5) and a subshift over
¥ is obtained by a code replacing each subblock of each fy-train in ¥ by
its image under ¥ or ¥; (depending on whether its length is ng or ng + 1),
except for the starting subblock of each to-train which we replace by By.
It is clear that the above code yields a coumtinuous map commuting with
the shift. Its injectivity is immediate: we can determine the positioning of
the tg-trains in the preimage from the positioning of the occurrences of By
in the image. Then, knowing the lengths of consecutive fp-trains, we can
determine where they are cut into subblocks. Finally, reversing ¥ and ¥,
we can determine the preimage. w

We take this opportunity to make a general comment concerning block
codes. In 1969 G. Hedlund proved that every factor map m : X — Z between
two subshifts (the first over X, the second over 4) is induced by a block code,
ie., there exists a map IT : 2™ — A such that () at position n is equal
to I (z[n —r,n+r]). The parameter r is often called the radius of the code.
Because all the codes appearing it this paper have a slightly different form,
it might be interesting to see how general this form is.

DEFINITION 1. By a length-preserving code we mean any function ¥
defined on some finite collection B of blocks over ¥ into the blocks over A
such that |¥(B)| = | B| for each B € B.

‘We say that a map 7 between two subshifts (X, §) and (Z, ) is induced
by a length-preserving code if there exists a length-preserving code ¥ such
that

e cach z € X can be decomposed in a unique way as an infinite concate-
nation of blocks belonging to the domain of ¥, and

¢ z = w(x) coincides with the sequence obtained from x by replacing all
blocks in the above concatenation by their images under ¥.

It is not hard to see that any map induced by a length-preserving code
is continuous and commutes with the shift transformation, hence is a factor
map. It is not true that every factor map between two subshifts is induced
by a length-preserving code. However, we now prove that it is always so

icm

Almost 1-1 extensions 163

whenever the factor is minimal. A similar regult has been obtained for factor
maps between Toeplitz flows in [D-K-L, Theorern 1].

PROPOSITION 1. Let w : X — Z be a factor map between two subshifts,
(X,8) and (Z,8), where (Z,5) is minimal and non-periodic. Then = is
induced by a length-preserving code ¥,

Proof. Let II be the classical block code inducing 7 and let r denote
its radius. Let 3 be a block of length at least 2r, having non-overlapping
occurrences in Z (see Lemma 1), For each # € X let (n;(z));ez denote
the starting positions of the consecutive oecurrences of I in nr(2). Consider
the family B of blocks occurring in X as z[n;(z) + r, niw1(z) +r) for some
z & X and i € Z Since B occurs syndetically in Z, this family is finite. To
define the length-preserving code ¥ on B we first apply the block code I,
from which we can determine all letters of the image blocks except for the
extreme r positions at both ends. But we know that each of these image
blocks ends with the initial subblock of B of length r and starts with the
remaining part of B of length | B]—r > r. This covers the missing = positions
on both sides, thus the image blocks are fully determined. It is obvious that
the length-preserving code ¥ so obtained induces 7, as desired.

The general case. The construction used in the proof of Theorem 1
can be easily generalized to the case where (X, Tx) is an arbitrary (non-
symbolic) flow. Temporarily, we maintain the assumption that (Z,5) is a
subshift. Clearly, the resulting almost 1-1 extension, (¥,T¥y), will no longer
be symbolic.

THEOREM 2, Let (X, Tx) be an arbitrary extension of a minimal non-
periodic subshift (Z,S). Then (X, Tx) is Borel* isomorphic to some minimal
almost 1-1 extension (Y,Ty) of (Z,5). The corresponding diogram com-
mutes (see formulation of Theorem 1).

Proof. We represent (X,T’x) as a subshift over the infinite alphabet
X, Le.,, we identify each x € X with the sequence (..., T3 (z), =, T (2),
Ti(z),...) & X% Obviously, 'such a representation is & topological iso-
morphism. From this point on, we repeat the whole proof of Theorem 1,
which leads to obtaining (¥, 5) as a subshift over the infinite alphabet
E= X x (X U{}) x A The minor differences are the following:

* Before we start, we fix a sequence (g;) decreasing to zero. The number
of all posgible regular #-trains is infinite, nevertheless, by compactness of
¢:(X), there exists a finite collection T; of regular t-trains such that every
regular ¢-train is close to some of the t-trains from 7Tz, where by “close” we
understand that the distance at each coordinate is less than £ In (5) we
define r, = #7;.



164 T. Downarowicz and Y. Lacroix

o In (14) we demand that every {-train from 7y occurs in Wiy,

o In the proof of minimality of ¥, we observe that B is £4-cloge to a block
occurring syndetically in ¢¢io{%).

o In (27) we add that for each n € N the sequence (z;(n)} is eventually
constant.

A bit more complicated is the adaptation of the part of the proof con-
cerning the homeomorphism of measures. We only outline the most essential
changes:

¢ In (32) the eylinders Us are replaced by an appropriate countable
family of continuous functions, each depending on finitely many coordinates.
e In (33) frequencies are replaced by appropriate averages.

From that point on we conduct analogous estimations of the averages
calculated for the functions chosen. =

The next case which we discuss is where (Z,T%) is a non-symbolic flow,
but it is strictly ergodic. In fact, most of the known examples of non-uniquely
ergodic minimal flows are obtained as extensions of certain strictly ergodic
flows. In this situation we can apply our theory by finding a “symbolic
replacement” for (Z, Tz). We begin with the finite entropy case.

THREOREM 3. Let (Z,T7) be a strictly ergodic non-periodic flow having
finite topological entropy and let (X,Tx) be an extension of (Z,T). Then
the assertion of Theorem 2 holds. If (X, Tx) is symbolic then so is (Y, Ty).

Proof. Applying to (Z,Tz) a theorem of Denker~Keane [D-K, The-
orem 20], we can construct a subshift {Z,S) and a finitary isomorphism
between these flows, i.e., a continuous injective map ¢ : 7' — Z with con-
tinuous inverse, where Z " is a residual full subset of Z. Moreover, by [D-K,
Corollary 8], (Z, S) is strictly ergodic, thus ¢ is also a Borel* isomorphism.

We introduce a system of commutative diagrams involving two additional
intermediate flows. We use the method of obtaining topological extensions
by joinings. In all product spaces the actions are defined coordinatewise and
we omit their notation. Therefore the flows are denoted by the corresponding
spaces only. Define X' = n%'(2') and note that X' is a full set in X.

(a) Let X = {mipomx(x)):z € X'} C X x Z. The projection m; on
the first coordinate provides a Borel* isomorphism between X and X. To see
this, note that w71 (X’) is a full set in ¥, and consider an element (z,%) of
this set, i.e., such that z € X', By the definition of X there exists a sequence
(@n) of elements of X' such that (£, omx(2,)) — (2,%). By continuity of
% on Z’ we have z = @ o mx(x). We have proved that my is 1-1 on the full

set 7 (X ). Continuity of the adjoint map 77 follows immediately from the
continuity of wy.
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We can now apply our Theorem 2 to thc extension w : X — Z {(or
Theorem 1 if X is a subshift, because then X is obviously also a subshift).

Let ¥, Ty Y — Z, and qb X — ¥ denote the flow, the almost 1-1
extension, and the Borel* isomorphism obtained, respectively.

() Let Y = {(y,2) : 2 € Z', 7r5;(:(z) = p(2)} C ¥ x Z. Now, m, provides a
Borel* isomorphism between ¥ and Y (use the same argument as for X and
X, but this time with continuity of ¢!}, On the other hand, 75 provides
an almost 1-1 extension of Z. Indeed, if z € Z' is such that ¢(z) has 2
one-point fiber for 7y, then # has a one-point fiber for mp (similar argument
again). It could be proved that the ¥ so defined is minimal, but we can
avoid proving this by letting ¥ be a minimal subset of the set previously
defined. By minimality of ¥ and Z, both projections remain onto, hence
their required properties remain satisfied.

¥4
N

Once this is done, our assertion holds for X, Z and ¥ with ¢ defined on
(an appropriate subset of) X as w7l o do (see diagram). w

‘»><§-<—T><$z
*-<1——+'-<z

A similar method involving infinite products leads to the following

THEOREM 4. Theorem 2 aiso holds if (£, 5) is o subshift over the count-
able alphabet N U {oc} (this time we do not assume strict ergodicity).

Proof Let z € Z. For each n € N denote by z, the sequence over
the finite alphabet {1,...,n} obtained from 2 by replacing all letters of the
alphabet N U {o0} which are larger than n (including oo) by n. Let Z, be
the corresponding factor of Z.

If for each n, Z, is periodic, then Z represents the rotation of a com-
pact monothetic group (so-called p-adic adding machine, see next section
on Toeplitz flows). Such a flow has topological entropy zero and is strictly
ergodic. This case has been dealt with in Theorem 3.

So suppose the flows Z, are non-periodic (for n sufficiently large). We
can apply Theoretn 2 to X and each Z,, which produces a sequence of flows
Y,.. The flow ¥ will be defined as an appropriate joining within the infinite
product JT¥,,. We omit the details of the definition of Y, and proving its
required properties. The arguments are similar to those used for Jommgs in
the proof of Theorem 3. m
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THEOREM 5. Theorem 3 also holds if {Z,Tz) is strictly ergodic and has
infinite entropy.

Proof By [D-K, Theorem 18], we can find a subshift (Z, S) over the
countable alphabet N U {oo}, finitarily (and hence Borel*) isomorphic to
(Z,Tz). The assertion follows by the same proof as in Theorem 3, with
Theorem 4 applied instead of Theorem 2. w

The problem with generalizing our Theorem 3 (and 5) to the non-strictly
ergodic case lies in finding an appropriate symbolic representation (2, .5) for
(Z,T%).

QUESTION. Let (Z, Tz) be a minimal non-periodic topological flow with
finite topological entropy. Does there exist a subshift representation ¢ :
(Z,T) ~ (Z,5) which is both a Borel* isomorphism and a universally (for
each invariant measure) finitary isomorphism?

CoMmMENT. The starting point in the quoted construction of [D-K] is
finding a Rokhlin tower with an open base U whose boundary 8U is a null
set. This is done for a single invariant measure, It can also be easily done for
at most countably many ergodic measures. But even then we do not know
whether the universally finitary isomorphism obtained induces a continuous
map on invariant measures (this problem does not appear in the case of
finitely many ergodic measures, because any affine map defined on a finite-
dimensional simplex is continuous). Also without strict ergodicity there is
a danger that some unwanted invariant measures might be supported by
Z\Z".

REMARK 1. Theorem 1 can also be proved for Z*-actions. A proof based
on the same principles works in the case where both horizontal and vertical
shifts on Z are minimal non-periodic. As a consequence, theorems analogous
to Theorems 2 through 5 are valid. Qur Theorerns 2 through 5 may be
useful in producing concrete examples of topological dynamical systems with
prescribed properties, for instance, as was done in [B-G-K].

Characterization of Toeplitz flows. Toeplitz sequences have been
introduced in 1969 by Jacobs and Keane [J-K], although particular exam-
ples were known much earlier (see e.g. [Ga-H], [O], [G-H]). Some general
topological dynamical properties such as minimality and strict ergodicity
(for the regular case) were established in these earlier works. The maximal
equicontinuous factor was identified in [E] (1970) for regular Toeplitz flows.
Topological characterization of all Toeplitz flows as minimal almost 1-1 sym-
bolic extensions over the so-called p-adic adding machines is stated (without
proof) in [M-P] (1979). Because of the importance of this characterization
for our further investigations, a simple proof of this fact is presented below.
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Since 1984 there have appeared various constructions of Toeplitz flows
exhibiting a variety of topological and, to some extent, spectral invariants,
such as the set of invariant measures, topological centralizer, topological
entropy, topological coalescence, point spectrum (see e.g. [Wi], [D1,2,3], [B-
K1,2], (D-1, [D-K-L], [I-L], [1], [D-L]).

Much less was known about possible realizations within this clags of
meagure-theoretic invariants yuch ag rank, covering number, spectral multi-
plicity or order of the quotient group (of the measure-theoretic centralizer).
However, multiple realizations of these invariants were obtained in a larger
class of flows including Morse sequences and other extensions over the ra-
tional peint spectrum (see e.g. [L], [F-K-M], [K-L]).

Our original desire, motivated by several discussions with some other
mathematicians interested in this subject, was to fully characterige Toeplitz
flows from the measure-theoretic point of view. The missing link was a “sym-
bolic version” of the Furstenberg—Weiss theorem. In view of the results of
the preceding sections, such a characterization is now possible even at the
level of a Borel* isomorphism.

DerINITION 2 [J-K]. A Toeplitz sequence is a non-periodic element z €
X2 such that

(Yn e Z)(3p € N)(Vk € Z) =z(kp +n) = z(n),
i.e., each position in = is a periodic position.

A subshift (X, 5) is called a Toeplitz flow if it is the orbit-closure of some
Toeplitz sequence. Toeplitz flows are well known to be minimal.

The topological maximal equicontinuous factor (see e.g. [A] for the defini-
tion) of a Toeplitz flow is known to have the form of a so-called p-adic adding
machine (G, 1) (see e.g. [W1i]). One of the possible ways of viewing the group
Gy 18 the following: its elements are sequences (Je)e>1 € [[;51{0. .. pe — 1}
such that for each t, ji41 = ji: mod ps, where (py)sp1 i8 a fixed increasing
sequence of positive integers satisfying py | pe.1- Addition is defined coordi-
natewise modulo p;, Then 1= (1,1,1,...) is a topological generator of the
compact monothetic group Gy (by the same letter 1 we also denote the ro-
tation by the generator 1 in Gy, see [H-R] for more details on G,). We view
Gyp a8 a compactification of (Z, +) by writing k instead of k1 (multiplication
by integers is well defined in G,). Recall that the sets p:G, form a base for
the topology at 0 in ;.. The flow (Gy, 1) is strictly ergodic and the invariant
measure iy the Haar measure A

THEOREM 6 [M-P]. A subshift (X, 3) is a Toeplitz flow if and only if it
is & minimal almost 1-1 extension of some p-adic adding machine.

Proof. If (X,8)} is a Toeplitz flow then the required properties are
fulfilled for the maximal equicontinuous factor (Gp, 1) of (X, 5) (see [Wi}).
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Conversely, suppose (X, 5) satisfies the above conditions with seme (Gp, 1)
and let = be a one-point fiber of the factor mx : X — Gp. We show that
itself is a Toeplitz sequence (by minimality, this will complete the proof).
Suppose the converse, 1.e., that there exists a non-periodic position n in 2.
In particular, for each ¢ we can find a % such that

w{ksps -+ 1) # w(n).
Choosing if necessary a convergent subsequence we define
@' = lim ShPig,
t--+00
Of course, x # 2/, because they differ at position n. On the other hand,
mx (2") = lm kypy + Tx (),

by the properties of 7x. But kyp; converges to 0 in Gy, from which it follows
that mx (2') = wx(z), a contradiction. m

The above characterization allows us to apply the theorerns previously
obtained on almost 1-1 extensions:

THEOREM 7. Any symbolic topological emtension (X,5) of a p-adic
adding machine is Borel* isomorphic to o Toeplitz flow.

Proof. Use Theorem 3. m

REMARK 2. A similar passage (in a very particular case) can be found
in [D2], where a Borel* representation in the form of a Toeplitz flow is
constructed for a (non-transitive) flow obtained as the closure of a union of
many Toeplitz flows factoring to the dyadic integers.

REMARK 3. The statement reversing Theorem 7 is false. For example
there exists a strictly ergodic flow having an adding machine as a measurable
but not topological factor. Such a flow is measure-theoretically isomorphic
to a Toeplitz fiow (see Theorem 8). By strict ergodicity, this isomorphism is
Borel*.

Finally, we state the measure-theoretic characterization of Toeplitz fows,
as a consequence of which all the measure-theoretic information that was
known for systems factoring to some p-adic adding machines is now known
to be realizable within the class of Toeplitz flows. To pass from measure-
preserving transformations to topological flows we apply a strengthening
of the famous Jewett—Krieger Theorem, due to Weiss (1985), in which the
entire diagram of a measure-theoretic factor is replaced by a strictly ergodic
topological model.

THEOREM 8. An ergodic dynamical system (X, u, Tx) is measure-theo-
retically isomorphic to a strictly ergodic Toeplitz fiow if and only if it has
finite entropy end its set of eigenvalues containg infinitely many rationols.
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Proof. Clearly, each Tocplitz flow has finite entropy and it admits
infinitely many rational cigenvalues, and so does every dynamical system
(X, u, Tx ) measure-theorctically isomorphic to a Toeplitz flow.

For the converse, first note that having infinitely many rational eigenval-
ues is equivalent to having a p-adic adding machine (G, A, 1) as a measure-
theoretic factor. By a theorem of Weiss [W], (X, u, Tx) is measure-theoret-
ically isomorphic to some topological extension (X, i, S) of (Gp, 1), where
(55" ,9) I8 a strictly ergodic subshift. By Theorem 7, ()? ,8) is Borel* (hence
measure-theoretically) isomorphic to a strictly ergodic Toeplitz flow. w
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Two-sided estimates for the approximation numbers
of Hardy-type operators in L* and I}
by
W. D. EVANS, D, J HARRIS and J. LANG (Cardiff)

Abstract. In [2] and [3] upper and lower estimates and asymptotic results were
obtained for the approximation numbers of the operator T : LP(RT) — LP(R") defined
by (T'f)(2) = v(a} S:o u(t)f{t) dt when 1 < p < oo. Analogous results are given in this
paper for the cases p = 1, oo not included in [2] and [8].

1. Introduction. In [2] and [3] the operator T : LP(R*) — LP(R*)
defined by

(11)

4
TF(z) = v{z) { u(t) f(t) dt

0
was st}ldied in the case 1 < p < oo, with u,v real-valued functicns and
we LY (R™), v € LP(R*), p' = p/(p — 1). Estimates for the approximation
numbers o, (T) of T' were obtained in [2], but the procedure for extracting
the upper and lower bounds from the results is rather cumbersome to apply.
This deficiency was overcome in [3] where asymptotic bounds for the ap-
proximation numbers which are easy to check in practice were determined.
Specifically, it was proved that

(1.2) wlim ey, (T') &= '-Tlu(t)v(tﬂdt
) =b O3 0

3§y

when p = 2; and when p 5 2,

o0

1
1. - Vo (8| dt < lim in
(1.3) 7% 5] Jut)u(t)] dt < liminf nan (T) _
< limsup nan (T) < oy S |u(t)u(t)| dt
im0 0

for some constant o, depending on p. Further in [3], two-sided estimates
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