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Corrigendum and addendum:
“On the axiomatic theory of spectrum II”

by

J. J. KOLIHA (Melbourne, Vic.), M. MBEKHTA (Lille),
V. MULLER (Praha)and PAK WAI POON (Melbourne, Vic.)

Abstract. The main purpose of this paper is to correct the proof of Theorem 15 of
[4], concerned with the stability of the class of quasi-Fredholm operators under finite rank
perturbations, and to answer some open questions raised there.

Recall some notations and terminology from [4].

For closed subspaces M, L of a Banach space X we write M L (M is
essentially contained in L) if there is a finite-dimensional subspace F C X
such that M C L+ F. Equivalently, dim M /(M NL) = dim{(M+L)/L < oo.

Similarly we write M = Lif M C L and L & M.

For a (bounded linear) operator T' € £(X) write R®(T") =,—, R(T™)
and N°(T) = n_q N(T™).

An operator T € £{X) is called semiregular {essentially semiregular) if
R(T) is closed and N (T) C R™(T") (N(T) C R%(T), respectively). Further,
T is called quasi-Fredholm if there exists d > 0 such that R(T?+?) is closed
and R(T)+ N(T%) = R(T)+ N*°(T) {equivalently, N(T)NR(T?) = N(T)n
R>=(T)).

The proof of Theorem 15 of [4] relies on the following statement (where
d is the integer whose existence is postulated in the definition of quasi-
Fredholm operators):

If T is quasi-Fredholm and F of rank 1 then N(T)NR(T?) C R®(T+F).
This, however, need not be satisfied.

COUNTEREXAMPLE. Let H be the Hilbert space with an orthonormal
basis {e1,ea,...}. Define T, F € L{H) by

Tey =0, Te,=en1 (n>2), Fey=—e1, Fea=0 (n#2).
1991 Mathematics Subject Classification: 4TAL0, 47AB3.
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Then 7' is quasi-Fredholm {with d = 0) and is surjective, /' has rank 1, and
T + F' is given by
(T+Fley=(T+Flea=0, (I'+Flen=¢€n-1 (n2=3)
It follows that R(T + F) = R(T + F} is equal to the linear span of
{e2,e3,...}, and N(T) to the one-dimensional space spanned by e;. Thus
N(T) ¢ R=(T + F).
We now proceed to give a correct proof of Theorem 15 of [4].

THEOREM. Let T € £(X) be a quasi-Fredholm operator and let F € L(X)
be a finite-rank operator. Then T + F' is also quasi-Fredholm.

Proof. Clearly it is sufficient to consider only the case of dim R(F) = 1,
Thus there exist z € X and ¢ € X* such that Fz = p(z)z (z € X).

Since R({T + F)*) = R(T™) for all n by Observation 8 following Table 1
in [4], R((T' + F)") is closed if and only if R(T™) is closed, and hence it
is sufficient to show only the algebraic condition in the definition of quasi-
Fredholm operators for T' + F.

Since 7T is quasi-Fredholm, there exists 4 > 0 such that N(T) N R(T4) C
R®(T) and R(T?), R(T*) are closed. Set M = R(T) and T) = T|M.
Then N(T1) = N(T)n R(T9) € R®{T) = R®(T}) and the range R(T}) =
R(T%*1) is closed. Thus T} is semiregular.

1t is sufficient to show that N(T}) C R (T + F). Indeed, then we have

N(T +F)nR(T + F)) £ N(T)n R(T%) = N(T3) & R°(T + F)

g0 that N(T+ F)NR(T + FY) = N(T+ F)NR®(T' + F).

This means that N(T+ F)NR((T+ F)*) = N(T+ F)n R*(T + F) for
some n > d and T + F is quasi-Fredholm.

To prove N(Ty) ¢ R® (T + F) we distinguish two cases:

A. N®(Th) C keryp. Let zp € N(T}y). Since T} is semiregular, there
exist vectors x1,®e,... € R®(Ty) such that Tx; = z;_y for all 4. By the
assumption ¢(xz;) = ¢, so that Fz; = 0 for all 4. For n € N we have

(T4 F)zp=(T+F)" g,y =...= (T + Fzy = o,
so that g € R((T' + F)™). Since zo and n were arbitrary, we have N(T}) C
R>(T + F).

B. N°°(Ty) ¢ ker p. There exists k > 1 such that N(T§) ¢ ker . Choose
the minimal k with this property so that N(TF~) C ker ¢ and there exists
u € N(TT) with @(u) = 1.

Set.

Y ={z € N(T}) : there is y € M with

TF 1y =gand Ty €keryp (i =0,...,k—1)}.
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We show that dim N{71)/Y < k. Indeed, let (1, ..., 21 € N(T7). Since
T} is semiregular, there are y), ...,y € M such that TF 1y =
z) (j = 1,...,k + 1). Then there exists a nontrivial linear combination
Y= Ef:} a;y; such that Ty € kerp for all i = 0,...,k — 1. Consequently,
):f:i a;2) € ¥ and dim N(T1)/Y < k. Hence Y = N(Ty) and it is suffi-
cient to show ¥ C R*(T' + F).

Let z € Y. We prove by induction on n the following statement:

(1) There exisis z, € M such that
Thz, =« and Tlz, Ekerg (i=0,...,n).

Clearly (1) for n=0,...,k —1 follows from the definition of Y.
Suppose that (1) is true for some n > k — 1, i.e., there is z, € M such
that TPz, = z and Tz, € keryp (i = 0,...,n). Since T} is semiregular, we
can find x},,.; € M such that Tzl 1, = Zp. Set Tnr1 = Tppy — P(Tpig)u.
Then
T s = T2y — @z )T lu==.

Clearly ¢(zns1) = 0. For 1 <4 < k — 1 we have ¢(Titnt1) = oI 1an) —

ol 11)p(Tu) = 0 since T'u € N(TF™") C kery. For k < 4 < n we have

T'u = 0 s0 that ¢(Txn41) = (T *z,) = 0 by the induction assumption.
Thus (1) is true for all n and (T + F)*zn = (T + F)" Tz, = ... =

Tz, = x. Thus x ¢ R((T+F)")for all n and consequently Y C B> (T+F).
This finishes the proof of the theorem.

As a corollary we obtain the corresponding result for essentially semireg-
ular operators (see [2]). Recall the numbers k, (T) defined for an operator
TelL(X)andn >0 by

ko{T) = dim[R(T) + N(T™)]/[R(T) + N(T")]
= dim[N (T') N R(T™)|/[N(T) N RT"")]
(see [4] and [1]).
COROLLARY. If T\, F € L(X), T is essentially semiregular and F' of finite

rank then T + F is essentially semiregulor.

Proof. By the previous theorem 7'+ F is quasi-Fredholm so ky(T + F)
= 0 for all 4 sufficiently large. Also k;(T) < oo implies k;(T + F) < oo for
all 5. Thus I + F is essentially semiregular.

This finishes the “corrigendum” part of the paper. For the “addendum”
part, we give counterexamples that will complete Table 2 of [4] answering
thus some questions posed in that paper.
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Recall the classes defined in [4]:
Ry = {T € L(X) : T is semiregular},
Riz ={T € £(X) : T is essentially semiregular},
Ris = {T € £(X) : R(T) is closed and k,(T") < co for all n € N},
Rys ={T € L(X) : T is quasi-Fredholm},
Rys = {T € £L(X) : there is d € N with R(T%*) closed and
kn(T) <00 (n > d)}.
Purther, for 2 =11,...,15,set 0y(T) = {A € C: T~ A & R;}.

ExaMpLE 1. In general, o153 and o5 are not closed. Consequently, Ry3
is not stable under small commuting perturbations:
Consider the operator defined in Example 14 of [4],

s,

n=1
where S, € L{H,), Hy, is an n-dimensional Hilbert space with an orthonor-
mal basis eny,...,epn and S, is the shift operator, that is, Spen = 0,

Spéni = €n,i—1 (2 <2< n)- Then § € Ry3 C Rys (See Exa'mp]'e 14 of [4])

Let £ # 0, || < 1. Then S, ~ ¢ is invertible for all n € N so that § ~¢
is injective.

For n € Nset z, =Y ) € en;. Then ||z, > 1 and

(S — &)xn] = ||—€"ennl| = €.

Thus 5—e is not bounded below and R(S —¢) is not closed. Hence §—¢ & Rz
and o13(S) is not closed.

Further, for each k € N, we have

(S ~ &)*znll = e"] - (S — £)* enall < "] - (|(S — £)*7]
< e (@ + el

$0 that limp e [[(§—2)¥za]l = 0 for all k € N and R((S —€)*) is not closed.
Consequently, S5 — ¢ € Ry5 and 015(5) is not closed.

ExaMPLE 2. The class Ry is not stable under commuting compact per-
turbations:

Consider the operator S from Example 1 and let K = @°,(1/n)ln,
where I, denotes the identity operator on H,,. Clearly K is compact, K& =
SK, 8§+ K is injective and, as above, S + K is not bounded below. Thus
R(S + K) is not closed and S + K ¢ Rys.

EXAMPLE 3. Rj3 is not stable under commuting quasinilpotent pertur-
bations:
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For k¥ € N let H®) be the Hilbert space with an orthonormal basis
e® (n € N,i = 1,...,max{k,n}). Let §®) & L(H™) be the shift to the
left,

S0 8) { efl , (i22),
”" 0 (i=1).
Set § = Py 5(k), Clearly S is a direct sum of finite-dimensional shifts
where an n-dimensional shift appears 2n —~ 1 times (once in each 180 .
...,80=1) apnd n times in ™). Thus S € Rys.

Define Q) € L(H®) by QWel) = (1/n)el), ; for all n,i. Let Q
@, Q®. Clearly SQ = @S and Q is quasinilpotent since [|QY[ =
(1/HH7 — 0.

We prove that § — Q & Ry3. Set

oo
Cly ® ¢ g®
b e ¢ H,
= (n-1)
Then
—_ 1 w5 1w
(S-@z®=3%" = Tjienmm1 ~ > openttn =0
n=2 ' ne=l

Further 2% ¢ R(§®) 4 R(Q®)) so that z(A ¢ R(S®) — @*)). Tt is easy
to see that each linear combination of #(*)'s has the same property with
respect to S and @ so that these vectors are linearly independent modulo
R(S ~ Q). Thus

ko(S— Q) =dimN(S —Q)/(N(S—-Q)NR(S - Q)} = 00
and S—Q §§ R13.

Consequently, the complete version of Table 2 of [4] is:

(4) (B) (©) (D} (E) (F)
oy # @ o; closed small commut. fAnite-dim. commut. comp,  commut.
perturbations  perturb.  perturbations quaeinilp. perf.
R,ll yes yes yes no no yes
semireg.
Raz i yes yes yes yes yes yes
ess. semiveg.

Rz yes no no yes no no
R no yes no yes no no
q¢
Ris no no no yes no no
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