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STUDIA MATHEMATICA 130 (3) (1998)

On the growth of averaged Weyl sumns for rigid rotations
by
S. DE BIEVRE (Lile) and G. FORNI (Princeton, N.J.)

Abstract. Let w € R\ Q and f € L2($") of mero average. We study the asymp-
m~—1

totic behaviour of the Weyl sums S(m,w)f(z} = Y1y flz + kw) and their averages
Sim,w)flz) = & Yit1 8(i,w) f(=), in the L%morm. In particular, for a suitable class
of Liouville rotation numbers w € R\ @, we are able to construct examples of functions
£ € H3(SY), s > 0, such that, for all ¢ > 8, {|5(m,w}f|l2 = C'Eml/(l'i's)“ias m — co. We
show in addition that, for all £ € H*(S1), liminf m ™Y (%2 (log m)~1/2||8(m, w) ||z < oo
for all w € R\ Q.

1. Introduction and statement of the results. We study the asymp-
totic behaviour of the following skew products on the cylinder:
(1.1) (:B(),’U()) ES'xR=T*S' — (ml =z +w,v1 =y + f(ﬂ;'o))
Here w € R\ Q and f: §' — R, §8' = R/Z. After m iterations of the map
we have
T = To + M,  Vm = Vo + S(m, w) flzo),
where the Weyl sums S(m,w)f of the function f for the rigid rotation by

w are defined to be
-1

(1.2) S(m,w)f(z) =Y fla+kw).
k=0

The asymptotic behaviour of the v-variable is therefore completely deter-
mined by the asymptotic behaviour of the Weyl sums.

It is well known [KN] that, if {px/gx}u>1 denotes the sequence of ap-
proximants of the continued fraction ezxpansion [K] of the irrational number
w, then, for any f € BV(S*) of zero mean,

(1.3) 1S (gr,w)flle < Var(f) forall k€N

The upper bound (1.3), known as the Denjoy—Koksma inegquality, rules out
the possibility of having growth to infinity of Weyl sums for smooth func-
tions of zero mean. However, the set of “times” where the bound (1.3) holds

1991 Mathematics Subject Classification: 11199, 28D05, 58F30.
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200 S. De Biévre and G. Porni

is rather small since the qx's grow at least exponentially. Perhaps then
S(m,w)f still gets to be sufficiently large at intermediate times resulting
in growth of the averaged Weyl sums

(1.4) Smw)f(e) = > 8(,u) ().
i=1

We will show this picture is essentially correct and obtain bounds on the
growth of S(m,w)f. We are interested in the L? growth, as m — oo, of the
averaged Weyl sums (1.4) for L?-functions f. More precisely, we answer the
following question. Given s > 0 and a function f € H*(§") (see (1.5)), what
is the largest possible exponent 7(s) > 0 for which there exists an irrational
number w so that

IS(m, w)f|2 = Om™®,
for all m & N? We find that essentially 7(s) = 1/{1 -+ 5) (see {1.14)~(1.15)).

Qur results show that the growth of | S(m, w)f]|2 is worsened by smoothness.

In particular, if f € C*°($?), then for every w and &, there is a C' > 0 such
that

15(m, @) £ll2 < Om

along a diverging sequence {my}ren of natural numbers.

We write f,, for the Fourier coefficients of the function f € L?($') and
recall that one can express the smoothness properties of f in terms of its
Fourier coefficients using the usual Sobolev spaces H*(S!):

(15) B ={f e LX) | IFI2 = 3o n®|fal? < oo}.
neZ
To state and interpret our main results, we need some notation. We will
consider classes R, C 8, C R\ Q of irrational numbers defined as follows:

w € &, iff there exists a constant R > 0 and an infinite subset X ¢ N such
that

(1.6) gl € R/GpTT Yk eK.

The set R, is defined by the property that in the above definition it is
possible to take £ = N.

‘By definition, R C R and S € Sy if 7/ > v and, by basic properties
of the continued fraction expansion, Rp = Sp = R\ Q. It is possible to show
that the intersection R of all sets Ry for 4 > 0 is an uncountable subset
of the set of Liouville irrationals. In addition, Sy contains the complement
of the set of Diophantine irrationals having Diophantine exponent « (which

is a dense G5 set) and the intersection Ss of all sets S, is the set of all
Liouville irrationals.
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It will finally be useful to consider, for w € Sy (v > 0) and v > 1, the set
(1.7) A{w)={m e N |3l € K so that 2q;.1 < m < 2rgi1},

where K C N is an infinite set such that (1.6) holds. The points in A, (w)
form a divergent subsequence of N.

We can now state our main results. To simplify the formulations, we will
always assume that

(1.8), fo= | fdz=0

81

THEOREM 1.1. (i) Suppose |fu| = c|n|™” for somev > 1/2. Letw € Sy
for some v > 0. Then for all v > 1 there exists a Cr > 0 so that for all
me Ar(w)u

(1.9) 18 (m,w) fila > Comd /14,

If in addition w € R, then there ezists o constant C, > 0 so that for all
m €N,

(1.10) 18(m, w)fliz > Cym~ ) T,

(ii) Let w € Sy and s > 0. Then there ezists a function f € H*(§") with
the following properties. First, for all r > 1 and for all £ > 0, there is a
constant Cyr s > 0 so that for all m € A, (w),

(1'11) ||§(m:w)f||2 = Cr,sml_a/(1+7)_a. .
If in addition w € R, then there exists a Cy ¢ > 0 so that for all m € N,
(1.12) 18(m,w)llz > O e i~ T T2,

Note that (1.10) is optimized, for v > 1/2 fixed, as v — o0, so that for
any Liouville irrational number w € Ro, you get, for all £ > 0,

(1.13) 15 (m,w)flla > Cem™F¥)=¢  wmeN,

Similarly, for s > 0 fixed, (1.12) is optimized as v — oo. Hence we get the
following statement. For all s > 0 and for any Liouville rotation number
w € Roo there exists an f € H*(S') such that, for all £ > 0,

(1.14) 1S(m,w)fllz = Cem H)=¢  ym e N,

Note that the lower bounds get smaller as f is taken smoother. To see
that this is not due to a bad choice of rotation number, we prove the following
upper bound, which shows that the above lower bounds are close to optimal.
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THEOREM 1.2. Letw € R\ Q.

(i} Let s > 0. Then there exists a diverging sequence {my }ren of natural
numbers such that, for any f € H*(S'),

(1.15) |18 (me, w) fil2 < C|| Fllsmi/ M) log m.

In oddition, if w € R\ Q satisfies ||guw|| > r/q;lc"*'"’ for ol k € N and for
some T > 0, then for all m € N,

(1.16) 18 (m,w)fll2 < Clif||sm*=*/ @ /logm.

(ii) Let ¥ > 1/2 and € > 0. Then there emists a diverging sequence
{mr}tren of naturel numbers such that, if |fn! < Cln|™, then

(1.17) IS (m, w)flla < Ceml/A/3HI4e,

In addition, if w € R\ Q satisfies ||quw|| = r/qz ™" for all k € N and for
seme v > 0, then for each ¢ there is a C. so that for all m € N,

(1.18) 180m, w) fllz < Comt=F=1/2/(+r)+e

REMARK. After finishing this paper, we have been informed by D. Volny
that bounds similar to (1.9) and (1.18) were independently obtained in [LV].

We can now explain the general picture emerging from these results. To
fix ideas, let |fu| = |n|™ (¥ > 1/2). Then f € H*(S*) for any s < v —1/2.
We wish to find an irrational w so that ||S(m,w)f||2 goes to infinity as
fast as possible. The best lower bound we were able to get is (1.10), which
is optimized as v — oo, yielding {1.13). Note that the exponent tends to
zero as v tends to infinity. On the other hand, the upper estimate (1.17)
shows that (1.13) is close to optimal, hence the growth of ||§(m,w)f||2 is
increasingly slow as f is taken smoother and smoother.

In fact, as the proofs will show, the behaviour of ||§(m,w) fll2 is con-
trolled by two competing effects. Note first that, if w € @, then both
|8(m,w}fll2 and ||S(m,w)flz will typically grow like m. On the other
hand, if w € R\ Q, the ergodic theorem tells us that ||S(m, w)f||2 = o(m),
hence ||S{(m,w)f|l2 = o(m). This suggests that irrationals well approxi-
matgd by rationals (v large) are the best candidates for producing growth
in [[S(m,w) f||2. This is further corroborated by (1.9) and (1.18), which show
there is a competing effect between the smoothness of f and the Diophan-
tine properties of the rotation number w, and that for « sufficiently large
the growth exponent approaches 1. However, as v becomes larger, so do the
gaps between successive gy, since gxy1 is at least of the order of q,i""’. This

is at the origin of the exponent of (1.10) which gives a weaker growth than
expected. L .
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In fact, our lower bounds predict superdiffusive behaviour, i.e.
18(m,w)flla 2 Cm”

for some T > 1/2, for 1/2 < v < 1 and for suitable rotation numbers w € Ry,
for v sufficiently large. On the other hand, the upper bounds in Theorem
1.2, in particular (1.15), rule out diffusive or superdiffusive behaviour for all
f € H*(S') with s > 1 and for any choice of an irrational rotation number.

There are several reasons for our interest in the model (1.1). Note that
it is a symplectic transformation of T*S' with symplectic form dz A dv, that
can be seen as a perturbation of

(z,0) € T*S' = (z +o,v) € TS

which is completely integrable with invariant tori v = ¢ {[G], [Be], [B]}. If f
is in C*(S') and w is sufficiently poorly approximated by the rationals (i.e.
Diophantine of sufficiently high order), it is easy to see that those tori are
preserved. It suffices to solve the cohomological equation f(z) = g(x+ w) —
g(z) for a smooth g.

Our results above deal with the opposite extreme, when w is sufficiently
well approximated by the rationals, i.e. weakly Diophantine or Licuville. The
tori are then broken and the motion is unbounded. Actually, unbounded-
ness of the Weyl sums || S{(m,w)fll2 (i.e. sup,, ||S(m,w)f||2 = co) is known
to be equivalent to the non-solvability of the cochomological equation for
g € L*($*,dz) (see e.g. [L]). The only previous work that we are aware of
discussing the asymptotic behaviour of vy, is [B]. There an argument is pro-
posed claiming to show that the Weyl sums ||S(m,w) fljz themselves, before
averaging, with fn = |n|™" satisfy the lower bound (1.9) for oll velues of
m and v > 1/2. As we already pointed out, this cannot be true for v > 1
because of Denjoy—Koksma. As it turns out, Theorem 1.2 shows that the re-
sult is not true for the averaged Weyl sums either, as one might have hoped.
Only when v < 1, when Denjoy-Koksma is no longer an obstruction, does
the following result indeed give a lower bound valid for all m € N:

PrOPOSITION 1.3. Suppose | fn| > ¢|n|™ for some v > 1/2. Then there
exists a C > 0 so that for allw € R\ Q and for allm €N,

(1.19) |8 (m,w) fllz = Cmb=>.

Once the invariant tori are broken, it can be asked whether the map
(1.1) is ergodic on the cylinder T*S! with respect to Lebesgue measure. In
[Pa), it is shown that the answer is affirmative if f € C*([0,1]), f(0) # f(1)
and w is irrational, so that S§(m,w)f(z) is unbounded for almost all x. In
this case, the Fourier coefficients of f satisfy |fn| > ¢/n|~* so that Theorem
1.1(i) as well as (1.13) apply with v = 1.
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A particular example that has been much studied is

fs(z) = x0.5)() — B,
for some 0 < B < 1. It is a classical result of Kesten ([Ke|, [P2]) that
8(m,w)fs is bounded iff § € Zw (mod1). The asymptotic behaviour of
§(m,w) fp is important in the study of incommensurate one-dimensional
structures, where the following model was proposed [AG]. With u,, denoting
the rth atomic position, define the sequence u,, recursively by (0 < £8 < a)

U1 — Um = @+ € fg(mw + zg),
so that

= ma + £S(m, w) fa(zo) + ®o.
The model is said to have no average lattice whenever §(m,w)fa(zo)} is
unbounded. For 29 =0, 8 = 1/2 andw = 772, 7 = (14++/5)/2, it was shown
in [GLV] and [D] that the averaged Weyl sums diverge logarithmically: this
behaviour is expected to persist for a large class of quadratic irraticnals
w ([CMPS], [D]). Since the Fourier coefficients are (fa)ar, = 0, (fa)2r+1 =
1/(iw(2k + 1)) when 8 = 1/2, it follows from our work that, if w € &, is
chosen such that all ¢, with k € K are odd, where X is an infinite set of
natural numbers for which (1.6) holds, then (see (1.9))

(1.20) 15(m,w) fs]lz = Com* YO+ ym e A(w).

The possibility of having such behaviour for suitable rotation numbers was
predicted in a comment at the end of [GLV]. In addition, if w € R, we now
have (see (1.10))

(1.21) I1§(m,w) fallz > Cym ™+ ym e N,

In particular, for w € Re, (1.21) implies that the averaged fluctuations
behave almost diffusively, as in the case of a random structure. Indeed, if
w € Ry, then for all e, there exists a C; so that

15(m, w)falla > Cem?>~¢  Ym e N.
Further applications of our results will be given elsewhere [DBF].

2. Proofs. The proofs of our results are based on Fourier series estimates
by using the following basic properties of the continued fraction expansion
of irrational numbers. Let {ps/gx}r>1 be the sequence of approximants of
the continued fraction expansion of w € R\ Q. Then the following holds [K]:

(2.1) 7wl = llguwl]  for all § < gy,
and
(2.2) L 1

1
- < — < wli < ——.
2qv11  Qx + Qe lgrcs] Qe+
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Note that it follows from (1.6) and (2.2) that if w € S, then for a diverging
sequence of natural numbers

1.
2.3 > —q 1.

It is easy to establish that

- 2
1S(m, ) I3 = 3 [P g

operd sin® Tnw
and

I15(m, w)flIE =3 | Ful? G (w0} ,

nei
where the function G,, : R —» RT is defined as
1 A sin Tma |

2.4 Gm = |1 —grimie 2 T
(24) () 4sin? 7z ¢ msinTe

We need the following estimates on the functions G,,. We would like to
point cut that, throughout this paper, we will use the common practice of
letting constants change their value from line to line, without necessarily
changing their name.

LEMMA 2.1. The functions G, : R — RY are 1-periodic and have the
symanetry property G (L — z) = G () for 0 < x < 1, hence

(2.5) 15(m, )15 = 3 1Fnl* Gl ),
neL
where || - || denotes the distance from the nearest integer. Moreover, there
exist constants C > ¢ > 0 such that
(2.6) c/sin? 1z < G(z) < Cfsin’mz Vi/m <z <1/2
and
(2.7) em? € Gm(z) £ Cm? Y0<z<1/m.

In addition, the upper bounds in (2.6) and (2.7) hold for oll z € R.

Proof. We know from basic calculus that

(2.8) 2T ) fral0<a<1)2
T T
where the upper bound holds for all z € R. It follows from (2.8} that
(2.9) 2 < sm?'rmm _ |sinmmz . T < E’
7 msinrz me sin 7w 2

where the lower inequality holds for 0 < z < 1/(2m) and the upper inequal-
ity for all x € R, by evenness and periodicity.
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Thus the inequality
Gmiz) < Cfsin*rz Yz eR
holds by choosing C large enough:

. 2
L) e |S2mme [\ L 1+3) <c
4 zeS! imsinrx 4
Secondly, the inequality
(2.10) Grlz) > ¢fsin®nz V1/22>z221/m
holds since by (2.8),
i 1
Sm?rmx < .1 <= Vli/m<z<1/2,
m sin T MSINTE 2
which implies
. 2 . 2
1 grilmane SiRTME |© [ sinwms > 1/4
msinwz| ~ msin Tz =

50 that we can take ¢ < 1/16 in (2.10). This proves (2.6).
In order to prove (2.7}, write

S T evri(m+1)w

U (2) = 1 =
msinne

There exist C' > ¢ > 0 such that
emz < [um(z)| £ Cmz V0 <z <1/m.
In fact, the estimate from above can be obtained as follows. Since

sinmmz
msin Ty

Um(z) =1~ (1- e'rri(m-l-l)a:),

sinTx

sin Tma n sin Tma 1 T
TME T

the conclusion follows by basic calculus, (2.8) and (2.9). As to the estimate
from below, we will consider separately the two intervals 0 € =z < 1/(2m)
and 1/(2m) £ z < 1/m. In the first case, since un(0) = 0 and, by a
straigthforward computation,

; COS T cosTmT sinTmae
U, () = (TI' , — M, —im(m +1) | ———emilm L)z,

sin Tz sin mma msinre

the conclusion follows by the mean value theorem and (2.9). In the second
case, it can be noticed that the above argument proving (2.10) holds true
for £ > 1/(2m). Since G (2) = |um(z)|?/(4sin® 7z), (2.7) follows. w
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Fig. 1. The graphs of |smms | and Gl {z) for m = 20

an e

The functions % and G,,(x) are traced in Fig. 1. Note that the
behaviour of both functions is similar in the region 0 < ¢ < 1/(4m), where
they are both of order m?. For larger values of = the difference manifests
itself in. that unlike %2%, m () has no zeros (see (2.6)). This eventually
explains the lower bounds of Theorem 1.1 which we can now start proving.

Proof of Theorem 1.1. (i) Let w € S, and denote as before by {pr/qx Fren
the sequence of truncations of its continued fraction expansion. We can
assume that 1+~ — v > 0, since otherwise the bounds in (1.9)-(1.10) are

trivially satisfied. By Lemma 2.1 a lower bound for the averaged Weyl sum
5{m,w)f can be obtained as follows:

@1)  [8tmw)fBze( 3

lnw||Z1/m

o2l 2 4m? Y 1fal?)-
[Irewlj<1/m

Since w € S,, there exists an infinite set X C N such that (2.3) holds for

k € K. Suppose now that m € A,(w). Then for some [ € K,

1<i<1

2rqppn T 2q11

Hence (2.2) implies
1 2r
- < flawll £ —.
m m
Using (2.11) we therefore get

I15(m,w) £ (3 2 ¢l far*lal] ™,
from which (1.9) follows upon using (2.3).
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Assume w € R. To prove (1.10), we proceed as follows. Let (km)men
be the sequence of natural numbers defined in the following way:

(2.12) km = max{k € N | ||lgrw| = 1/m}.
Then

(2.13) 180m, ) FI 2 ¢(lfne Pah pir + 0 Fi, 217
and, by the hypothesis on the Fourier coefficients of f,
(2.14) I18(m,w) fll2 = (g, Ghm+1 + Mg 41)-

Consider now for all £ € N the functions
(215)  Sk(2) = ¢ qhs1 + 2q5py and Skalz) = z7%Sk(z), z € RT.

The idea is to find the exponent & € (0,1} so that all the functions Sy,
have a common strictly positive lower bound on R*. In fact, basic calculus
shows that Si o has a unique minimum on RT and that

—v(l-a) 1—(14+v)e

(2.16) min Sk,a = Caf Tt )

where ¢, > 0 and depends only on o € (0,1). Since w € R, by (2.3),
(2.17) min Sk o > caq,(ci_la)(l“”/(lﬂ))_”o‘.
Thus, we may choose a € (0,1) such that

v

2.18 1- l——n%— |~ =

215) (-a)(1- ) -ve=0
thereby obtaining

(2.19) Skal{z) 2 e >0 VzeRT.

A short computation of the exponent given by (2.18) yields (1.10) since, by
(2.14) and (2.19),

(2.20) 18(m, w)fllz > eSk,, (m) = em*Sh,, (m) > chym®,
(ii) Consider ‘
1
(2.21) flz) = Z Eq;ﬂ““’ exp 2migex.
keN

Clearly f € H S(81). Also, for all ' > s, there exists a cy > 0 so that
[fau] 2 corgy® for all k. The reasoning is now identical to the one in (i),
with ' replacing v. n

We now turn to the proof of Theorem 1.2 which deals with upper bounds
along subsequences for the averaged Weyl sums. We start with a lerma.

Lemma 2.2. Suppose that w € Sy for some v > 0 (see (1.6)). Define, for
any 0 <y~ <, me=[g3"" /R] for k € K. Then:

icm
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(i) If f € H*(8') for some s > 0, then

(222) 18 (k@) fllz < C|| Flla(mi®/OF77) Ll /04770y
(i) If, in particular, |fo| < Cln|™", then
(2:23) 180mp,w)f|la < Clmi~E=1A/WT) 4 /047y

Proof. We split the series (2.5) as follows:
(224) [Btmw)fl3= Y. alCullwl)+ > ol Gumllnel).

LGl 1 N2 Qo +1

By the definition (2.12) of k,,, and by property (2.1),

(2.25) Inw|l = |lgrnell = 1/m  for all n < gg,,+1-

Hence, (2.6) and (2.2) imply

(2.26) S £l Gmllnwll) < ClIfI136R, 41
T Al k1,

Clearly, the estimate obtained in Lemma 2.1 and the bound on the Fourier
coefficients of any f & H*(S') given by (1.5) yield

(2.27) 3 falGminwll) < CIFIEm g2

T Gl 41

Suppose | € K is sufficiently large and choose m; = [qll"'“’_ /R] with
0 < 4~ < 4. Then it follows from (2.2) and (1.6) that

1
< — < _ .
lgell < - < -]
Hence, by (2.24)-(2.27), and since kn,, = — 1 (see (2.12)}, it follows that

18 (ms, ) fllz < CllFllslmear® + @),
which yields (2.22). The proof of (2.23) follows by noticing that if the Fourier
coefficients of f satisfy the estimates |fn| € Cn™, v > 1/2, then f &
BV (8Y) forallv™ < v -—1/2.
Proof of Theorem 1.2. Lemma 2.2 already contains the main part of the

proof of Theorem 1.2. In fact, suppose f € H*(S'). Then Lemma 2.1 and
(2.1) imply

e2)  18mwi<o( 3 1PNl emt 3 I6F),
J<Th -t FZ Qo 41

where k,, is defined as in (2.12). The first summand on the right of (2.28)
can be estimated, using (2.1), {2.2) and the defining property (1.5) of the
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Fourier coefficients of f € H*(§%), by

2
(2.29) Sl S ImP <ol Y s

h<km e SI<qr+1 k<R 9k

Assume that the irrational number w is such that for some v > 0,

(2.30) lgrw] 2 1/,
for all but a finite number of k£ € N. Hence by (2.2),
2
(2.31) S Dbl o § 2me/ ) g AO—e/ )
K<k Tk k< ke

provided 1+~ > s, since the sequence (gx)ren is increasing. We also recall
that, since g, > 252 for all k € N, by its definition (2.12), kn, < Clogm.
The second summand on the right of (2.28) can be estimated by

(2.32) 1 12m2 g2,

Finally,

(2.33) 18(m, w)fliz < ClIf Is((logm) g /5 4 mge, ).
Take m; = gi41 + ;. Then it is easily checked that k., = so that
(2.34) I8 (my, ) Fllz < Clifl|o((log mg)H *m] =2/ ey,
Now choose ¢ = g. Then

5 1 1

2.35 1-—- = —— — .

(2.35) T 11 and 1 £ < TS
Hence,

(2.36) 18(mp,w)fllz O£l {(log mu)/2mi/ Ay,

‘The above agument settles the case of a rotation number satisfying (2.30)

for v = s, i.e. sufficiently strongly Diophantine compared to the degree of
smoothness of the function f € H*(S*).

Finally, we are left with the case where
(2.37) loww]| < 1/
for k in an infinite set K of natural numbers. We are therefore under the
hypothesis of Lemma 2.2 (for v = s), which gives, taking v~ = 3,
(2.38) 18 (me,0) fllz < ClLF om0+ 4 gl OFeD),
for a suitable choice of the sequence (my)xen.

From (2.36) and (2.38), inequality (1.15) now follows. The proof of (1.17)
follows from (1.15) by noticing that if the Fourier coefficients of f satisfy
the estimates |fu| < Cn™, v > 1/2, then f € H* (S") forall v~ < v—1/2.
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Finally, to prove (1.16) and (1.18), it is enough to use the hypothesis on w
in (2.33). =

Proof of Proposition 1.5. We have

1 sin? wmnw
S(m,w)fll2 > e :
“ ( ; )fHZ - ng |n;2V sinz T
1 sin® mml|gpw]|
*>— CZ g oy i 2 -
0 S ]

Let k;, = min{k | |lgxw|| < 1/(2m)}. Then
1S (m, @) flla = Cma?.

But, since {|gr; —1w]| > 1/(2m), (2.2) implies 2m > gz, so that
18(m, w)fll2 = Com ™,

proving the result. m
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Abstract. The purpose of this paper is to give singular integral models for p-hypo-
normal operators and apply them to the Riemann—Hilbert problem,

1. Introduction. Prof. D. Xia, in [4], studied the singular integral mod-
els of semi-hyponormal operators and showed many useful results for such
operators. In this paper we first introduce the singular integral models
of p-hyponormal operators for 0 < p < 1/2 and next apply them to the
Riemann-Hilbert problem.

Let H be a complex separable Hilbert space and B(H) be the algebra
of all bounded linear operators on M. An operator T' € B{H) is said to
be p-hyponormal if (T*TV? — (I'T*)* > 0. If p = 1, then T is called hy-
ponormal, and if p = %, then T is called semi-hyponormal. The set of all
semi-hyponormal operators in B(H) is denoted by SH.

The set of all p~hyponormal operators in B(H) is denoted by p-H. Let
SHU and p-HU denote the sets of all operators in SH and in p-H with equal
defect and nullity ([4], p. 4), respectively. Hence we may assume that the
operator U in the polar decomposition T = U|T| is unitary if 7 € SHU U
p-HU. Throughout this paper, let p satisfy 0 < p < 1/2.

Let A be a contraction and T’ & B(H). Define

A™ n20
m — [ A 20,
A _{(A*)"", n<0.
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