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Singular integral models for p-hyponormal operators
and the Riemann—Hilbert problem

by

MUNEO CHO (Yokchama), TADASI HURUYA (Niigata)
and MASUO ITOH (Tokyo)

Dedicated to Professor Isao Miyadera
in celebration of his having been honoured as
an emeritus Professor of Waseda University

Abstract. The purpose of this paper is to give singular integral models for p-hypo-
normal operators and apply them to the Riemann—Hilbert problem,

1. Introduction. Prof. D. Xia, in [4], studied the singular integral mod-
els of semi-hyponormal operators and showed many useful results for such
operators. In this paper we first introduce the singular integral models
of p-hyponormal operators for 0 < p < 1/2 and next apply them to the
Riemann-Hilbert problem.

Let H be a complex separable Hilbert space and B(H) be the algebra
of all bounded linear operators on M. An operator T' € B{H) is said to
be p-hyponormal if (T*TV? — (I'T*)* > 0. If p = 1, then T is called hy-
ponormal, and if p = %, then T is called semi-hyponormal. The set of all
semi-hyponormal operators in B(H) is denoted by SH.

The set of all p~hyponormal operators in B(H) is denoted by p-H. Let
SHU and p-HU denote the sets of all operators in SH and in p-H with equal
defect and nullity ([4], p. 4), respectively. Hence we may assume that the
operator U in the polar decomposition T = U|T| is unitary if 7 € SHU U
p-HU. Throughout this paper, let p satisfy 0 < p < 1/2.

Let A be a contraction and T’ & B(H). Define

A™ n20
m — [ A 20,
A _{(A*)"", n<0.

1991 Mathematics Subject Classification: Primary 47B20; Secondary 47A10.
Key words and phrases: Hilbert space, p-byponormal operator, singular integral model,
Riemann-Hilbert problem. :
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If
85 (T) = slim Al=rlp Al
— 00

exists, then the operator ijf (T) is called the polar symbol of T related to
A. If an operator T = U|T| is semi-hyponormal, then S§ (T) exists and, for
0<k<l,

Ty = (1~ B)S5 (T) + kS5 (T)
are called the general polar symbols of T'. The following property holds: If
T = U|T| with unitary U is p-hyponormal, then

Sg(IT™) < [T < §F(T1).
See Xia ([4]) for details.

Let T = {e | 0 < 8 < 27}, ¥ be the set of all Borel sets in T, m be a

rmeasure on the measurable space (T, ) such that dm(e') = 7=d6 and D
be a separable Hilbert space. In the sequel we write w for €',

The Hilbert space of all vector-valued, strongly measurable and square-
integrable functions on T with values in D and with inner product

(f,9) = {(F(w), g(w))p dm

T

is denoted by L*(D); the Hardy space is denoted by H 2(D), and the pro-
jection from L2(D) to H2(D) by P. If f € L*(D), then

(1) (Pw) = tm o | F2)—rw)dx
|z|==1

Let v be a singular measure on (T, X), and F € X be a set such that
T\ F) = 0 and m(F) = 0. Put 4 = m + ». Let R(-) be a standard
operator-valued strongly measurable function defined on 2 = (T, I, ) with

values being projections in D, let L?(£2, D) be the Hilbert space of all D-
valued strongly meagurable and square-integrable functions on {2 with inner

product (f,g) = {n(f(w), g(w))p du, and
H={f|feI*D), Rw)f(w)=flw), weTh

Then H is a subspace of L2(12, D).
We define an operator Py from L2(£2, D) to D as follows:

Po(f) = | Fw) dm.

Then Py is the projection from L2(£2,D) to D ([3], p. 707, or [4], p. 50).
TLet () and B(-) be operator-valued, uniformly bounded, and strongly mea-
surable functions on {2 such that a(w) and G(w) are linear operators in D,
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satisfying
R(w)a(w) = o(w)R(w) = a(w),
R(w)B(w) = Bw)R(w) = B(w)
and g(w) = 0.

Furthermore, suppose that a(w) = 0 if w € F. We define (af)(w) =
a(w)f (w)-

Xia ([3]) constructed two operators U and T in H as follows:

(2) (@:f)(w) = wf(w),
(3) (TF)(w) = wledw)* (Plaf)) (w) + Blw) f{w)].

He showed the following theoremns.

THEOREM A ([3], Theorem 6). Let U and T be operators defined by
(2) and (3), respectively. Then the operator T is semi-hyponormal and the
corresponding polar symbols of T are

(SZ(T)) (w) = S5(T) (w) f (w),

where S%Z(f)(w) = w(a(w)*alw) + f(w)) and Sé(f)£w) = wfh(w). The

corresponding polar difference operator § = |T| — ﬁlT|ff"‘ is (Of)(w) =
a(w)"Polaf).

THEOREM B ([3], Theorem 7). Let T = U|T| be a semi-hyponormal
operator in M such that U is unitary. Then there are o Hilbert space H,
operators T and U as in Theorem A and o unitary operator W from H to
H such that

WIW =T and WUW '=0.

The operators 7 and T in Theorem B are called singular integrol models
(or function models) of U and T, respectively.

2. Singular integral models for p-hyponormal operators. First
we introduce the general polar symbols for T € p-HU. For 0 < & < 1, the
general polar symbols Tty of an operator T’ = U |7 in p-HU are defined as
follows:

Ty = UL — K)SF (ITIP) + k& (IT|*P)]/ 3P
{see [1] for details}.

Since B(w) = 0 and P is a projection, we have (c(w)*(P{af))(w) -+
Blw) f(w), f(w))p > 0. Therefore, we can define the operator [o*Po
+ 8]+ (2p) ‘
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THEOREM 1. Let H and U be o Hilbert ' space and a undtary operator on
H given in Introduction, respectively. Let T be an operator in H defined by

(TF)(w) = w(Af)(w),

where (A% f)(w) = a(w)* (P(af))(w) +B(w) f(w). Then T is p-hyponormal
and the corresponding polar symbols of T' are

(SED)(w) = wlalw)*alw) + Slw)] P f(w)
and

(85 (D)) w) = w[Bw)]/ @ f (w).

The corresponding polar difference operator Q, = |T|*® — U|T|22T* is

(4) (Qpf) (w) = a(w)*Po(af).
Moreover, the correspanding general polar symbols T[k] are
. (T F)(w) = w(B(w) + ka(w)* a(w)]/ PP f(w).

Proof. Since _
(A% f)(w) = (T f)w),
it follows that
(6) (T ) (w) = a(w)*(Plaf))w) + Blw)f(w).
Therefore, as in [4], Theorem II1.1.3, we have the corresponding polar dif-
ference operator such that
(@) (w) = a(w)*Po(af).

So we have

(@pf, £) = {(a(w)* Polaf)(w), f(w))pdu

(Po(ef ) (w), a(w)f(w))p du = (Po(af),af) = 0

H s—]u—ﬂ

since Py is a projection. Therefore, Q} > 0 and T is p-hyponormal in H.
Again as in [4], we have

(SEIT) £)(w)
(S5(TP7)f)(w) =

= [e(w)*a(w)
Blw)f (w)-

) + B(w)]f(w),

Hence

(SHT) ) w)

Il

OISZ(T )P f ()

[
wlo(w)*alw) + Aw)]" % f(w),
OIS (T PP)1 P f(w) = wB(w)] P9 f(w).

It

(S5 ) w)
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Next, since
(T £)(w) = UL = k)85 (IT2) + kS (T[]0 £ (w)
= w[f(w) + ka(w) a(w))/ P f(w),
we have

(Tju £)(w) = w[Bw) + ka(w)*a (W)@ f(w).
This completes the proof.

CoroLLARY 2. Under the assumptions of Theorem 1, the operators T[k]
are normal in H.

Proof. This follows from (5).

THEOREM 3. Let T = U|T| be a p- hyponormal operator in H such that

U is unitary. Then there exist o function space H and operators T and U
in H which have the stngulor integral model in Theorem 1 such that

WIW™1=T and WUW™! = U,
where W is a unitary operator from H to H. Moreover, the function o in

this model satisfies a(-) > 0

Proof. Put § = U|T|?. Since § € SHU, by Theorem B there exist a

function space H, operators 5, U and a unitary operator W from H to H

such that
WSW1=8§ and Wow™ =10,

Hence the model § of § is

(S (w) = wla(w)(P(af))(w) + Blw)f ()]
and
(F) (w) = wi(w).
Since we also have
o =W(SH(TI) ~ SG(T/")*W=" and B=W(S
it follows that a(-) = 0 and
(7 (I815)(w) = a(w)(Plaf))(w) + Blw) F (w)-

Since

o (TF)w

18 = (WSWhy*wsw=)? and |S|=|T*,
we have
8 wiTw!

= (W|T|2pW-1)1/(2P) = (W|S|W~ )1/ (2p) _ ISll/(zp)
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Here we put A = |5|2/(3?) and define T = [ A. Then by (8) we have

®)  (WIW™'f)w) = (WUIT|W ™ f)(w) = (WUW T WIT|W " £)(w)
= (WUW ™Y (W|T W) ) (w)
= (015119 f)(w) = (TAf) (w).

From Theorem 1 and (9), T is a singular integral model of T(€ p-HU). This
completes the proof.

THEOREM 4. Let T' € p-HU. If T is completely p-hyponormal, then the
measure v, appearing in the singulor integral model corresponding to T and
H, satisfies v = 0.

Proof. Suppose v # 0 and v is concentrated in F € X and m(F) = 0.
Put M= {f| f €H, f(w) =0forw ¢ F}. Then, asin [4], Corollary III.3.3,
we have

(TF)(w) = w[B(w)] @ f(w),
(T ) (w) = w[B(w)]Y @) f (w)

for f € M. Therefore M is a reducing subspace for T of H and it is evidently
non-trivial, which contradicts the fact that T is completely p-hyponormal,
This ends the proof.

3. Riemann—Hilbert problem. Throughout this section, we use the
same notation as in Sections 1 and 2.

We only consider the singular integral model T = f]’{f! of a p-hyponormal
operator T' = U|T| given in Theorem 1. In particular, from Thearem 3, we
may assume that « is positive. For an operator 9, p{.5) denotes the resolvent
set of 5. Recall that w = ¥ throughout.

We define a bounded linear operator K from D to H as follows:
(Ka)(w) = a(w)a, aecD.
The dual operator K*, as an operator from H to D, is
1 ~
i
K'f= o Va(w)f(w)ds, fefi

Then, from (4) and the definition of Py, we have KK* = Q.
Next, we define Rx(w, !} for any [ € Q(S§(lfizp)) as follows:

Rz(w,1) = I + a(w)(B(w) - ) a(w).

Then we have the following properties.
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(i) Since sﬁ%(m% —1) = (SZ(IT1))* — 1 ([4], Cor. I1.1.4), it follows that,
forl e C,

(SEITP — DF)w) = (elw)? + Baw) — 1) (),
(SFUTP? - 1)f)(w) = (Blw) ~ 1) f ().
(ii) From (i}, for I € g(-SE(IT]QP)), we have

Rz(w,Da(w) = a(w) (S5 (T ~ )™) (w)(SE(T1* - 1))(w),
ow)B(w, 1) = (SL(T| - DY) (ST - 1)™)) (w))e(w).
(iii) From (ii), for I € Q(S%Uf’]zp)) ﬂg(8§(|f|zp)), the operator Rz(w, )
is invertible and
R(w, D™ =T - a(w)(Bw) + a(w)? — D ta(w).

Furthermore, we define Ex(z,1) as follows:
(10) Be(z,1) =1 - KU - 2)0(T? - 'K

if z € o([7) and | € o(|T|?). And, for a € D and { € o(|T|?), we also define
flw;i, a) as follows:

Flw;l,a) = (ITPF — 1)~ (Ka) (w).
Then the following theorem holds.

THEOREM 5. Let Ez(z,1) be the operator of (10). Then, for a € D,
z € o(T) and l € p(|T|?),

E;(z,l)a:a,_ L S de
2mT W — 2z

Proof. This follows from

1 ZSW wal(w) f(w; ,a)

Ez(z,Da=a~ o P dg.

0

Let P = P and P, = I — P. We note that our P- means Py of 2]
{p. 161). The boundary functions Ez{w(l £ 0),1)a are defined by

27

Jim § | Bz(rw, l)a — Ex(w(1 % 0), a3 df = 0.

Then we have the following theorems.
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THBOREM 6. Let Ex(z,1) be the operator of (10). Then, for a € D and
Le oI TP),
Ez(w(l~0), e =0 —P_(a()f(;a))(w).
Proof. Sinee, by (1),

. 1 HC I
(P-Dw) = Ty g | g %

)

we have, from Theorem 5,

L i a(e) f(e™; 1, a)

2mi 3, e — ruw
—a—P_ (o) f (1, 0))(w)

This completes the proof.

Ex(rw,lJo =0 — de™

(r—1-0).

THEOREM 7. Let Ex(z,1) be the operator of (10). Then, for a € D and
1€ o(|T?®),
Ex(w(l+0),Da=a+Pi(a()f(51,a))(w).

Proof. By Privalov’s theorem ([2], Th. 5.5 of p. 161), any f € L*(D)
has non-tangential limit
f(w) dein

r—l 056":’7—’!‘
o5 W

at almost every point w. Put

- o )
PUW@Z&ﬂﬁ%iﬁgﬁﬁﬂ-
The Sokhotskii-Plemelj-Privalov formula ([2], p. 162) implies that
P.-P=1I
Hence P = —(I — P.) == —~P,.. Therefore
Ex(w(1+0),l)a=0a- r-l-%lﬂ-o E’%ﬁ .]S? W detm

=a—P(a()f(;1,a))(w) = a+ Pe(a()f(+1,a))(w).
This completes the proof.
From the above assertions, we have the following theorem. The proof is

analogous to that of Theorem 1.1 of [4], p. 101, but we give it for complete-
ness. :
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THEOREM 8. Let T = U|T| € p-HU. Then, for i € o(|T|?), Ez(,-) is
the solution of the following Riemann-Hilbert problem:

Re(w, 1) Bx(w(1l - 0),1) = E=(w(140),0).
Proof. Since (|T|* — D f(w;l,a) = a(w)a for a € D, by (7) we have
(B(w) - D f(wil,a) + a(w)P_(a() (1)) (w) = a(w)a,

and hence

a(w)f(w;l,a) + a(w)(Bw) ~ ) a(w)P-(a(-) f(1,0))(w)

| = a(w)(B(u) ~ ) a(w)a.

From (iii),

(I =P-He()f (5l a))(w) = Bx(w,))(a— P_(a()f(;1,a)(w)) - a.

Since I — P_ = P,, we have

a+ Pyled)f (54 a)){w) = Re(w, D){a — P_(al-}f(1,a)) (w)).
Hence the theorem follows from Theorems 6 and 7.
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