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On complex interpolation and spectral continuity
by
KAREN SAXE (St. Paul, Minn.)

Abstract. Let [Xp, X1]¢, 0 < ¢ < 1, be Banach spaces obtained via complex interpo-
lation. With suitable hypotheses, linear operators T that act houndedly on both X and
X3 will act boundedly on each [Xp, X1]s. Let Ty denote such an operator when considered
on [Xp, X1]t, and o Ty} denote its spectrum. We are motivated by the question of whether
or not the map ¢ — ¢(7%) is continuous on (0, 1); this question remains open. In this paper,
we study continuity of two related maps: t — (o(T}))" (polynomially convex hull) and
t — Bs(c(Tt)) (boundary of the polynomially eonvex hull). We show that the first of these
maps is always upper semicontinuous, and the second is always lower semicontinuous.
Using an example from (5], we now have definitive information: ¢ ~ (#{73))" is upper
semnicontinuous but not necessarily continuous, and ¢ -~ 8a (or(T%)) is lower semicontinmous
but not necessarily continuous.

Setting. Assume that [Xj, X5] is an interpolation pair in the sense of
Calderdn [2] and that XM X7 is dense in both Xy and X;. Further, assume
that

T:XoNX; = XoNX,

is continuous with respect to the norm on Xy and with respect to the norm
on X;. Then T induces, for each ¢ € [0,1], a bounded linear operator 7T
on the interpolation Banach space [ Xy, X1};. Let o(T;) denote the spectrum
of the operator 7} in the Banach algebra of bounded linear operators on
(X0, X1}s- We consider the map t — o(T}) assigning to each value of ¢ in
[0,1] the compact set o(T}). As is usual in this context, the collection of all
compact subsets of the complex plane is endowed with the Hausdorff metric
topology.

It is known that the map ¢t — o(T}) can be discontinuous at ¢ = 0 and at
t =1, but the question of whether or not it is continuous on (0,1) remains
open. When attempting to answer this question, two other maps, and hence
questions about their continuity, arise naturally. These two maps are:

t— (o(T3)) and t— B(c(Ty),
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where the image under the first map is the polynomially convex hull of the
spectrum and the image under the second map is the exterior boundary of
the spectrum.

To get a feel for what is going on here, we begin by looking at an example
of interpolated spectra. Consider (Xo, || - ||o) and (X3, | - [[1) to be Hilbert
spaces each with orthogonal basis {e, }nez and

— " 2
L= Z(r an)?,

“ Zaneﬂ 0 Z(Rnan)z, l Zﬂnen

for some choice 0 < r < R. Let T be the (left) shift Te, = e,_1. Then Tj
is unitarily equivalent to EU and Ty is unitarily equivalent to 1U where
U7 is the adjoint of the bilateral shift on £%(Z). It can be shown that the
intermediate space [Xo, X1]; is a Hilbert space with the same basis and that

| X ened], = 3 ((R 4102

Further, T} is unitarily equivalent to zr2r=U. Since
opz)(U) = 0B8:(0),

it follows that
1
Te2(Z) (Rl—trt U) - 5B‘T:"r;r( )>

and hence
o(Tt) = 33 i (O
We now choose R =4 and r = 1. Then, clearly,
o(T) = {A: 1A = 471},
Set S = e2™T; then S, = €277 and
a(S:) = {e*™* ¢ |\ = 471

Thus o(Sy) is a “croissant” for 0 < t < 1/2, and o(S;) is a “doughnut” for
1/2<t< 1.

The example of the preceding paragraph was given in [5] to show that
t — (o(T1))" need not be continuous. In fact, this example shows that
neither ¢ — (o(T3))" nor £ — 8.(c(T})) is necessarily continuous. Specifi-
cally, it shows that t — (¢(T3))" fails to be lower semicontinuous, and that
t — 8g(o(T})) fails to be upper semicontinuous, Can a different example be
found where t — {o(T}))" fails to be upper semicontinuous? Can a different
example be found where t — 8. (¢(T})) fails to be lower semicontinuous? We
show that the answer to both questions is no. That is, the map ¢ — (o(T3))"

nmst always be upper semicontinuous, and the map % — 8¢ (o (T})) must al-
ways be lower semicontinucus.
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The former of these two facts follows in a straightforward manner (by
applying Lemma 2 below) from Shnefberg’s remarkable result in [7] that
t — o(T%) is always upper semicontinuous. The latter will be dednced from
the former; this will be done in the final section of the paper. This is a
strong statement about interpolated spectra, as it is extremely easy to find a
function ¢ — I'(t) mapping t € [0, 1] to a compact subset I'(t) C C with t —
(I'{t))" upper semicontinuous yet ¢ — 8,(I'(t)) not lower semicontinuous.

Definitions and notations. In this section we provide information
about the Hausdorff metric topology and about polynomially convex hulls
that is hard to find in textbooks, and also establish notation to be used.
Aside from this topological material, we agsume that the reader is familiar
with the basic ideas of complex interpolation theory. The reader unfamiliar
with these ideas may want to consult [1] or [2].

For a compact set I" C C we let I'* denote the polynomially convex hull
of I' and 8.(I'}) = &(I'*) denote the exterior boundary of I'. Let K denote
the family of all compact subsets of C endowed with the Hausdorff metric
A.Forr>0and A € Cweuse B.(\) = {ueC:|A—p|<r}to denote the
open ball of radius r centered at A. For ' e K and £ > 0 let

L=l+B(0)={AeC:d()\T)<e)
Then, for I, I3 € K,
AN, ) <e fandonlyif Ip C (Ih). and Iy € (I%),.
In particular, ¢ — I'(t} is continuous at £y if for each € > 0 there exists a
d > 0 such that
r'{t) € (I'to))e and  I(to) C (I'(}))e

whenever £ € (0,1) and |t — to] < 8. Then t — I'(t) is upper semicontinuous
at ¢ty € (0,1) if for each € > 0 there exists a § > 0 such that

F(t) - (F(to))e

whenever ¢ € (0,1) and |t — tg| < §. Likewise, if for each £ > 0 there exists
a & > 0 such that

I'(to) (L))
whenever ¢t € (0,1) and |t — o] < J then ¢t — I'(t) is lower semicontinuous
at iy € (O, 1).
‘We conclude this section with two topological lemmas.

LEMMA 1, Let I € K. Then

(@) I'= (2 L.
(b) For A € 81" and £ > 0 there exists a § > 0 such that d(X\,C\I3) < ¢

(e} I = Mata[(Tyyn)]-



226 K. Saxe

Proof. The results of (a) and (b) are clear. One containment of (c) is
obvious. To see the other containment, suppose that A & I'*. Then A is in the
unbounded component of €\ I' and so we can choose a curve v connecting
A o 0o such that ¥ NI = §. Now, if for each n there exists A, € Iy, Ny
then {},}32; C Iy and hence {A;}52, has a convergent subsequence with
limit which we will call ;s We may assurne that A, — p as n — oo. Now
closed implies that p € v. Given £ > 0 we may assume that |\, — u| < ¢
and so, for any n,

A I < (s An) + d(A, ) < £+ 1/n.

Since n was arbitrary and I' is closed, p € I', contradicting v N I'* = {i.
Therefore, there exists N such that Iy Ny = 0 and thus X is in the
unbounded component of €\ I'yy. That is, A € (I1,x)" and so X ¢

Mpea [(T1n )"

LeMMma 2. If t — I(t) from (0,1) inte K is upper semicontinuous, then
s0 st — {(D{E)".

Proof. Suppose to the contrary that there exists ¢t € (0,1), ¢, — ¢
and an open set U such that (I'(¢,))* € U yet (I'(¢))* C U. Thus, for

each n there exists A, € (I'(¢,))" such that A, € C\ U. For each k, upper
semicontinuity of ¢ — I'(t) implies that there exists ny such that

I(tn) € (I(t))yn  for all n > ny.

So, in particular,
Any € (I(tn, ))™ S (D) 10"

Note that j > k implies [(I'(t))1/;]* © [(I'(t))1/%)". Hence, An, € [(I'{£))2]"
for all k. Since [(I'(2))1]" is compact, {An, }32., has a convergent subsequence
with limit which we will call A\. We may assume that A, — X as k — oc.
Since A, € C\ U for all k and C\ U is closed, A € C\ U. However, if we
fix k, then

for each k.

Any € (L()yl" SUTE1 )" forall j 2 k.

Since [(I"(t))1/x]" is closed, A € [(I'(¢))1/&]". Since k was arbitrary, part (c)
of Lemma 1 imaplies that A € (I"(t))", contradicting the fact that A € U°. u

Lower semicontinuity of the exterior boundary of the spectrum.
Up until this point, our results have been purely topological, We now assume
that the compact sets we are considering are interpolated spectra, that is,
I(t) = o(T3).

THEQREM. The map t — 8,(c(T})) is lower semicontinuous.

The main ingredient in cur proof is:
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COROLLARY 6 OF [6]. Let ) be any complex number that is contained in
the resolvent set of every Ty, t € [0,1]. Then the functiont — d(A, o(Ty)) is
continuous on the open interval (0,1).

This result follows from the fact that the spectral radius of 7} is a con-
tinuous function of ¢ (Theorem 4 of [6]). Halberg, in [4], first proved this
when the interpolation spaces are the #P-spaces. The general result uses
Cwikel’s [3] improvement of Calderén’s Reiteration Theorem [2].

It we step back from the spectrum for a minute, and consider arbitrary
functions £ — ['(t) mapping the unit interval [0, 1] into the collection of
all compact subsets of C, there are eight implications that might possibly
hold between upper semicontinuity and lower semicontinuity of one of the
functions £ — (I'(t))" and t — 8.(I'(t)) and upper semicontinuity and
lower semicontinuity of the other. Only one of these holds for completely
arbitrary maps t — I'(t): upper semicontinuity of ¢+ — 8.(I'(¢)) always
implies upper semicontinuity of ¢ — (I'(£))". As (I'{£))" = [8.(L(£))]" this
follows immediately from Lemma 2. Before returning to our specific spectral
setting, we emphasize that upper semicontinuity of ¢ — (I'(t))" does not
generally imply lower semicontinuity of ¢ — 8.(I'(¢)). This can be seen
easily. One could, for example, set

_J{z:1#/=1, Re(z) >0} for0<t<1/2,
Tl = {Eﬁlzlml} for 1/2§t5/1_

We now return to the spectral setting, I'(t} = o(T}). Recall that both
t — o(T;) and ¢ — (o(13))" are upper semicontinuous (Shneiberg [7] and
Lemma 2 above). We now proceed to the

Proof of the Theorem. Suppose, to the contrary, that ¢ — 8,(I'(t)) is
not lower semicontinuous. Then for some #p, a sequence t, — £, and some
gp > 0, we have

O(I(t0)) Z [Be(I"(tn))]s,  for all m.
So there exists for each n an element X, € 8.(I'(tp)) such that
(A, O (I'(tn))}) 2 €0

Now {Ar}52.; has a convergent subsequence with limit A € 8,(I"(¢o)} and we
may assume that A, — A as n — oo. We may also assume that d(A,),) <
€a/2 for all n and hence that

d(A, 0.{I"(t,))) = £0/2 for all m.
For each n either

() Beoja() € (D(t))", or
(b) BSU/Q(’\) cC \ (F(tn))/\-
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Say there exists a subsequence {n} with (a} holding. Given m there exists
ng,, such that

(T (tn,,))" S (T () 1/m

by the upper semicontinuity of ¢ — (I'())". Thus, Be,/2(A) € [(I(£0))"]1/m

for all m and hence
o0

Beo2(A) € () (T (t0))Nsym = (D(t0))"

=]

(the last equality holds since (I"(%p))" is closed), which contradicts the fact
that A € 8,(I'(t5)). So only a finite number and hence we may agsume that
none of the n’s satisfy (a). Thus, for all n we have

AN (D)) 2 e0/2
Hence,
d(A, I'{t,)) 2 &0/2
for all n.

By part (b) of Lemma 1, there exists a 6§ > 0 and a u € C\ (I'(£0))s
such that d(, p) < £0/16. Also, via Shneiberg, there exists n > 0 such that
I'(t) € (I'(to))s and hence p & I'(t) for all t € [t —mn, to +n)]. By Corollary 6
of [6] (this is the point of the proof at which it is crucial that I'(t) is the
spectrum o(T}) of interpolated operators), t — d(u, I'(t}) is continuous on
(to —n,to +n). For sufficiently large n, we have ¢, € (tg — 1,%p + 1), and so

d(ﬂ‘: P(tn)) - d(“af(tO)) < d(}lv, ’\) < 50/16
since A € 8(L'(to)) € I'(tg). On the other hand,
d(I(tn), ) = d(N(tn), A) — d(A, 1) > 20/2 — €0/16 > €0/16,

a contradiction. Therefore, t — 8.(1"(t)) is lower semicontinuous.
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