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Averages of holomorphic mappings and
holomorphic retractions on convex hyperbolic domains

by
SIMEON REICH (Haif2) and DAVID SHOIKHET (Karmiel)

Abstract. Let D be a hyperbalic convex domain in a complex Banach space. Let the
mapping F € Hol(Z?, D} be bounded on each subset strictly inside I, and have a nonempty
fixed point set F in ). We consider several methods for constructing retractions onto JF
under local assumptions of ergodic type. Furthermore, we study the asymptotic behavior
of the Cesiro averages of one-parameter semigroups generated by holomorphic mappings.

Let X be a complex Banach space and let D be a domain (open con-
nected subset) in X. We denote by Hol(D, D) the family of all holomorphic
mappings from D into the set D C X. Thus the set Hol(D, D) consists of
all the holomorphic mappings F' on D such that F(D) ¢ D, This set is a
semigroup with respect to composition.

A mapping ¢ € Hol (D, D) is called a holomorphic retraction of D if it
is an idempotent of the semigroup Hol(D, D), i.e., ©* = . In other words,
if we let V = (D), then p|y = I|y. In this case the set V' C D is called a
holomorphic retract of D.

Let F' € Hol{D, D). We denote by F = Fix(F') the fized point set of F
inDie, F={xeD:z= F(z)}. ‘

One can ask several questions about Fix(F). The first one is: if F =
Fix(F) # 0, when is it a holomorphic retract of D? This question in its turn
leads to the second one: if F = Fix(F) is a holomorphic retract of D, how
con one determine a retroction of D onto F?

Note that once the existence of a holomorphic retraction onto JF is es-
tablished, it follows that F = Fix(F') is a complex-analytic submanifold of
D [4] (see also a result of Rossiin [8, p. 102]). This explains the importance
of the first question mentioned above. The structure of fixed point sets and
holomorphic retracts has been studied by many mathematicians in different
situations, e.g., in the finite-dimensional case (see, for example, [12, 37, 24,
21, 26, 5, 41, 42, 22, 43, 27|, in Hilbert space, its powers and the hyperball
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(see, for example, [35, 32, 40, 10, 2, 3]), and in general Banach spaces (see,
for example, [38, 39, 13, 28, 29, 6, 34, 18, 15, 16]).

The second question mentioned above is also of great interest. This is
because the construction of a retraction onto F = Fix(F') is equivalent to
finding a method (explicit, implicit or approximate) for solving the equation
z = F(z). A holomorphic retraction may not exist in general (see [28]).
Even if it exists, it need not be the limit of the iterates of the operator,
even in the case of a linear operator A such that {0} 5 Ker(I — A) #
Ker(I — A)2.

We will now mention several results concerning both these questions. To
this end we need the following definitions. The first one is motivated, inter
alia, by the above-mentioned linear example.

DEFINITION 1. Let F' € Hol(D, D). A point ¢ € Fix(F) is said to be
quasi-regular if the following condition holds:

(%) Ker( — F'(a)) ® Im(I — F'{a)) = X.

If, in addition, Ker(J — F'(a)) = {0}, i.e., the linear operator I — F'(a) is
invertible, then we say that o is a reguler fized point of F.

By the implicit function theorem (see, for example, [20]), it is clear that
a regular fixed point is an isclated point of the set F, and that in the case
of a finite-dimensional X, each fixed point is quasi-regular (or in particular,
regular).

DEeFINITION 2. Let D be a domain in a complex Banach space X. A net
{F;}jes C Hol(D, X) is said to converge to a mapping F € Hol(D, X) in
the topology of local uniform convergence over D (or briefly T'-converge) if
for every ball B & D,

Ii (z) — =0,
jgﬁgggllﬂ(m) F(z)lf =0

In this case we write
- F =T-lim F;.
JEA
If D is a bounded domain in a finite-dimensional X, then its T-topology
is equivalent to the compact open topology on D, i.e., the topology of uni-
form convergence on compact subsets of D.

DEFINITION 3. A mapping F € Hol(D, D) is said to be power convergent
on D (with respect to the T-topology) if the sequence of iterates {F" : F =
I, P41 = FoF™, n=0,1,2,...} T-converges to a mapping ¢ € Hol(D, D).

It is obvious that if FF € Hol(D, D) is power convergent, then F =
Fix(F) # 0 and ¢ = T-lim,_,o, F" is a retraction onto F.
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Moreover, we will see below that if the domain D is bounded, then the
set F consists of only quasi-regular (or regular) points.

"The converse, of course, is not true. To see this, consider, for example,
a rotation F(z) = ez, 0 < # < 2=, of the open unit disk A in C. This
mapping has a unique and regular fixed point (the origin) in 4, but F is
not power convergent.

A criterion for F' € Hol(D, D) to be power convergent was given by E.
Vesentini [38], [39]. The linear case is due to J. J. Koliha [19].

Let o(A) denote the spectrum of the linear operator 4 : X — X and
let A be the open unit disk in C. As above, assume that F = Fix(F) # §
for some F' € Hol(D, D) and that a € D. Setting A = F'(a) and using the
Cauchy integral formula [9], the chain rule, and the boundedness of D, we
see that the powers of A are uniformly bounded, ie.,

(1) A7) € M < .

This implies that 0{A) C A. Now in our context Vesentini’s theorem takes
the following form.

TurorEM A. Let D be a bounded convex domain in X and let F €
Hol(D, D) with F = Fix(F) #£ 0. Then F is power convergent if and only if
there exists a € F such that for the linear operator A = F'(a) the following
conditions hold:

(2) o(A) c Au{1}
and
(%%) 1 is @ pole of at most the first order for the resolvent of A.

REMARK 1. In this form the theorem is also true for bounded domains
which are not necessarily convex, but satisfy the following maximum mod-
ulus principle: For each f € Hol(D, D) such that F{D) N 8D # §, we have
f(DycC oD.

However, we will mainly consider convex domains in X because this is all
that is needed in order to describe Fix(F') locally in each bounded D. Indeed,
it has recently been shown by P. Mazet [27] that if D is bounded, then for
each F' ¢ Hol(D, D) and each a € Fix(F'), there is a convex neighborhood
U C D such that o € U and F(U) C U, Le., F € Hol(U,U).

In addition, we need the convexity to consider different types of mean
ergodic procedures.

REMARK 2. It is clear that if, in the setting of Theorem A, o(4) C A,
then @ € F is a regular point.

In addition, it can be shown that such a point is the unique fixed point
of F'in D (see [17}). As a matter of fact, as we will see in the sequel, the
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regularity of a point a € Fix(F') is already sufficient for its uniqueness, i.e.,
if a is regular, then Fix(F) = {a}.

As a matter of fact, if the conditions of Theorem A hold for at least one
point of F, then they hold for all the points of F. Moreover, if 1 € ¢(A),
then F contains infinitely many points because it is a retract of D, hence a
connected submanifold of D, tangent to Ker(I — A). We will see below that
the latter fact is true whenever condition (##) holds, even if the spectrum
o(A) contains other points on the boundary 34 of the open unit disk A
different from 1. But in this case, of course, by Vesentini's theorem F is
not power convergent and therefore the question of approximating its fixed
points is still open.

Nevertheless, if D is a bounded convex domain in X, and F € Hol(D, D)
has at least one quasi-regular fixed point in D, then there is another mapping
@ € Hol(D, D) with Fix(F') = Fix(p) which is power convergent. Hence,
in this case F is a holomorphic retract of . For the finite-dimensional
case this was established by J.-P. Vigué [41, 42, 43], and in the general
case by P. Mazet and J.-P. Vigué [28]. They used nonlinear analogues of
mean ergodic constructions. More precisely, they considered the Cesaro av-
erages

-1
_1 k
(3) cn_nkgoﬁ*

and proved the following results.

THEOREM B. Let D be @ bounded convexr domain in X = C*, and let
F € Hol(D, D) with F = Fix(F) # 0. Then there is a subsequence {Chn, }
of {Cn} which T-converges to a power convergent holomorphic mapping
w: D — D with Fix(p) = F.

THEOREM C. Let D be a bounded convexr domain in an arbitrary comples
Banach space X, and let F € Hol(D, D} with F = Fix(F) # . If F contains
at least one quasi-regular point, then there exists an integer p such that the
mapping Cp defined by (3) is power convergent to a holomorphic retraction
onto F.

REMARK 3. Both Theorems B and C state that F = Fix(F) is a holo-
morphic retract of D. But a deficiency of Theorem B is that we do not know
how to choose a convergent subsequence of {C,} in order to approximate
fixed points.

Theorem C (which also covers the finite-dimensional case) would im-
prove this situation, if we could determine the minimal number p for which
C; defined by (3) is power convergent.
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We give below, inter alia, the simplest possible answer to this question,
namely, p = 2.
The following partial generalization of Theorem C to unbounded do-

mains was obtained by Do Duc Thai [6]. We first recall the following defi-
nition.

DEFINITION 4. A domain D in a complex Banach space X is said to
be hyperbolic if the Kobayashi pseudo-distance Kp generates the relative
topology of D in X (see, for example, [9]).

THEOREM D. Let D be a convez hyperbolic domain in X, and let ¥ €
Hol(D, D} be such that F(D) is contained in some compact convex subset
of X. If F = Fix(F) # 0, then it is a holomorphic retract of D.

Theorem D is only a partial generalization of Theorem C because of its
compactness hypothesis. Indeed, according to a theorem of Krasnosel’skil’s
[20], F'(z) is compact for all z € D and hence each point in Fix(F) is
quasi-regular. In addition, Theorem D does not provide a construction of a
holomorphic retraction onto Fix(F). However, we will show below that this
compactness hypothesis is unnecessary. Moreover, we will present a simple
method for constructing such a retraction.

An additional question which arises in connection with Theorem C is the
following: What happens when 1 is the unique point of the spectrum a(F'{a))
on the boundary of the open unit disk A in C?

The key to the answers to both questions is combining Theorem A with
the following old result due to I. Gohberg and A. Markus [11] (see also [36]
and [23]).

THEOREM E. Let A be a closed linear operator in X. A point Mg € C
is a pole of the resolvent (AI — A)~! of order at most v if and only if the
following decomposition holds:

Ker (Ml -AY B E=X,

where £ C X i3 an invariant subspace of A such that the restriction of
Aol — A to E s continuously invertible.

Since conditions () and (*) are equivalent, Theorem A can be used to
show that one can take p = 2 in Theorem C. More precisely, using Theorems
A and E, we will now present a simple method for finding a retraction onto
Fix(F). This will also provide a proof of Theorem C.

THEOREM 1. Let D be a hyperbolic convez domain in X, and let F' €
Hol(D, D) be bounded on each subset which is strictly inside D.

(1) If F = Fix(F) contains at least one quasi-regqular point a € D, then
for each X\ € (0,1) the averaged mapping
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(4) Fy=M+(1~-N\F

1§ power convergent.
(ii) If for at least one A € (0,1) the mapping Fy defined by (4) is power
convergent, then Fix(F) consists of guasi-regulor poinis.

First we observe that it is sufficient to establish this theorem for bounded
domains. Indeed, if a is a fixed point of F' (hence of F3), the hyperbolicity
of D implies the existence of a ball B(a, R) (with respect to the K pseudo-
distance)} centered at a which is bounded and strictly inside D. Since F is
nonexpansive with respect to Kp, this ball is invariant under Fy. Suppose
now that (i) is established for that ball and let B(c,r) be any ball (with
respect to the norm) which is strictly inside D. Then the family {F[} is
bounded on the convex hull of B(a, R) U B(e, ) (which is also strictly inside
D), and therefore F) is power convergent on B(c,r) by the Vitali property
(see, for example, [9] and [14]).

Proof of Theorem 1. (i) Let a € Fix(F) be a quasi-regular point, and let
Ay =M+ {1 -A)F'(a) for A € [0,1). It is clear that @ € Fix(F}), where Fy
is defined by (4), and

A =(FA)r(a‘)> AE [O: 1)7
with Ao = A = F’(CL).

We intend to show that for each A € (0,1) the mapping F satisfies the
conditions of Theorem A. Actually, by Theorem E, instead of {##) it suffices
to check condition (%). But this condition is obvious, because

(5) I—Ay=(1-NA.

Now we must show that the set o(A,)\ {1} lies inside the open unit disk A in
C for each A € (0, 1). Once again, the Cauchy integral formula shows that the
operator Ay is power bounded. Suppose now that there exists { € dANo(A4.)
and ¢ # 1. Then we have for such ¢,

CI—Ay= (1~ N - A),
where

(6) t= i—:—g € o(A).

It is clear that [t| > 1. But on the other hand |t/ < 1, since o(A4) C A (see
(1)). So, |t| = 1 and we have by (6),

C=A+(1—-A)tedA.

But this is possible only if { = ¢t = 1. This contradiction proves our asser-
tion.
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(ii) Now, if for some A € (0,1) the mapping Fy is power convergent, then
it follows by the Cauchy inequalities that for each a & Fix(F) the opera-
tor Ay = (F))(a) is also power convergent. It is known that this fact in
turn implies condition (x) for Ay (see, for example, [25]). But since ()
is equivalent to (), it follows by (5) that o is quasi-regular. The proof is
complete.

So, setting A = %— in Theorem 1, we see that the Cesaro average (see
(3))
Cp = 3(I + F)
is power convergent, i.e., it is sufficient to take p = 2 in Theorem C. As
a matter of fact, it turns out that the Cesiro averages defined by (3) are
power convergent for all p = 2,3,... Moreover, we are able to show that all
proper convex combinations of the iterates of F are also power convergent.

We will now describe a general scheme for constructing a retraction onto
Fix(F).

REMARK 4. It follows by Theorems A and E (see also Theorem 2 in [25])
that F € Hol(D, D) with Fix(F) 5 0 is power convergent if and only if for
some a € Fix(F) the linear operator A = F'(a) is power convergent. Thus
to construct a retraction onto Fix(F) by using a power convergent mapping,
we must find a mapping ¢ € Hol(D, D) such that F = Fix(F) = Fix(&)
and for some point a € F, #'(a) is power convergent.

LeMMA. Let A be o bounded linear operator in X, and let Ao € o(A) be
such that

(7 Ker(AgI — A) @ Im{Mg] — A) = X.

Suppose that there ewist a_domain 2 C C and a holomorphic function f
defined in a neighborhood 2 of 2 with the following properties:

(a) 2 2 o(A) and Xy € 8

(b) £(£2) € 4;

(¢) Ao i3 a simple root of the equation f(Xo) = 1;

(d) {f(A)| # 1 for all X € B, Xt Xp.
Then the linear operator B = f(A) : X — X defined by the formula

1

(8) B= %lgﬂf(/\)()\IuA)“‘ld)\,

where I C §2 is o closed path around o(A), is power convergent.

Proof. It follows by Dunford’s Spectral Mapping Theorem that
(9) o(B) = f(o(4)).
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Hence, conditions (a), (b) and (d) imply that

(10) o(B)\ {1} C 4.
Consider now the function
(11) g0 = (1~ FN] (o — N7

Condition. (c) implies that g(A) is holomorphic in a neighborhood of Aq € C,
and g(Ag) # 0. In addition, g(A) 5 0 for all X € o(A), by condition (d), and
therefore the operator C = g(A) defined by the formula

(12) c= -2-;—2 ;g()\)(AI - 4)Td)

is invertible in X. Furthermore, it follows from the multiplicative property
of the calculus of L{X)-valued functions defined by (8) and (12) (see [33])
and from formula (11) that

I—-B=C(I—A)=(NI-A)C.
This implies the equalities Ker(I — B) = Ker(Aol — A) and Im(f — B) =
Im({xoJ — A). Now (7) and (10) imply that B is power convergent. The
Lemma is proved.

THEOREM 2. Let D be a hyperbolic conver domain in X, and let I' €
Hol(D, D) with F =Fix(F) # 0. If F contains a quasi-regular point a € D,
then each mapping ¢ of the form @ = 3 n_o ok, where 3k _gop = 1 and
0 < ay 5 1 for ell k, is power convergent.

Proof Asin the proof of Theorem 1, we may assume that D is bounded.
Let & € Hol(D, D) be defined by '

D
(13) D = Zaka,
k=0

where Y 1 _qop=land 0 Scap# 1forallk=0,1,...,p. ~
Consider the holomorphic function (polynomial) f : A — A defined
by

P
F) =) apd*, e A
k=0

It is clear that f satisfies the conditions (a)—(d) of the Lemma, with 2 = 4,
and therefore the operator B defined by (8) is power convergent to a pro-
jection onto Ker(I — A), where A = F'(a). But it follows from the chain
rule that &'(a) = B = f(A). Hence, & is power convergent onto Fix(®)
(see Remark 4). Furthermore, (13) implies that Fix(F) C Fix(&). At the
game time these sets are connected submanifolds in D tangent to the same
subspace Ker(I — A). Therefore they coincide in D. We are done.
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REMARK 5. If D 3 0, then it can be shown that each infinite convex
combination :

(14 P S
k=0

where 377 gk =1 and 0 < ay # 1 for all k, belongs to Hol(D, D) and is
also power convergent to a retraction onto Fix(F).

We now describe an implicit methed for approximating fixed points of
holomorphic mappings which has been used many times in the theory of
nonexpansive mappings (see, for example, [10]).

Let DD be a bounded convex domain in X, and let F belong to Hol(D, D).
Fort € [0,1) and a fixed y € D, consider the mapping &(z) = tF(z)+{1-t)y,
z € D. Bince & maps D strictly inside itself, the Earle-Hamilton theorem [7i
implies that there exists a unique fixed point z = z,(y) € D of the mapping
®. Moreover,

(15) z = T-lim &".

The X-valued function z(y), 0 < ¢ < 1, is called an approzimating curve. It
was shown in [22] that if X = C" and Fix(F) # 0, then there is a sequence

t, € (0,1), t, — 1, such that for each y € D the sequence zt, (y) converges
o a fixed point of F in D.

At the same time, changing our point of view, for each ¢ € [0,1), z; =
z¢(y) holomorphically depends on y € D, by (15). We denote this mapping
by 7:. In other words, 7; is the unique solution of the nonlinear operator
equation

(16) T =tFoT; + (1—#)I.
The mapping 7; belongs to Hol(D, D) and it is easy to check that
Fix(T;) = Fix(¥)  forall ¢t € (0,1).
THEOREM 3. Let D be a bounded convex domain in o complez Banach
space X, and let F' € Hol(D,D) with F = Fix(F) # 0. If F contains

o quasi-regular point in D, then the mapping T; defined by (16) is power
convergent to a retraction onto F.

Proof. Let a € F, and let B = (7;){a), t € (0,1). Then B satisfies the
operator equation
B=tAoB+{1-tI
where A = F'{a).
Setting r = (1 — £)/£, we have
(17) CB=[I+r(I- A"
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Therefore B can be defined by formula (8) with
1
IV =1y

Since r > 0, this function maps 2 = A into itself and satisfies all the
conditions of the Lemma. Thus by that lemma, B is power convergent to
a projection onto Ker{I — A) and so T; is power convergent to a retraction
onto Fix(F'). The theorem is proved.

he A

REMARK 6. Note that it follows from the Neumann series representation
of the operator B in (17), that the mapping &, defined by (14),

[» o]
!ﬁt = Z O!ka,
k=0
with oz = (1~ )%, t € (0,1), has B = [I + r(I — A)]~! as its Fréchet
derivative at the point a. However, generally speaking, @, and 7; are different
in the nonlinear case.

Observe that for F € Hol(D, D) the family {F"}2; of the iterates
of F' can be considered a “discrete time” one-parameter semigroup, and
Fix(F) = 50 Fix(F™). The question is what can be said about the com-
mon fixed point set of a continuous semigroup. Is it also o submanifold of
D and is there o retraction onto 1%

More precisely, let us say that a family § = {F;}450, F; € Hol(D, D), is
a T'-continuous one-parameter semigroup if

Ft+s=Ft0F3, 'ﬁ,3>0,
and
(18) - TlimF, = I.
t—0+

Since {#} is a commutative family, it is known that for a bounded con-
vex domain in a finite-dimensional space the common fixed point set, of this
family is a holomorphic retract of D (if it is not empty, of course) (see
[1]). But even in this cage, it is unknown how to construct a retraction onto
this set. The situation becomes more complicated in the infinite-dimensional
case. However, for semigroups we can establish a centinuous analog of The-
orem 2.

Let D be a convex domain in a Banach space X, and let § = {F}i»0
be a T-continuous semigroup of holomorphic self- mappings F; of D with
F = nt>0 FlXFt —7—”‘ @

Pick a € F and set 4; = (R)'(a), ¢ > 0. It follows from (18) and the
Cauchy inequalities that {4;}45o is a uniformly continuous semigroup of
bounded linear operators, i.e., 4; converges to the identity in the operator
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norm as t — 0F. Therefore it has an infinitesimal generator B : X — X ,
ie.,

N
B=1 .
(19) t_lyr([)1+ t

Moreover, it can be shown (see [31]) that the nonlinear semigroup {F}}i~0
also has an infinitesimal generator f: D — X defined by the formula
I F
= T-li
(20) f tr-»(l]I'{l it ?

and f'(a) = B. In addition, Fi(z) is the unique solution of the Cauchy
problem

8F¢(a:) .
- 22 1 (R =0,

t1—1>E01+ Ff;(.’b") = .

Now we can state our assertion.

THEOREM 4. Let D and S = {F,}+>0 be as above. Suppose that for some
0 € F =5 Fix(F:) the following condition holds:

(22) Ker BOImB = X,

where B is defined by (19} with A, = (Fy)'(a). Then, for each t > 0, the
continuous Cesdro average ‘

lt
(23) @tzzéFsds

s power convergent to a retraction onto F. Thus F is a connected subman-
ifold of D.
Proof. It follows from (23) that &;(a) = a for each ¢ > 0, and hence
®; € Hol(D, D). In addition, (¢;)'(a) = Cy, where C, is defined by
1t 17
(24) Ci= —SAgds= -—Se"Bsds.
ta ta
Therefore, if we set in our Lemma

2={ eC:ReA>0}, X =0,

and
1 — et

f) = =5—, t>0,

we get by (24),

e L _ Byt
Ctmé"ﬁ;f(A)(AI B)~dA,
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where I' is a contour that surrounds o(B) in 2. = {A € C : Re ) > —¢}
for some & > 0. Furthermore, it follows by the maxinum modulus principle
that f(£2\ {0}) C A and hence A = 0 is the unique and simple oot of the
equation f(A) = 1 in {2. So, by the Lemma, C; is power convergent to a
projection onto Ker B. But it follows from (21) and the uniqueness property
that F = (,, o Fix(F}) coincides with the null point set of f in D, where f i
defined by (20) and f'(a) = B. Since ($;)'(a) = C, ¥, is power convergent
to a retraction onto Fix(®,}, which is tangent to Ker B. Together with the
inclusion F & Fix(#;) this implies the equality F = Fix($;), which proves
our assertion.

Acknowledgements. The research of the first anthor was partially sup-
ported by the Fund for the Promotion of Research at the Technion and by
the Technion VPR Fund — M. and M.L. Bank Mathematics Research Fund.
Both authors thank the referee for many helpful comments and corrections.

References

(1] M. Abate and J-P. Vigué, Common fired points in hyperbolic Riemann surfaces
and conves, domains, Proc. Amer. Math. Soc. 112 (1991), 503-512.

[2] M. Abd-Alla, L'ensemble des points fives d’une application holomorphe dans un
produit fini de boules-unités d'espaces de Hilbert et une sous-varidté banachigue
compleze, Ann. Mat. Pura Appl. (4) 153 (1088), 63-75.

8] T. Y. Azizov, V. Khatskevich, and D. Shoikhet, On the number of fized
points of a holomorphism, Sibirsk., Mat. Zh. 31 {1990), no. 6, 192-195 {in Rus-
sian).

[4] H Cartan, Sur les rétractions d'une variété, C. R. Acad. Sci. Paris 303 (1986),
715—-716.

(5] G-N. Chen, Ieration for holomorphic maps of the open unit ball and the general-
ized upper half-plane of €, J. Math. Anal, Appl. 98 (1984), 305-313.

6] Do Duc Thai, The fized points of holomorphic maps on a convez domein, Ann.
Polon. Math. 56 (1992), 143-148.

[7] C.J. BarleandR. S.Hamilton, 4 fired-point theorem Jor holomorphic mappings,
in: Proc. Sympos. Pure Math. 16, Amer. Math. Soc., Providence, R.I., 1870, 61~
65.

(8] G.Fischer, Comples Analytic Geometry, Lecture Notes in Math. 538, Springer,
Berlin, 1976.

[9] T. Franzoni and E. Vesentini, Holomerphic Maps and Invarient Distances,
North-Holland, Amsterdam, 1980.

f10] K. Goebel and 8. Reich, Uniform Convexity, Hyperbolic Geometry and Nonez-
pansive Moppings, Marcel Dekker, New York, 1984,

[11] T Gohberg and A. Markus, Characteristic properties of o pole of the resolvent
of & linear closed operator, Uchenye Zapiski Bel'tskogo Gosped. 5 (1960), 71~76 (in
Russian).

[12] L.F.HeathandT.J. Suffridge, Holomorphic retracts in comples n-space, Tllinots

© J. Math. 25 (1981), 125-135.

icm

Averages of holomorphic mappings 243

[13] M. Hervé, Analyticity in Infinite Dimensional Spaces, de Gruyter, Berlin, 1989.

[14] J. M. Isidro and L. L. Stacho, Holomorphic Automorphism Groups in Bunach
Spaces: An Blementary Introduetion, N orth-Holland, Amsterdam, 1984.

[15] V.Khatskevich, 8. Reich, and D. Shoikhet, Ergodic type theorems for nonlin-
ear semigroups with holomorphic generators, in: Recent Developments in Evolution
Equations, Pitman Res. Notes Math. 324, Longman, 1995, 191-200.

{16] —, —, —, Asymptotic behavior of solutions to evolution equaiions and the construc-
tion of holomorphic retractions, Math. Nachr. 189 (1998}, 171-178.

[17] V. Khatskevich and D. Shoikhet, Fized points of analytic eperators in a Ba-
nach space and applications, Sibirsk. Mat. Zh, 25 (1984), no. 1, 188-200 (in Rus-
sian).

[18] —, —, Differentiable Operators and Nonlinear Eguations, Birkhduser, Basel, 1994.

[19] J. J. Koliha, Some convergence theorems in Banach algebras, Pacific J. Math, 52,
(1974), 467-473.

[20] M. A. Krasnosel’skif and P. P. Zabretko, Geometrical Methods of Nonlinear
Analysis, Springer, Berlin, 1084,

[21] Y. Kubota, Jteration of holomorphic maps of the unit ball into itself, Proc. Amer.
Math. Soc. 88 (1983) 476-480.

{22] T.Kuczumow and A. Stachura, Ferates of holomorphic and Kp-nonezpansive
mappings in convex domaing in C*, Adv. Math. 81 (1990), 90-98.

[23] K. B.Laursen and M. Mbekhta, Operators with finite chain length and the er-
godic theorem, Proc. Amer. Math. Soc. 123 (1995), 3443-3448.

[24] L. Lempert, Holomorphic retracts and intrinsic metrics in convez domains, Anal.
Math. § (1982), 257-261.

[25} Yu. Lyubich and J. Zemének, Precompactness in the uniform ergedic theory,
Studia Math. 112 (1994), 86-97.

[28] B.D. MacCluer, Iterates of holomorphic self-maps of the unit ball in CN, Michi-
gan Math. J. 30 (1983), 97-106.

[27] P. Mazet, Les points fizes d’une application holomorphe d'un domaine borné dans
lui-rnéme admettent une base de voisinages convezes stable, C. R. Acad. Sci. Paris
314 (1992), 197-199.

[28] P. Maset et J.-P. Vigué, Points fires d'une application holomorphe d’un domaine
borné dans lui-méme, Acta Math. 166 (1991), 1-26.

(28] —, —, Converité de la distance de Carathéodory et points fizes d’applications holo-
morphes, Bull. Sci. Math. 116 (1992), 285-305.

[80] P. R. Mercer, Complex geodesics and iterates of holomorphic maps on conves do-
mains in C*, Trans, Amer. Math. Soc. 338 (1993), 201-211.

[81] S.Reichand D. Sheikhet, Metric domains, holomorphic mappings and nonlinear
semigroups, Technion Preprint Series No. MT-1018, 1997,

(321 W.Rudin, The fixed-point set of some holomorphic maps, Bull. Malaysian Math.
Soc. 1 (1978), 25-28.

[33] —, Functional Anelysis, McGraw-Hill, New York, 1973.

[34] D.Shoikhet, Some properties of Fredholm mappings in Banach analytic manifolds,
Integral Equations Operator Theory 16 (1993}, 430-451.

(85] T.J Suffridge, Common fized points of commuting holomorphic maps of the hy-
perball, Michigan Math. J. 21 (1974), 309-314.

[36] A. E. Taylor and D, C. Lay, Introduction to Functional Analysis, Wiley, New
York, 1980.

[37] E.Vesentini, Complex geodesics and holomorphic maps, Sympos. Math. 26 (1982),
211-230.



244 S. Reich and D. Shoikhet

[38] E.Vesentini, Su un feorema di Wolff e Denjoy, Rend. Sem, Mat. Fis. Milane 53
(1083), 17-25.

[39] —, Herates of holomorphic mappings, Uspekhi Mat. Nauk 40 (1985), no. 4, 13-16
(in Russian).

[40] J.-P. Vigué, Points fives d’applications holomorphes dans un produit fint de boules-
unitds d’espaces de Hilbert, Ann. Mat. Pura Appl. 137 (1984), 245~258.

[41] — Points fives d'applications holomorphes dans un domaine borné converze de C",
Trans. Amer, Math, Soc. 280 (1985}, 345-353.

[42] -, Sur les points fives d’applications holomorphes, C. R. Acad. Sci. Paris 303 (1986),
§27-930.

[43] —, Fized points of holomorphic mappings in a bounded conver domain in C", in:

Proc. Sympos. Pure Math. 52, Part 2, Amer. Math. Soc., 1991, 579-582.

Department of Applied Mathematics
International College of Technology
P.0. Box 78, 20101 Karmiel, Israel
E-mail: davs@techunix.technion.ac.il

Department of Mathematics

The Technion-Israel Institute of Technology
32000 Haifa, Israel

E-mail: sreich@techumnix technion.ac.il

Received August 20, 1897
Reyised version February 20, 1998

(3940}

icm

STUDIA MATHEMATICA 130 (3) (1098)

Reverse-Holder classes in the Orlicz spaces setting
by

E. HARBOURE, O. SALINAS and B. VIVIANI (Santa Fe)

Abstract. In connection with the Ay classes of weights (see [K-T] and [B-K]), we
study, in the context of Orlicz spaces, the corresponding reverse-Halder classes RHy We
prove that when ¢ is A2 and has lower index greater than one, the class RH, coincides
with some reverse-Hdlder class RHy, g > 1. For more general ¢ we still get RHy C Ao =
U1 BHy although the intersection of all these RH, gives a proper subset of ) 41 BHg.

1. Introduction. By a weight w we mean a non-negative and locally
integrable function on R™. As is well known, a weight w is said to belong to
the reverse-Hélder class with exponent ¢, RH, if it satisfies the inequality

1 Ya 1
(@éw(m)q dm) < C@ 6Sgw(m) da

for any cube @ C R™ with sides parallel to the axes; here [Q! denotes
the Lebesgue measure of ). These classes appeared in connection with the
Ap classes of Muckenhoupt which characterize the weights such that the
Hardy-Littlewood maximal operator is bounded on LP(w), 1 < p < oco. To
be precise, the A, weights are defined as those weights such that

(o 04) G e s

for any cube @ < R™. The limiting case p = 1, A;, is defined as the weights
satisfying

<O
mg(w) < C’mugg2 w(z)

for any cube @ C R™, where mq(w) denotes the average of w over Q. For
P = 0, Ao consists of the weights w such that for any @ and any measurable
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